Vehicle Dynamics Blockset ${ }^{\text {m }}$ Reference

MATLAB̊\&SIMULINK ${ }^{\circ}$

How to Contact MathWorks

Latest news:
Sales and services:
User community:
Technical support:
Phone:

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098
Vehicle Dynamics Blockset ${ }^{\text {TM }}$ Reference
© COPYRIGHT 2018-2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014 Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks. com/patents for more information.

Revision History

March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022
September 2022
March 2023

New for Version 1.0 (Release 2018a)
Revised for Version 1.1 (Release 2018b)
Revised for Version 1.2 (Release 2019a)
Revised for Version 1.3 (Release 2019b)
Revised for Version 1.4 (Release 2020a)
Revised for Version 1.5 (Release 2020b)
Revised for Version 1.6 (Release 2021a)
Revised for Version 1.7 (Release 2021b)
Revised for Version 1.8 (Release 2022a)
Revised for Version 1.9 (Release 2022b)
Revised for Version 2.0 (Release 2023a)

$$
1
$$

Drivetrain Blocks
2

Wheel and Tire Blocks
3

Propulsion Blocks
4

Vehicle Dynamics Blocks
5

Vehicle Scenario Blocks
6

3D Simulation Blocks
7

Scenes
8

Vehicle Dimensions
9

10

Classes
11

Apps
12

Steering and Suspension Blocks

Dynamic Steering

Dynamic steering for Ackerman, rack-and-pinion, and parallel steering mechanisms

Note Dynamic Steering is not recommended to implement dynamic steering for Ackerman, rack-andpinion, and parallel steering mechanisms. Use Steering System instead. For more information, see "Compatibility Considerations".

Libraries:

Vehicle Dynamics Blockset / Steering

Description

The Dynamic Steering block implements dynamic steering to calculate the wheel angles for Ackerman, rack-and-pinion, and parallel steering mechanisms. The block uses the steering wheel input torque, right wheel torque, and left wheel torque to calculate the wheel angles. The block uses the vehicle coordinate system.

If you select Power assist, you can specify a torque assist lookup table that is a function of the vehicle speed and steering wheel input torque. The block uses the steering wheel input torque and torque assist to calculate the steering dynamics.

To specify the steering type, use the Type parameter.

Setting	Block Implementation
Ackerman	Ideal Ackerman steering. Wheel angles have a common turning circle center.
Rack and pinion	Ideal rack-and-pinion steering. Gears convert the steering rotation into linear motion.
Parallel	Parallel steering. Wheel angles are equal.

To specify the type of data for the steering mechanism, use the Parametrized by parameter.

Setting	Block Implementation
Constant	Steering mechanism uses constant parameter data.
Lookup table	Steering mechanism implements tables for parameter data.

Use the Steered axle parameter to specify whether the front or rear axle is steered.

Dynamics

To calculate the steering dynamics, the Dynamic Steering block models the steering wheel, shaft, steering mechanism, hysteresis, and, optionally, power assist.

Calculation	Equations
Steering column and steering shaft dynamics	$\begin{aligned} & J_{1} \ddot{\theta}_{1}=\tau_{\text {in }}-b_{2} \dot{\theta}_{1}-\tau_{\text {hys }} \\ & J_{2} \ddot{\theta}_{2}=\tau_{\text {eq }}-b_{3} \dot{\theta}_{2}+\tau_{\text {hys }}-\tau_{\text {fric }} \end{aligned}$
Hysteresis spring damper	$\begin{aligned} & \delta=\theta_{1}-\theta_{2} \\ & \Delta \delta=\delta_{\text {current }}-\delta_{\text {previous }} \\ & \tau_{\text {hys }}=\left(b_{1} \dot{\delta}-k_{1} \delta\right)\left(1+\exp \left(-\frac{\|\Delta \delta\|}{\beta}\right)\right) \\ & \beta= \begin{cases}\beta_{u} & \text { when } \delta>0 \\ \beta_{l} & \text { when } \delta \leq 0\end{cases} \end{aligned}$
Optional power assist	$\begin{aligned} & \tau_{\text {ast }}=f_{\text {trq }}\left(v, \tau_{\text {in }}\right) \\ & J_{1} \ddot{\theta}_{1}=\tau_{\text {in }}+\tau_{\text {ast }}-b_{2} \dot{\theta}_{1}-\tau_{\text {hys }} \\ & J_{2} \ddot{\theta}_{2}=\tau_{\text {eq }}+\tau_{\text {ast }}-b_{3} \dot{\theta}_{2}+\tau_{\text {hys }}-\tau_{\text {fric }} \end{aligned}$

The illustration and equations use these variables.
$J_{1} \quad$ Steering wheel inertia
$J_{2} \quad$ Steering mechanism inertia
$\theta_{1}, \dot{\theta}_{1}, \ddot{\theta}_{1} \quad$ Steering wheel angle, angular velocity, and angular acceleration, respectively
$\theta_{2}, \dot{\theta}_{2}, \ddot{\theta}_{2} \quad$ Shaft angle, angular velocity, and angular acceleration, respectively
$b_{1}, k_{1} \quad$ Hysteresis spring and viscous damping coefficients, respectively

b_{2}	Steering wheel viscous damping coefficient
b_{3}	Steering mechanism damping coefficient
$\tau_{\text {hys }}$	Hysteresis spring damping torque
$\tau_{\text {fric }}$	Steering mechanism friction torque
$\tau_{\text {eq }}$	Wheel equivalent torque
$\tau_{\text {ast }}$	Torque assist
β_{u}, β_{l}	Upper and lower hysteresis modifiers, respectively
v	Vehicle speed
$f_{t r q}$	Torque assist lookup table

Steering Types

Ackerman Steering

For 100\% (ideal) Ackerman steering, all wheels follow circular arcs with the same center point.

To calculate the steered wheel angles, the Ackerman block uses these equations:

$$
\begin{aligned}
& \cot \left(\delta_{L}\right)-\cot \left(\delta_{R}\right)=\frac{T W}{W B} \\
& \delta_{A c k}=\frac{\delta_{i n}}{\gamma} \\
& \delta_{L}=\tan ^{-1}\left(\frac{W B \tan \left(\delta_{A c k}\right)}{W B+0.5 T W \tan \left(\delta_{A c k}\right)}\right) \\
& \delta_{R}=\tan ^{-1}\left(\frac{W B \tan \left(\delta_{A c k}\right)}{W B-0.5 T W \tan \left(\delta_{A c k}\right)}\right)
\end{aligned}
$$

Definition of variables used:

$\delta_{i n}$	Pinion angle (steering shaft angle into pinion)
δ_{L}	Left wheel steer angle
δ_{R}	Right wheel steer angle
$\delta_{A c k}$	Ackerman steer angle
$T W$	Track width
$W B$	Wheel base
γ	Steering ratio: Ratio of pinion angle to Ackerman angle
Rack-and-Pinion	

For rack-and-pinion steering, pinion rotation causes linear motion of the rack, which steers the wheels through the tie rods and steering arms.

To calculate the steered wheel angles, the block uses these equations.

$$
\begin{aligned}
& l_{1}=\frac{T W-l_{\text {rack }}}{2}-\Delta P \\
& l_{2}^{2}=l_{1} 2+D^{2} \\
& \Delta P=r \delta_{\text {in }} \\
& \beta=\frac{\Pi}{2}-\tan ^{-1}\left[\frac{D}{l_{1}}\right]-\cos ^{-1}\left[\frac{l_{\text {arm }}{ }^{2}+l_{2} 2-l_{\text {rod }}{ }^{2}}{2 l_{\text {arm }} l_{2}}\right]
\end{aligned}
$$

The illustration and equations use these variables.

$\delta_{\text {in }}$	Pinion angle (steering shaft angle into pinion)
δ_{L}	Left wheel steer angle
δ_{R}	Right wheel steer angle
$T W$	Track width
r	Pinion radius
ΔP	Linear change in rack position from "straight ahead" position
D	Longitudinal distance between rack and steered axle
$l_{\text {rack }}$	Rack length (distance between inner tie-rod ends)
$l_{\text {arm }}$	Steering arm length
$l_{\text {rod }}$	Tie rod length

Parallel

For parallel steering, the wheel angles are equal.

To calculate the steering angles, the block uses this equation.

$$
\delta_{R}=\delta_{L}=\frac{\delta_{i n}}{\gamma}
$$

The illustration and equations use these variables.

$\delta_{\text {in }}$	Steering wheel angle
δ_{L}	Left wheel angle
δ_{R}	Right wheel angle
γ	Steering ratio

Ports

Input
TrqIn - Torque
scalar
Torque, $\tau_{i n}$, in $\mathrm{N} \cdot \mathrm{m}$.
TrqLft - Left wheel torque
scalar
Left wheel torque, τ_{L}, in $\mathrm{N} \cdot \mathrm{m}$.

TrqRght - Right wheel torque
scalar
Right wheel torque, τ_{R}, in $N \cdot \mathrm{~m}$.
VehSpd - Vehicle speed
scalar
Vehicle speed, v, in m / s.

Dependencies

To create a VehSpd port, select Power assist.

Output

Info - Bus signal
bus
Bus signal contains these block calculations.

Signal	Description	Unit
StrgWhlAng	Steering wheel angle	rad
StrgWhlSpd	Steering wheel angular velocity	$\mathrm{rad} / \mathrm{s}$
ShftAng	Shaft angle	rad
ShftSpd	Shaft angular velocity	$\mathrm{rad} / \mathrm{s}$
AngLft	Left wheel angle	rad
SpdLft	Left wheel angular velocity	$\mathrm{rad} / \mathrm{s}$
AngRght	Right wheel angle	rad
SpdRght	Right wheel angular velocity	$\mathrm{rad} / \mathrm{s}$
TrqAst	Torque assist	$\mathrm{N} \cdot \mathrm{m}$
PwrAst	Power assist	W
PwrLoss	Power loss	W
InstStrgRatio	Instantaneous steering ratio	NA

AngLft - Left wheel angle

scalar

Left wheel angle, δ_{L}, in rad.
AngRght - Right wheel angle
scalar
Right wheel angle, δ_{R}, in rad.

Parameters

Type - Select steering type
Rack and pinion (default)|Ackerman | Parallel

To specify the steering type, use the Type parameter.

Setting	Block Implementation
Ackerman	Ideal Ackerman steering. Wheel angles have a common turning circle center.
Rack and pinion	Ideal rack-and-pinion steering. Gears convert the steering rotation into linear motion.
Parallel	Parallel steering. Wheel angles are equal.

Dependencies

This table summarizes the Type and Parametrized by parameter dependencies.

Type	Parameterized By	Creates Parameters		
Ackerman	Constant	Track width, TrckWdth		
Wheel base, WhlBase				
Steering range, StrgRng				
Steering ratio, StrgRatio			,	Track width, TrckWdth
:---				

Type	Parameterized By	Creates Parameters		
	Lookup table	Track width, TrckWdth		
Rack casing length, RckCsLngth				
Tie rod length, TieRodLngth				
Parallel	Constant	Pinion radius, PnnRadiusTbl		
		Steering range, StrgRng		
Steering ratio, StrgRatio			,	Steering range, StrgRng
:---				
Steering angle breakpoints, StrgAngBpts				
Steering ratio table, StrgRatioTbl				

Parametrized by - Select parameterization

Lookup table (default) | Constant
To specify the type of data for the steering mechanism, use the Parametrized by parameter.

Setting	Block Implementation
Constant	Steering mechanism uses constant parameter data.
Lookup table	Steering mechanism implements tables for parameter data.

Dependencies

This table summarizes the Type and Parametrized by parameter dependencies.

Type	Parameterized By	Creates Parameters
Ackerman	Constant	Track width, TrckWdth
		Wheel base, WhIBase
		Steering range, StrgRng
Steering ratio, StrgRatio		

Type	Parameterized By	Creates Parameters
	Lookup table	Track width, TrckWdth Wheel base, WhlBase Steering range, StrgRng Steering angle breakpoints, StrgAngBpts Steering ratio table, StrgRatioTbl
Rack and pinion	Constant	Track width, TrckWdth Steering range, StrgRng Steering arm length, StrgArmLngth Rack casing length, RckCsLngth Tie rod length, TieRodLngth Distance between front axis and rack, D Pinion radius, PnnRadius
	Lookup table	Track width, TrckWdth Steering range, StrgRng Steering angle breakpoints, StrgAngBpts Steering arm length, StrgArmLngth Rack casing length, RckCsLngth Tie rod length, TieRodLngth Distance between front axis and rack, D Pinion radius, PnnRadiusTbl
Parallel	Constant	Steering range, StrgRng Steering ratio, StrgRatio
	Lookup table	Steering range, StrgRng Steering angle breakpoints, StrgAngBpts Steering ratio table, StrgRatioTbl

Power assist - Specify power assist
on (default) | off
If you select Power assist, you can specify a torque assist lookup table, $f_{\text {trq, }}$, that is a function of the vehicle speed, v, and steering wheel input torque, $\tau_{i n}$.

$$
\tau_{\text {ast }}=f_{\text {trq }}\left(v, \tau_{\text {in }}\right)
$$

The block uses the steering wheel input torque and torque assist to calculate the steering dynamics. Dependencies

Selecting Power assist creates the VehSpd input port and these parameters.

Power Assist	Parameters
on	Steering wheel torque breakpoints, TrqBpts
	Vehicle speed breakpoints, VehSpdBpts
	Assisting torque table, TrqTbl
	Assisting torque limit, TrqLmt
	Assisting power limit, PwrLmt
	Assisting torque efficiency, Eta
Cutoff frequency, omega_c	

Location - Select location

Front (default) | Rear

Use the Steered axle parameter to specify whether the front or rear axle is steered.

Setting	Implementation
Front	Front axle steering

General

Track width, TrckWdth - Width
l|scalar
Track width, $T W$, in m.

Dependencies

To create this parameter, set Type to Ackerman or Rack and pinion.
Wheel base, WhIBase - Base
1.524 (default) | scalar

Wheel base, WB, in m.

Dependencies

To create this parameter, set Type to Ackerman.

Steering range, StrgRng - Range

1.25*pi (default) | scalar

Steering range, in rad. The block limits the wheel angles to remain within the steering range.

Steering ratio, StrgRatio - Ratio

13.5 (default) | scalar

Steering ratio, γ, dimensionless.

Dependencies

To create this parameter:

- Set Type to Ackerman or Parallel.
- Set Parametrized by to Constant.

Steering angle breakpoints, StrgAngBpts - Breakpoints
[-6.2832 -5.0265-3.7699 -2.5133-1.2566 0 1.2566 2.5133 3.7699 5.0265
6.2832] (default) | vector

Steering angle breakpoints, in rad.

Dependencies

To create this parameter, set Parametrized by to Lookup table.
Steering ratio table, StrgRatiotbl - Table
$[13.500013 .375013 .250013 .125013 .000013 .000013 .000013 .125013 .2500$
13.3750 13.5000] (default) | vector

Steering ratio table, γ, dimensionless.

Dependencies

To create this parameter:

- Set Type to Ackerman or Parallel.
- Set Parametrized by to Lookup table.

Rack-and-Pinion

Steering arm length, StrgArmLngth - Length
0.1 (default) | scalar

Steering arm length, $l_{\text {arm }}$, in m .

Dependencies

To create this parameter, set Type to Rack and pinion.
Rack casing length, RckCsLngth - Length
0.5 (default) | scalar

Rack casing length, $l_{\text {rack }}$, in m .

Dependencies

To create this parameter, set Type to Rack and pinion.
Tie rod length, TieRodLngth - Length
0.248 (default) | scalar

Tie rod length, $l_{\text {rod }}$, in m .

Dependencies

To create this parameter, set Type to Rack and pinion.
Distance between axis and rack, D - Distance
0.2 (default) | scalar

Distance between axis and rack, D, in m.

Dependencies

To create this parameter, set Type to Rack and pinion.
Pinion radius, PnnRadius - Radius
0.0057 (default) | scalar

Pinion radius, r, in m.

Dependencies

To create this parameter:

- Set Type to Rack and pinion.
- Set Parametrized by to Constant.

Pinion radius table, PnnRadiusTbI - Table
[0.0055 0.0055 0.0056 0.0057 0.0057 0.0057 0.0058 0.0057 0.0056 0.0055 $0.0055]$ (default) | vector

Pinion radius table, r, in m.
Dependencies
To create this parameter:

- Set Type to Rack and pinion.
- Set Parametrized by to Lookup table.

Dynamics

Steering wheel inertia, J1 - Inertia
0.1 (default) | scalar

Steering wheel inertia, J_{1}, in $\mathrm{kg}^{*} \mathrm{~m}^{\wedge} 2$.
Steering mechanism inertia, J2 - Inertia
0.01 (default) | scalar

Steering mechanism inertia, J_{2}, in $\mathrm{kg}^{*} \mathrm{~m}^{\wedge} 2$.
Upper hysteresis modifier, beta_u - Upper hysteresis modifier
0.1 (default) | scalar

Upper hysteresis modifier, β_{u} dimensionless.
Lower hysteresis modifier, beta_I - Lower hysteresis modifier
0.1 (default) | scalar

Lower hysteresis modifier, β_{l}, dimensionless.
Hysteresis viscous damping, b1 - Damping
0.001 (default) | scalar

Hysteresis damping, b_{1}, in $N \cdot m \cdot \mathrm{~s} / \mathrm{rad}$.

Hysteresis stiffness, k1 - Stiffness
30 (default) | scalar
Hysteresis stiffness, k_{1}, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.
Steering wheel damping, b2 - Damping
1 (default) | scalar
Steering wheel damping, b_{2}, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Steering mechanism damping, b3 - Damping
0.001 (default) | scalar

Steering mechanism damping, b_{3}, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Initial steering angle, theta_o - Angle
0 (default) | scalar
Initial steering angle, θ_{0}, in rad.
Initial steering angular velocity, omega_o - Angular velocity
0 (default) | scalar
Initial steering angular velocity, ω_{o}, in rad/s.
Friction torque, FricTrq - Torque
0 (default) | scalar
Friction torque, $\tau_{\text {fric }}$, in $\mathrm{N} \cdot \mathrm{m}$.

Power Assist

Steering wheel torque breakpoints, TrqBpts - Breakpoints
[-100 0 100] (default) | 1-by-M vector
Steering wheel torque breakpoints, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

Selecting Power assist creates the VehSpd input port and these parameters.

Power Assist	Parameters
on	Steering wheel torque breakpoints, TrqBpts
	Vehicle speed breakpoints, VehSpdBpts
	Assisting torque table, TrqTbl
	Assisting torque limit, TrqLmt
	Assisting power limit, PwrLmt
	Assisting torque efficiency, Eta
	Cutoff frequency, omega_c

Vehicle speed breakpoints, VehSpdBpts - Breakpoints

[0 20] (default) | 1-by-N vector

Vehicle speed breakpoints, in m/s.

Dependencies

Selecting Power assist creates the VehSpd input port and these parameters.

Power Assist	Parameters
on	Steering wheel torque breakpoints, TrqBpts
	Vehicle speed breakpoints, VehSpdBpts
	Assisting torque table, TrqTbl
	Assisting torque limit, TrqLmt
	Assisting power limit, PwrLmt
	Assisting torque efficiency, Eta
	Cutoff frequency, omega_c

Assisting torque table, TrqTbI - 2D torque table
[0-100;0 0;0 100] (default)|M-by-N matrix
Assisting torque table, $f_{\text {trq }}$, in $\mathrm{N} \cdot \mathrm{m}$.
The torque assist lookup table is a function of the vehicle speed, v, and steering wheel input torque, $\tau_{i n}$.

$$
\tau_{a s t}=f_{t r q}\left(v, \tau_{i n}\right)
$$

The block uses the steering wheel input torque and torque assist to calculate the steering dynamics.

Dependencies

Selecting Power assist creates the VehSpd input port and these parameters.

Power Assist	Parameters
on	Steering wheel torque breakpoints, TrqBpts
	Vehicle speed breakpoints, VehSpdBpts
	Assisting torque table, TrqTbl
	Assisting torque limit, TrqLmt
	Assisting power limit, PwrLmt
	Assisting torque efficiency, Eta
Cutoff frequency, omega_c	

Assisting torque limit, TrqLmt - Torque limit 100 (default) | scalar

Assisting torque limit, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

Selecting Power assist creates the VehSpd input port and these parameters.

Power Assist	Parameters
on	Steering wheel torque breakpoints, TrqBpts
	Vehicle speed breakpoints, VehSpdBpts
	Assisting torque table, TrqTbl
	Assisting torque limit, TrqLmt
	Assisting power limit, PwrLmt
	Assisting torque efficiency, Eta
Cutoff frequency, omega_c	

Assisting power limit, PwrLmt - Power limit
1000 (default)| scalar
Assisting power limit, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{s}$.
Dependencies
Selecting Power assist creates the VehSpd input port and these parameters.

Power Assist	Parameters
on	Steering wheel torque breakpoints, TrqBpts
	Vehicle speed breakpoints, VehSpdBpts
	Assisting torque table, TrqTbl
	Assisting torque limit, TrqLmt
	Assisting power limit, PwrLmt
	Assisting torque efficiency, Eta
	Cutoff frequency, omega_c

Assisting torque efficiency, Eta - Efficiency
1 (default) | scalar
Assisting torque efficiency, dimensionless.

Dependencies

Selecting Power assist creates the VehSpd input port and these parameters.

Power Assist	Parameters
on	Steering wheel torque breakpoints, TrqBpts
	Vehicle speed breakpoints, VehSpdBpts
	Assisting torque table, TrqTbl
	Assisting torque limit, TrqLmt
	Assisting power limit, PwrLmt
	Assisting torque efficiency, Eta
Cutoff frequency, omega_c	

Cutoff frequency, omega_c - Cutoff frequency

200 (default) | scalar
Cutoff frequency, in rad/s.

Dependencies

Selecting Power assist creates the VehSpd input port and these parameters.

Power Assist	Parameters
on	Steering wheel torque breakpoints, TrqBpts
	Vehicle speed breakpoints, VehSpdBpts
	Assisting torque table, TrqTbl
	Assisting torque limit, TrqLmt
	Assisting power limit, PwrLmt
	Assisting torque efficiency, Eta
	Cutoff frequency, omega_c

Version History

Introduced in R2018a

R2023a: Dynamic Steering block is not recommended

Not recommended starting in R2023a
The Dynamic Steering is not recommended. Instead, use the Steering System block to implement dynamic steering, including:

- Ackerman percentage that adjusts the ideal Ackerman outside wheel angle. You can use an input port or parameters to specify a constant or table of Ackerman percentages.
- Single or double Cardan joint to model the intermediate steering shaft.
- Friction and compliance effects.
- Input ports for power assistance, Ackerman steering, and kingpin moments.

References

[1] Crolla, David, David Foster, et al. Encyclopedia of Automotive Engineering. Volume 4, Part 5 (Chassis Systems) and Part 6 (Electrical and Electronic Systems). Chichester, West Sussex, United Kingdom: John Wiley \& Sons Ltd, 2015.
[2] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
[3] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Kinematic Steering | Mapped Steering

Topics

"Coordinate Systems in Vehicle Dynamics Blockset"

Kinematic Steering

Kinematic steering for Ackerman, rack-and-pinion, and parallel steering mechanisms

Libraries:

Vehicle Dynamics Blockset / Steering

Description

The Kinematic Steering block implements a steering model to determine the left and right wheel angles for Ackerman, rack-and-pinion, and parallel steering mechanisms. The block uses the vehicle coordinate system.

To specify the steering type, use the Type parameter.

Setting	Block Implementation
Ackerman	Ideal Ackerman steering, adjusted by percentage Ackerman. Wheel angles have a common turning circle center.
Rack and pinion	Ideal rack-and-pinion steering. Gears convert the steering rotation into linear motion.
Parallel	Parallel steering. Wheel angles are equal.

To specify the type of data for the steering mechanism, use the Parametrized by parameter.

Setting	Block Implementation
Constant	Steering mechanism uses constant parameter data.
Lookup table	Steering mechanism implements tables for parameter data.

Use the Steered axle parameter to specify whether the front or rear axle is steered.

Setting	Implementation
Front	Front axle steering
Rear	Rear axle steering

Steering Types

Ackerman

For ideal Ackerman steering, the wheel angles have a common turning circle.

To calculate the ideal wheel angles, the block uses these equations.

$$
\begin{aligned}
& \cot \left(\delta_{L}\right)-\cot \left(\delta_{R}\right)=\frac{T W}{W B} \\
& \delta_{A c k}=\frac{\delta_{i n}}{\gamma} \\
& \delta_{L}=\tan ^{-1}\left(\frac{W B \tan \left(\delta_{A c k}\right)}{W B+0.5 T W \tan \left(\delta_{A c k}\right)}\right) \\
& \delta_{R}=\tan ^{-1}\left(\frac{W B \tan \left(\delta_{A c k}\right)}{W B-0.5 T W \tan \left(\delta_{A c k}\right)}\right)
\end{aligned}
$$

After the block calculates the ideal wheel angles, it uses the Ackerman percentage to adjust the outside wheel angle.

$$
\delta_{o}=\delta_{i}-p_{A c k}\left(\delta_{i}-\delta_{A c k}\right)
$$

The outside wheel angle depends on the turn direction.

- Right turn
- Outside angle, δ_{o}, is left wheel angle, δ_{L}
- Inside angle, δ_{i}, is right wheel angle, δ_{R}
- Left turn
- Outside angle, δ_{0}, is right wheel angle, δ_{R}
- Inside angle, δ_{i}, is left wheel angle, δ_{L}

The illustration and equations use these variables.

$\delta_{\text {in }}$	Steering angle
δ_{L}	Left wheel angle

δ_{R}	Right wheel angle
δ_{o}	Outside wheel angle
δ_{i}	Inside wheel angle
$p_{A c k}$	Ackerman percentage
$T W$	Track width
$W B$	Wheel base
γ	Steering ratio

Rack-and-Pinion

For ideal rack-and-pinion steering, the gears convert the steering rotation into linear motion.

To calculate the steering angles, the block uses these equations.

$$
\begin{aligned}
& l_{1}=\frac{T W-l_{\text {rack }}}{2}-\Delta P \\
& l_{2} 2=l_{1} 2+D^{2} \\
& \Delta P=r \delta_{\text {in }} \\
& \beta=\frac{\Pi}{2}-\tan ^{-1}\left[\frac{D}{l_{1}}\right]-\cos ^{-1}\left[\frac{l_{\text {arm }}{ }^{2}+l_{2} 2-l_{\text {rod }}{ }^{2}}{2 l_{\text {arm }} l_{2}}\right]
\end{aligned}
$$

The illustration and equations use these variables.

$\delta_{\text {in }}$	Steering wheel angle
δ_{L}	Left wheel angle
δ_{R}	Right wheel angle
$T W$	Track width
r	Pinion radius
ΔP	Linear change in rack position
D	Distance between front axis and rack
$l_{\text {rack }}$	Rack casing length
$l_{\text {arm }}$	Steering arm length
$l_{\text {rod }}$	Tie rod length

Parallel

For parallel steering, the wheel angles are equal.

To calculate the steering angles, the block uses this equation.

$$
\delta_{R}=\delta_{L}=\frac{\delta_{i n}}{\gamma}
$$

The illustration and equations use these variables.

$\delta_{i n}$	Steering wheel angle
δ_{L}	Left wheel angle
δ_{R}	Right wheel angle
γ	Steering ratio

Ports

Input
Angln - Steering angle
scalar
Steering angle, $\delta_{i n}$, in rad.
Use the Steering range, StrgRng parameter to specify a steering angle range. By default, the value is set to $1.25{ }^{*}$ pi, which limits the steering angle to a range of -1.25^{*} pi to 1.25^{*} pi.

PctAckIn - Ackerman percentage
scalar

Ackerman percentage, $\delta_{i n}$, in percent.

Dependencies

To create this input port:

- Set Type to Ackerman.
- On the Ackerman Steering pane, select Input percent Ackerman.

Output

Info - Bus signal
bus
Bus signal contains this block calculation.

Signal	Description	Variable	Unit
InstStrgRatio	Instantaneous steering ratio	γ	NA

AngLft - Left wheel angle

scalar
Left wheel angle, δ_{L}, in rad.
AngRght - Right wheel angle
scalar
Right wheel angle, δ_{R}, in rad.

Parameters

Type - Select steering type
Ackerman (default)|Rack and pinion|Parallel
To specify the steering type, use the Type parameter.

Setting	Block Implementation
Ackerman	Ideal Ackerman steering. Wheel angles have a common turning circle center.
Rack and pinion	Ideal rack-and-pinion steering. Gears convert the steering rotation into linear motion.
Parallel	Parallel steering. Wheel angles are equal.

Parametrized by - Select parameterization
Constant (default)|Lookup table
To specify the type of data for the steering mechanism, use the Parametrized by parameter.

Setting	Block Implementation
Constant	Steering mechanism uses constant parameter data.

Setting	Block Implementation
Lookup table	Steering mechanism implements tables for parameter data.

Location - Select location

Front (default) | Rear
Use the Steered axle parameter to specify whether the front or rear axle is steered.

Setting	Implementation
Front	Front axle steering
Rear	Rear axle steering

Normalization factor, NrmIFctr - Adjust the steering angle scalar

Factor, $N_{r m}{ }_{\text {Fctr }}$, that the block uses to adjust the steering ratio, γ or pinion radius, r. The block can only normalize if you have Parametrized by set to Constant.

To adjust the steering ratio or pinion radius, click Normalize.

Steering Type	Normalization
Ackerman	Block updates the Steering ratio, StrgRatio parameter to the normalized value, $\gamma_{n r m}$, specified by this equation.
Parallel	$\gamma_{n r m}=\frac{1}{N r m_{\text {Fctr }}}$
Rack and pinion	Block updates the Pinion radius, PnnRadius parameter to using the normalization factor, $N r m_{\text {Fctr. }}$

General

Track width, TrckWdth - Width
1 (default) | scalar
Track width, $T W$, in m.

Dependencies

To create this parameter, set Type to Ackerman or Rack and pinion.
Wheel base, WhIBase - Base
1.524 (default) | scalar

Wheel base, WB, in m.

Dependencies

To create this parameter, set Type to Ackerman.
Deadband, Db - Deadband
0 (default) | scalar
Deadband steering angle before pinion engages the gear, in rad.
Steering range, StrgRng - Steering wheel angle input range
1.25*pi (default) | scalar

Steering wheel angle input range, in rad. The block limits the steering wheel input angles to remain within the steering range.

Steering ratio, StrgRatio - Ratio
 100 (default) | scalar

Steering ratio, γ, dimensionless.

Dependencies

To create this parameter:

- Set Type to Ackerman or Parallel.
- Set Parametrized by to Constant.

Steering angle breakpoints, StrgAngBpts - Breakpoints
$[-6.2832-5.0265-3.7699-2.5133-1.256601 .25662 .51333 .76995 .0265$
6.2832] (default) | vector

Steering angle breakpoints, in rad.

Dependencies

To create this parameter, set Parametrized by to Lookup table.
Steering ratio table, StrgRatioTbl - Table

13.3750 13.5000] (default) |vector

Steering ratio table, γ, dimensionless.

Dependencies

To create this parameter:

- Set Type to Ackerman or Parallel.
- Set Parametrized by to Lookup table.

Rack-and-Pinion

Steering arm length, StrgArmLngth - Length
0.1 (default) | scalar

Steering arm length, $l_{\text {arm }}$, in m .

Dependencies

To create this parameter, set Type to Rack and pinion.

Rack casing length, RckCsLngth - Length

0.5 (default) | scalar

Rack casing length, $l_{\text {rack }}$, in m .

Dependencies

To create this parameter, set Type to Rack and pinion.
Tie rod length, TieRodLngth - Length
0.248 (default) | scalar

Tie rod length, $l_{\text {rod }}$, in m .

Dependencies

To create this parameter, set Type to Rack and pinion.

Distance between axis and rack, D - Distance

0.2 (default) | scalar

Distance between axis and rack, D, in m .

Dependencies

To create this parameter, set Type to Rack and pinion.
Pinion radius, PnnRadius - Radius
0.0057 (default) | scalar

Pinion radius, r, in m.

Dependencies

To create this parameter:

- Set Type to Rack and pinion.
- Set Parametrized by to Constant.

Pinion radius table, PnnRadiusTbI - Table
[0.0055 0.0055 0.0056 0.0057 0.0057 0.0057 0.0058 0.0057 0.0056 0.0055
0.0055] (default) | vector

Pinion radius table, r, in m.

Dependencies

To create this parameter:

- Set Type to Rack and pinion.
- Set Parametrized by to Lookup table.

Ackerman Steering
Input Percent Ackerman - Create PctAckIn input port
off (default) | on
Select to create PctAckIn input port.

Dependencies

To enable this parameter, set Type to Ackerman.
Percent Ackerman, PctAck - Percent Ackerman constant 100 (default) | scalar

Constant value of percent Ackerman, in percent.

Dependencies

To enable this parameter:

- Set Type to Ackerman
- Set Parametrized by to Constant
- Clear Input Percent Ackerman

Percent Ackerman table, PctAckTbI - Percent Ackerman table

ones $(1,11) * 100$ (default) | vector

Table of percent Ackerman values as a function of the steering angle, $\delta_{i n}$, in percent.

Dependencies

To enable this parameter:

- Set Type to Ackerman
- Set Parametrized by to Constant
- Clear Input Percent Ackerman

Version History

Introduced in R2018a

References

[1] Crolla, David, David Foster, et al. Encyclopedia of Automotive Engineering. Volume 4, Part 5 (Chassis Systems) and Part 6 (Electrical and Electronic Systems). Chichester, West Sussex, United Kingdom: John Wiley \& Sons Ltd, 2015.
[2] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
[3] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Dynamic Steering | Mapped Steering
Topics
"Coordinate Systems in Vehicle Dynamics Blockset"

Mapped Steering

Mapped steering with speed-dependent option

Libraries:

Vehicle Dynamics Blockset / Steering

Description

The Mapped Steering block implements lookup tables to calculate the right and left wheel angles. Use the Speed dependent parameter to implement a speed-dependent table for the steering angle calculations. The block uses the vehicle coordinate system.

Steering Wheel Angle

If you set Steering type to Steering wheel angle, the block implements these tables.

Speed Dependen t	Implementation	Calculations
on (default)	Block uses three tables: - f_{s} - Function of vehicle speed - f_{L} - Function of superimposed steering wheel angle - f_{R} - Function of superimposed steering wheel angle	$\begin{aligned} & \delta_{\text {SpdF }}=f_{s}(v) \\ & \delta_{\text {SuprImp }}=\delta_{\text {SpdF }} \cdot \delta_{\text {in }} \\ & \delta_{L}=f_{L}\left(\delta_{\text {SuprImp }}\right) \\ & \delta_{R}=f_{R}\left(\delta_{\text {SuprImp }}\right) \end{aligned}$
off	Block uses two tables: - f_{L} - Function of steering wheel angle - f_{R} - Function of steering wheel angle	$\begin{aligned} & \delta_{L}=f_{L}\left(\delta_{i n}\right) \\ & \delta_{R}=f_{R}\left(\delta_{i n}\right) \end{aligned}$

Rack Travel Displacement

If you set Steering type to Rack travel displacement, the block implements these tables.

Speed Dependen t	Implementation	Calculations
on	Block uses three tables:	
	$-f_{s}$ - Function of vehicle speed	$\delta_{\text {SpdF }}=f_{S}(v)$
	$-f_{L}$ - Function of rack displacement	$\delta_{\text {RuprImp }}=\delta_{\text {SpdF }} \cdot \delta_{\text {in }}$
	- f_{R} - Function of rack displacement	$\delta_{L}=f_{L}\left(\Delta_{\text {Rack }}\right)$
		$\delta_{R}=f_{R}\left(\Delta_{\text {Rack }}\right)$
off	Block uses two tables:	$\Delta_{\text {Rack }}=\delta_{\text {in }} \cdot G r$
	- f_{L} - Function of rack displacement	$\delta_{L}=f_{L}\left(\Delta_{\text {Rack }}\right)$
	- f_{R} - Function of rack displacement	$\delta_{R}=f_{R}\left(\Delta_{\text {Rack }}\right)$

The block uses a gear ratio to adjust the rack displacement. To use a

- Constant gear ratio, set Gear ratio parameterized by to Constant.
- Gear ratio as a function of steering angle, set Gear ratio parameterized by to Lookup table.

The equations use these variables.

$\delta_{\text {in }}$	Steering wheel angle
$\delta_{\text {SpdF }}$	Steering wheel angle speed factor
$\delta_{\text {SuprImp }}$	Superimposed steering wheel angle
δ_{L}, δ_{R}	Left and right wheel angles, respectively
$\Delta_{\text {Rack }}$	Rack displacement
$G r$	Gear ratio

Ports

Input

Angln - Steering angle
 scalar

Steering angle, $\delta_{i n}$, in rad.
Use the Steering angle breakpoints, StrgAngBpts parameter to specify a steering angle range. By default, the value is set to 1.25^{*} pi, which limits the steering angle to a range of -1.25^{*} pi to 1.25^{*} pi.

VehSpd - Vehicle speed
scalar
Vehicle speed, $V e h_{\text {spd }}$, in m / s.

Dependencies

To create this port, select Speed dependent.

Output

Info - Bus signal
bus
Bus signal containing these block calculations.

Signal	Description	Variable	Unit
AngLft	Left wheel angle	δ_{L}	rad
AngRght	Left wheel angle	δ_{R}	rad

AngLft - Left wheel angle scalar

Left wheel angle, δ_{L}, in rad.
AngRght - Right wheel angle
scalar
Right wheel angle, δ_{R}, in rad.

Parameters

Options

Speed dependent - Use speed-dependent tables
on (default) | off
Select to use speed-dependent tables.

Dependencies

Selecting this parameter creates input port VehSpd.

Steering type - Use speed-dependent tables

Steering wheel angle (default)|Rack travel displacement
If you set Steering type to Steering wheel angle, the block implements these tables.

Speed Dependent	Implementation
on (default)	Block uses three tables:
	- $f_{s}-$ Function of vehicle speed
	- $f_{L}-$ Function of superimposed steering wheel angle
	- $f_{R}-$ Function of superimposed steering wheel angle
off	Block uses two tables:
	- $f_{L}-$ Function of steering wheel angle
	- $f_{R}-$ Function of steering wheel angle

If you set Steering type to Rack travel displacement, the block implements these tables.

Speed Dependent	Implementation
on (default)	Block uses three tables:
	- f_{s} - Function of vehicle speed
	- $f_{L}-$ Function of rack displacement
	- $f_{R}-$ Function of rack displacement
off	Block uses two tables:
	- $f_{L}-$ Function of rack displacement
	- f_{R} - Function of rack displacement

Steering angle breakpoints, StrgAngBpts - Steering angle breakpoints
[-1.5*pi 1.5*pi] (default)|vector
Steering angle breakpoints, in rad.

Dependencies

If you set Steering type to Rack travel displacement, to enable this parameter, set Gear ratio parameterized by to Lookup table.

Rack displacement breakpoints, RackDispBpts - Rack displacement breakpoints
[-40-19.2 -4.53 4.53 19.2 40] (default)|vector
Rack displacement breakpoints, in mm.

Dependencies

To enable this parameter, set Steering type to Rack travel displacement and Gear ratio parameterized by to Lookup table.

Gear ratio table, GrTbI - Gear ratio table
[9.87 9.87 7.16 7.16 9.87 9.87]*2*pi (default) |vector
Gear ratio table as a function of rack displacement, in mm/rev.

Dependencies

To enable this parameter, set Steering type to Rack travel displacement and Gear ratio parameterized by to Lookup table.

Gear ratio constant, $\mathbf{G r}$ - Gear ratio constant
8.28*2*pi (default) | scalar

Gear ratio constant, in $\mathrm{mm} / \mathrm{rev}$.

Dependencies

To enable this parameter, set Steering type to Rack travel displacement and Gear ratio parameterized by to Constant.

Left wheel angle table, WhILftTbl - Left wheel angle table
[-1.5*pi 1.5*pi]/13.5] (default)|vector
Left wheel angle table, δ_{L}, in rad.

Right wheel angle table, WhIRghtTb - Right wheel angle table
[-1.5*pi 1.5*pi]/13.5] (default)|vector
Right wheel angle table, δ_{R}, in rad.
Vehicle speed breakpoints, VehSpdBpts - Vehicle speed breakpoints
[-1 1] (default) |vector
Vehicle speed breakpoints, in m/s.

Dependencies

To create this parameter, select Speed dependent.
Superimposed speed factor table, SpdFctTbI - Speed factor
[1 1] (default)| vector
Superimposed speed factor table, f_{s}, dimensionless. The table is a factor of vehicle speed, v.

Dependencies

To create this parameter, select Speed dependent.

Version History

Introduced in R2018a

References

[1] Crolla, David, David Foster, et al. Encyclopedia of Automotive Engineering. Volume 4, Part 5 (Chassis Systems) and Part 6 (Electrical and Electronic Systems). Chichester, West Sussex, United Kingdom: John Wiley \& Sons Ltd, 2015.
[2] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
[3] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Dynamic Steering | Kinematic Steering

Topics

"Coordinate Systems in Vehicle Dynamics Blockset"

Steering System

Steering system for Ackerman and rack-and-pinion steering mechanisms

Libraries:

Vehicle Dynamics Blockset / Steering

Description

The Steering System block implements dynamic steering to calculate the wheel steer angles for rack-and-pinion mechanisms with friction, compliance, and Ackerman steering features. The block uses the steering wheel input angle or torque input, vehicle speed, caster angle, and right and left wheel feedbacks to calculate the wheel steer angles. The block uses the vehicle coordinate system.

If you select the Power assist parameter, you can specify a torque assist lookup table that is a function of the vehicle speed and steering wheel input torque. The block uses the steering wheel input torque and torque assist to calculate the steering dynamics. If you select the Ackerman steering parameter, you can specify a lookup table of percentage Ackerman values to calculate the Ackerman steering effects, or a constant Ackerman percentage, where 100 percent means perfect Ackerman steering.

If you select the Power assist, Ackerman steering, or Kingpin moment parameters in the Input signals section, you can specify additional inputs for the external power assist torques, percent Ackerman values, or kingpin moments.

Use the Steered axle parameter to specify whether the front or rear axle is steered.

Setting	Implementation
Front	Front axle steering
Rear	Rear axle steering

Steering

Rack-and-Pinion

For rack-and-pinion steering, pinion rotation causes linear motion of the rack, which steers the wheels through the tie rods and steering arms.

To calculate the steered wheel angles, the block uses these equations.

$$
\begin{aligned}
& l_{1}=\frac{T W-l_{\text {rack }}}{2}-\Delta P \\
& l_{2} 2=l_{1} 2+D^{2} \\
& \Delta P=r \delta_{\text {in }} \\
& \beta=\frac{\Pi}{2}-\tan ^{-1}\left[\frac{D}{l_{1}}\right]-\cos ^{-1}\left[\frac{l_{\text {arm }}{ }^{2}+l_{2} 2-l_{\text {rod }}{ }^{2}}{2 l_{\text {arm }} l_{2}}\right]
\end{aligned}
$$

The illustration and equations use these variables.

$\delta_{i n}$	Pinion angle (steering shaft angle into pinion)
δ_{L}	Left wheel steer angle
δ_{R}	Right wheel steer angle
$T W$	Track width
r	Pinion radius
ΔP	Linear change in rack position from "straight ahead" position
D	Longitudinal distance between rack and steered axle
$l_{\text {rack }}$	Rack length (distance between inner tie-rod ends)
$l_{\text {arm }}$	Steering arm length
$l_{\text {rod }}$	Tie rod length

Ackerman Steering

For 100% (ideal) Ackerman steering, all wheels follow circular arcs with the same center point.

To calculate the steered wheel angles, the Ackerman block uses these equations:

$$
\begin{aligned}
& \cot \left(\delta_{L}\right)-\cot \left(\delta_{R}\right)=\frac{T W}{W B} \\
& \delta_{A c k}=\frac{\delta_{i n}}{\gamma} \\
& \delta_{L}=\tan ^{-1}\left(\frac{W B \tan \left(\delta_{A c k}\right)}{W B+0.5 T W \tan \left(\delta_{A c k}\right)}\right) \\
& \delta_{R}=\tan ^{-1}\left(\frac{W B \tan \left(\delta_{A c k}\right)}{W B-0.5 T W \tan \left(\delta_{A c k}\right)}\right)
\end{aligned}
$$

Definition of variables used:
$\delta_{\text {in }} \quad$ Pinion angle (steering shaft angle into pinion)

δ_{L}	Left wheel steer angle
δ_{R}	Right wheel steer angle
$\delta_{\text {Ack }}$	Ackerman steer angle
$T W$	Track width
$W B$	Wheel base
γ	Steering ratio: Ratio of pinion angle to Ackerman angle

Ports

Input
VehSpd - Vehicle speed
scalar
Vehicle speed, v, in m / s, specified as a scalar. This is the magnitude of the vehicle CG longitudinal velocity vector.

CstrAng - Wheel caster angle

1-by-2 vector
Wheel caster angle, τ_{L}, in radians, specified as a 1-by- 2 vector. The first element is the angle for the left wheel and the second is the angle for the right wheel.

Dependencies

To enable this port, clear Input signals > Kingpin moment.
WhIAngFdk - Wheel steer angle feedback
1-by-2 vector
Wheel steer angle feedback, in radians, specified as a 1-by-2 vector. The first element is the angle feedback from the left wheel and the second element is the angle feedback from the right wheel.

Dependencies

To enable this port, clear Input signals > Kingpin moment.
Angln - Steering wheel angle input
scalar
Steering wheel angle input from driver, in radians, specified as a scalar.

Dependencies

To enable this port, select Steering inputs > Angle.
TrqIn - Steering torque input

scalar

Steering wheel torque input from driver, in $\mathrm{N}^{*} \mathrm{~m}$, specified as a scalar.

Dependencies

To enable this port, select Steering inputs > Torque.

PwrAstTrq - Power assist torque

scalar
The torque value of power assist on the steering shaft, in $N * m$, specified as a scalar. Supplied externally into this port.

Dependencies

To enable this port, select Input signals > Power assist.
PctAck - Percent Ackerman value
scalar
The Ackerman value in percent, specified as a scalar. Supplied externally into this port.
Dependencies
To enable this port, select Input signals > Ackerman steering.
TireFdk - Tire forces and moments feedback
1-by-12 vector
Tire forces and moments feedback from both right and left tires, specified as a 1-by-12 vector that contains the following values, in order:

Description	Unit
x-directional Force, Left	N
x-directional Force, Right	N
y-directional Force, Left	N
y-directional Force, Right	N
z-directional Force, Left	N
z-directional Force, Right	N
x-directional Moment, Left	$\mathrm{N}^{*} \mathrm{~m}$
x-directional Moment, Right	$\mathrm{N}^{*} \mathrm{~m}$
y-directional Moment, Left	$\mathrm{N}^{*} \mathrm{~m}$
y-directional Moment, Right	$\mathrm{N}^{*} \mathrm{~m}$
z-directional Moment, Left	$\mathrm{N}^{*} \mathrm{~m}$
z-directional Moment, Right	$\mathrm{N}^{*} \mathrm{~m}$

Dependencies

To enable this port, clear Input signals > Kingpin moment.

LftKpM - Left kingpin moment

scalar
Left kingpin moment, in N^{*} m, specified as a scalar.

Dependencies

To enable this port, select Input signals > Kingpin moment.

RghtKpM — Right kingpin moment
scalar
Right kingpin moment, in $N *$, specified as a scalar.

Dependencies

To enable this port, select Input signals > Kingpin moment.

Output

Info - Vehicle dynamics information
bus
Vehicle dynamics information, returned as a bus signal that contains the following:

Signal	Description	Unit
StrWhlAngFdk	Steering wheel angle	rad
AstTrq	Torque applied by power assist	$\mathrm{N} \cdot \mathrm{m}$
AstPwr	Power applied by power assist	W
LftTieRodForce	Axial force in left tie rod	N
RghtTieRodForce	Axial force in right tie rod	N
LftKpM	Left kingpin moment	$\mathrm{N} \cdot \mathrm{m}$
RghtKpM	Right kingpin moment	$\mathrm{N} \cdot \mathrm{m}$
LftWhlAng	Left wheel steer angle	rad
RghtWhlAng	Right wheel steer angle	rad
LftWhlSpd	Left wheel steer angle velocity	$\mathrm{rad} / \mathrm{s}$
RghtWhlSpd	Right wheel steer angle velocity	$\mathrm{rad} / \mathrm{s}$
TrqIn	Torque applied by driver on steering wheel	$\mathrm{N} \cdot \mathrm{m}$

AngLft - Left wheel steer angle
scalar
Left wheel steer angle, δ_{L}, in radians, returned as a scalar.
AngRght - Right wheel steer angle
scalar
Right wheel steer angle, δ_{R}, in radians, returned as a scalar.

Parameters

Block Options

Type - Steering type
Rack and pinion (default)
Steering type for the Steering System.

Intermediate shaft type - Intermediate shaft type Single Cardan joint (default)|Double Cardan joints

Whether to model the intermediate shaft type using single or double Cardan joints.
Power assist - Whether to model power assist
on (default) | off
Select to model power assist within the Steering System.

Dependencies

To enable this parameter, in the Input signals section, clear Power assist.
Ackerman steering - Whether to use Ackerman steering
on (default) | off
Select to set Ackerman steering percentage within the Steering System block.

Dependencies

To enable this parameter, in the Input signals section, clear Ackerman steering.
Input Signals
Power assist - Specifies power assist torque externally
off (default) | on
Select this parameter to enable the PwrAstTrq port.
Ackerman steering - Specifies percent Ackerman value externally
off (default) | on
Select this parameter to enable the PctAck port.
Kingpin moment - Specifies left and right kingpin moments
off (default) | on
Select this parameter to enable the $\mathbf{L f t K p M}$ and RghtKpM ports.
Steered axle - Location of steering system
Front (default) | Rear
Select either the front or rear axle as the location of the Steering System.
Steering inputs - Steering wheel angle or torque
Angle (default) | Torque
This selection enables either the AngIn or TrqIn port as the driver input.

General

Track width, TrckWdth - Track width
1 (default) | scalar
Track width, $T W$, in m , specified as a scalar.

Steering angle input range, StrRng - Steering wheel range
1.25*pi (default)|scalar

Steering wheel angle from straight-ahead to either left or right lock, in rad, specified as a scalar. This causes both steered wheels to remain within their designed steering range.

Steering angle input deadband width, DbWdth - Steering angle input deadband width 0 (default) | scalar

The steering wheel deadband angle, in radians, from left-engagement to right-engagement.
Steering wheel inertia, StrWhlInert - Steering wheel inertia
0.1 (default) | scalar

Steering wheel moment of inertia, in $\mathrm{kg}^{*} \mathrm{~m}^{2}$, specified as a scalar.
Steering shaft inertia, StrColInert - Inertia of steering shaft
0.01 (default) | scalar

Steering shaft moment of inertia, in $\mathrm{kg}^{*} \mathrm{~m}^{2}$, specified as a scalar.
Kingpin offset, KngpnOfst - Kingpin offset
0.075 (default) | scalar

Kingpin offset, in m, specified as a scalar.
Kingpin inclination angle, Lambda - Kingpin inclination angle
0. 2094 (default) | scalar

Kingpin inclination angle, in rad, specified as a scalar.
Hub lead, HbLead - Hub lead
4.00E-05 (default) | scalar

Hub lead, in m, specified as a scalar.
Static loaded radius, StcLdRadius - Static loaded radius
0.4 (default) | scalar

Static loaded tire radius, in m , specified as a scalar.
Overall steering ratio, OvrlStrRatio - Overall steering ratio
17.42 (default) | scalar

Overall steering ratio, specified as a scalar.
Steering angle breakpoints, StrgAngBpts - Steering wheel angle breakpoints

6.2832] (default)

Steering wheel angle breakpoints, in rad, specified as a 1-by-11 vector. Is used to parameterize either Ackerman value or rack gain.

Dependencies

To enable this parameter, set one of these parameters to Lookup table:

- Rack and pinion > Rack gain parameterized by
- Ackerman steering > Percent Ackerman parameterized by

CstrAng - Caster angle
0 (default) | scalar
Caster angle, in rad, specified as a scalar.

Dependencies

To enable this parameter, select Input signals > Kingpin moment.

Rack and Pinion

Rack gain parameterized by - Rack gain parameterization
Constant (default)|Lookup table
Whether to parameterize the rack gain as a constant value or by using a lookup table.
Rack gain, RckGn - Rack gain
0.062 (default) | scalar

Rack gain, in $\mathrm{m} / \mathrm{rev}$, specified as a scalar.

Dependencies

To enable this parameter, set Rack gain parameterized by to Constant.
Rack gain table, RckGnTbl - Rack gain table
ones $(1,11) * 0.0057 * 2 *$ pi (default) | 1-by-11 vector
Rack gain table, in m/rev, specified as a 1-by-11 vector.
Dependencies
To enable this parameter, set Rack gain parameterized by to Lookup table.
Steering arm length, StrgArmLngth - Steering arm length
0.1 (default) | scalar

Steering arm length, in m , specified as a scalar.
Rack casing length, RckCsLngth - Rack length
0.5 (default) | scalar

Rack length (distance between inner tie rod ends), in m, specified as a scalar.
Tie rod length, TieRodLngth - Tie rod length
0.248 (default) | scalar

Tie rod length, $l_{\text {rod }}$, in m, specified as a scalar.
Distance between axis and rack, Dst - Distance between axle and rack
0.2 (default) | scalar

Longitudinal distance between the steered axle and rack centerline, D, in m , specified as a scalar.

Efficiency of gears, Epsilon - Efficiency of gears
0.9 (default) | scalar

Efficiency of the rack and pinion mechanism, ε, specified as a scalar.
Pinion inertia, PnInert - Pinion inertia
0.1 (default) | scalar

Pinion inertia, in $\mathrm{kg}^{*} \mathrm{~m}^{2}$, specified as a scalar.

Single Cardan Joint

Spatial angle for the single Cardan joint, SptlAng - Spatial angle for the single Cardan joint 2.6178 (default) | scalar

Spatial angle for the single Cardan joint, in rad, specified as a scalar.

Dependencies

To enable this parameter, set Intermediate shaft type to Single Cardan joint.

Double Cardan Joints

Spatial angle for the upper Cardan joint, Alpha_b - Spatial angle for upper Cardan joint
2.6178 (default) | scalar

Spatial angle for the upper Cardan joint, in rad, specified as a scalar.

Dependencies

To enable this parameter, set Intermediate shaft type to Double Cardan joints.
Spatial angle for the lower Cardan joint, Alpha_c - Spatial angle for lower Cardan joint 2.7051 (default) | scalar

Spatial angle for the lower Cardan joint, in rad, specified as a scalar.

Dependencies

To enable this parameter, set Intermediate shaft type to Double Cardan joints.
Edge view angle between the planes of the two joints, Sigma_bc - Edge view angle between planes of the two joints
0.2618 (default) | scalar

Edge view angle between the planes of the two joints, in rad, specified as a scalar.

Dependencies

To enable this parameter, set Intermediate shaft type to Double Cardan joints.
Phase angle, Gamma - Phase angle
0.2618 (default) | scalar

Rotation phase angle between the two joints, in rad, specified as a scalar.

Dependencies

To enable this parameter, set Intermediate shaft type to Double Cardan joints.

Power Assist

Steering wheel torque breakpoints, TrqBpts - Steering wheel torque breakpoints
[-100 0 100] (default)| 1-by-M vector
Steering wheel torque breakpoints, in $N \cdot m$, specified as a 1-by- M vector.

Dependencies

To enable this parameter, select the Power assist Block Option.
Vehicle speed breakpoints, VehSpdBpts - Vehicle speed breakpoints
[0 20] (default)| 1-by-N vector
Vehicle speed breakpoints, in m/s, specified as a 1-by- N vector.

Dependencies

To enable this parameter, select the Power assist Block Option.
Assisting torque table, TrqTbI - Torque assist table
[0 -100;0 0;0 100] (default)|M-by-N matrix
Torque assist table, $f_{\text {trq }}$, in $\mathrm{N} \cdot \mathrm{m}$, specified as an M-by- N matrix.
The torque assist lookup table is a function of the vehicle speed, v, and steering wheel input torque, $\tau_{i n}$:
$\tau_{\text {ast }}=f_{t r q}\left(v, \tau_{\text {in }}\right)$.
The block applies the steering wheel input torque and torque assist to the pinion.

Dependencies

To enable this parameter, select the Power assist Block Option.
Assisting torque limit, TrqLmt - Torque assist limit
100 (default) | scalar
Torque assist limit, in $\mathrm{N} \cdot \mathrm{m}$, specified as a scalar.

Dependencies

To enable this parameter, select the Power assist Block Option.
Assisting power limit, PwrLmt - Assist power limit
1000 (default) | scalar
Assist power limit, in watts, specified as a scalar.

Dependencies

To enable this parameter, select the Power assist Block Option.
Assisting torque efficiency, Eta - Torque assist efficiency
1 (default) | scalar
Torque assist efficiency, specified as a scalar.

Dependencies

To enable this parameter, select the Power assist Block Option.

Cutoff frequency, CutOmege [rad/s] - Cutoff frequency
 200 (default) | scalar

Cutoff frequency, in rad/s, specified as a scalar.

Dependencies

To enable this parameter, select the Power assist Block Option.

Ackerman Steering

Percent Ackerman parameterized by - Ackerman parameterization
Constant (default)| Lookup table
Whether to parameterize the Ackerman values as a constant value or by a lookup table.

Dependencies

To enable this parameter, select the Ackerman steering Block Option.
Percent Ackerman, PctAck - Percent Ackerman
100 (default) | scalar
Percent Ackerman, specified as a scalar.

Dependencies

To enable this parameter, select the Ackerman steering Block Option and set Percent Ackerman parameterized by to Constant.

Percent Ackerman table, PctAckTbI - Percent Ackerman table
ones (1,11)*100 (default)
Percent Ackerman table, specified as a 1-by-11 vector.

Dependencies

To enable this parameter, select the Ackerman steering Block Option and set Percent Ackerman parameterized by to Lookup table.

Friction and Compliance
Sealing stiffness, SlgStf - Sealing stiffness
1.5e4 (default) | scalar

Sealing stiffness, in $\mathrm{N}^{*} \mathrm{~m} / \mathrm{rad}$, specified as a scalar.
Upper boundary friction, UpprFric - Upper boundary friction
1 (default) | scalar
Upper boundary friction, in N , specified as a scalar.
Pressure change due to friction boundary increase, PrsFric - Pressure change due to friction boundary increase
1e-5 (default) | scalar

Pressure change due to friction boundary increase, in N/bar, specified as a scalar.
Maxwell element stiffness, MaxStf - Maxwell element stiffness
10000 (default) | scalar
Maxwell element stiffness, in $N * m / r a d$, specified as a scalar.
Maxwell element upper boundary friction, MaxUpprFric - Maxwell element upper boundary friction
0.2 (default) | scalar

Maxwell element upper boundary friction, in N , specified as a scalar.
Maxwell linear damping coefficient, MaxDamp - Maxwell linear damping coefficient 1 (default) | scalar

Maxwell linear damping coefficient, specified as a scalar.
Torsion bar stiffness coefficient, TorStf - Torsional stiffness of steering shaft
30 (default) | scalar
Torsional stiffness of steering shaft, in $\mathrm{N} * \mathrm{~m} / \mathrm{rad}$, specified as a scalar.
Torsion bar damping coefficient, TorDamp - Torsional viscous damping in steering shaft
1 (default) | scalar
Torsional viscous damping in steering shaft, in $\mathrm{N} * \mathrm{~m} *$ s/rad, specified as a scalar.

Version History

Introduced in R2022b

References

[1] Crolla, David, David Foster, et al. Encyclopedia of Automotive Engineering. Volume 4, Part 5 (Chassis Systems) and Part 6 (Electrical and Electronic Systems). Chichester, West Sussex, United Kingdom: John Wiley \& Sons Ltd, 2015.
[2] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
[3] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink \circledR_{\circledR} Coder ${ }^{\mathrm{TM}}$.

See Also

Kinematic Steering | Mapped Steering

Topics

"Coordinate Systems in Vehicle Dynamics Blockset"

Independent Suspension - Double Wishbone

Double wishbone independent suspension

Libraries:

Vehicle Dynamics Blockset / Suspension

Description

The Independent Suspension - Double Wishbone block implements an independent double wishbone suspension for multiple axles with multiple wheels per axle.

The block models the suspension compliance, damping, and geometric effects as functions of the relative positions and velocities of the vehicle and wheel carrier with axle-specific compliance and damping parameters. Using the suspension compliance and damping, the block calculates the suspension force on the vehicle and wheel. The block uses the Z-down coordinate system (defined in SAE J670).

For Each	You Can Specify
Axle	- Multiple wheels
	- An anti-sway bar for axles with two wheels
	- Suspension parameters
Wheel	- Steering angles

The block contains energy-storing spring elements and energy-dissipating damper elements. It does not contain energy-storing mass elements. The block assumes that the vehicle (sprung) and wheel (unsprung) blocks connected to the block store the mass-related suspension energy.

This table summarizes the block parameter settings for a vehicle with:

- Two axles
- Two wheels per axle
- Steering angle input for both wheels on the front axle
- An anti-sway bar on the front axle

Parameter	Setting
Number of axles, NumAxl	2
Number of wheels by axle, NumWhlsByAxl	$\left[\begin{array}{ll}2 & 2\end{array}\right]$
Steered axle enable by axle, StrgEnByAxl	$\left[\begin{array}{ll}1 & 0\end{array}\right]$
Anti-Sway axle enable by axle, AntiSwayEnByAxl	$\left[\begin{array}{ll}1 & 0\end{array}\right]$

The block uses the wheel number, t, to index the input and output signals. This table summarizes the wheel, axle, and corresponding wheel number for a vehicle with:

- Two axles
- Two wheels per axle

Wheel	Axle	Wheel Number
Front left	Front	1
Front right	Front	2
Rear left	Rear	1
Rear right	Rear	2

Suspension Compliance and Damping

The block uses a linear spring and damper to model the vertical dynamic effects of the suspension system. Using the relative positions and velocities of the vehicle and wheel carrier, the block calculates the vertical suspension forces on the wheel and vehicle. The block uses a linear equation that relates the vertical damping and compliance to the suspension height, suspension height rate of change, and absolute value of the steering angles.

The block implements this equation.

$$
F_{w z_{a, t}}=F_{z 0_{a}}+k_{z_{a}}\left(z_{v_{a, t}}-z_{w_{a, t}}+m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+c\left(\dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t}}\right)+F_{z h s t o p_{a, t}}+F_{z a s w y_{a, t}}
$$

The damping coefficient, c, depends on the Enable active damping parameter setting.

Enable active damping Setting	Damping
off	Constant, $c=c_{z_{a}}$
on	Lookup table that is a function of active damper duty cycle and actuator velocity
	$c=f\left(\right.$ duty, $\left.\left(\dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t}}\right)\right)$

The block assumes that the suspension elements have no mass. Therefore, the suspension forces and moments applied to the vehicle are equal to the suspension forces and moments applied to the wheel.

$$
\begin{aligned}
& F_{v x_{a, t}}=F_{w x_{a, t}} \\
& F_{v y_{a, t}}=F_{w y_{a, t}} \\
& F_{v z_{a, t}}=-F_{w z_{a, t}} \\
& M_{v x_{a, t}}=M_{w x_{a, t}}+F_{w y_{a, t}}\left(R e_{w y_{a, t}}+H_{a, t}\right) \\
& M_{v y_{a, t}}=M_{w y_{a, t}}+F_{w x_{a, t}}\left(R e_{w x_{a, t}}+H_{a, t}\right) \\
& M_{v x_{a, t}}=M_{w x_{a, t}}
\end{aligned}
$$

The block sets the wheel positions and velocities equal to the vehicle lateral and longitudinal positions and velocities.

$$
\begin{aligned}
& x_{w_{a, t}}=x_{v_{a, t}} \\
& y_{w_{a, t}}=y_{v_{a, t}} \\
& \dot{x}_{w_{a, t}}=\dot{x}_{v_{a, t}} \\
& \dot{y}_{w_{a, t}}=\dot{y}_{v_{a, t}}
\end{aligned}
$$

The equations use these variables.

$F_{w z_{z_{l}, t}} M_{w z_{a, t}}$	Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed z-axis
$F_{w x_{\alpha, t}} M_{w x_{\alpha, t}}$	Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed x-axis
$F_{w y_{d, t}} M_{w y_{a, t}}$	Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed y-axis
$F_{v z_{a}, t^{\prime}} M_{v z_{a, t}}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed z-axis
$F_{v x_{a}, t}, M_{v x_{a, t}}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed x-axis
$F_{v y_{a, t}} M_{v y_{a, t}}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed y-axis
$F_{z 0_{a}}$	Vertical suspension spring preload force applied to the wheels on axle a
$k_{z_{a}}$	Vertical spring constant applied to wheels on axle a
$k w a_{z}$	Wheel and axle interface compliance constant
$m_{\text {hsteer }}$	Steering angle to vertical force slope applied at wheel carrier for wheels on axle a
$\delta_{\text {steer }}{ }_{\text {at, }}$	Steering angle input for axle a, wheel t
$C_{z_{a}}$	Vertical damping constant applied to wheels on axle a
cwa ${ }_{z}$	Wheel and axle interface damping constant
$R e_{w_{a, t}}$	Effective wheel radius for axle a, wheel t
$F_{z h s t o p_{a, t}}$	Vertical hardstop force at axle a , wheel t , along the vehicle-fixed z-axis
$F_{\text {zaswy }{ }_{\text {a }}}$	Vertical anti-sway force at axle a , wheel t , along the vehicle-fixed z-axis
$F w a_{z 0}$	Wheel and axle interface compliance constant
$z_{v_{a, t}} \dot{z}_{v_{a, t}}$	Vehicle displacement and velocity at axle a, wheel t , along the vehiclefixed z-axis
$z_{w_{a, t},} \dot{z}_{w_{a, t}}$	Wheel displacement and velocity at axle a, wheel t , along the vehicle-fixed z-axis
$\chi_{v_{a, t}} \dot{\chi}_{v_{a, t}}$	Vehicle displacement and velocity at axle a, wheel t, along the vehiclefixed z-axis
$\chi_{w_{a, t}} \dot{\chi}_{w_{a t t}}$	Wheel displacement and velocity at axle a, wheel t , along the vehicle-fixed z-axis
$y_{v_{a, t}} \dot{y}_{v_{a, t}}$	Vehicle displacement and velocity at axle a, wheel t, along the vehiclefixed y-axis

$y_{w_{a, t}} \dot{y}_{w_{a, t}}$	Wheel displacement and velocity at axle a, wheel t, along the vehicle-fixed
$H_{a, t}$	y-axis
$R e_{w_{a, t}}$	Suspension height at axle a, wheel t

Hardstop Forces

The hardstop feedback force, $F_{\text {zhstop } a_{a, 1}}$ that the block applies depends on whether the suspension is compressing or extending. The block applies the force:

- In compression, when the suspension is compressed more than the maximum distance specified by the Suspension maximum height, Hmax parameter.
- In extension, when the suspension extension is greater than maximum extension specified by the Suspension maximum height, Hmax parameter.

To calculate the force, the block uses a stiffness based on a hyperbolic tangent and exponential scaling.

Anti-Sway Bar

Optionally, use the Anti-sway axle enable by axle, AntiSwayEnByAxl parameter to implement an anti-sway bar force, $F_{z a s w y_{a, t}}$ for axles that have two wheels. This figure shows how the anti-sway bar transmits torque between two independent suspension wheels on a shared axle. Each independent suspension applies a torque to the anti-sway bar via a radius arm that extends from the anti-sway bar back to the independent suspension connection point.

To calculate the sway bar force, the block implements these equations.

Calculation	Equation
Anti-sway bar angular deflection for a given axle and wheel, $\Delta \theta_{a, t}$	$\theta_{0 a}=\tan ^{-1}\left(\frac{z_{0}}{r}\right)$
	$\Delta \theta_{a, t}=\tan ^{-1}\left(\frac{r \tan \theta_{0 a}-z_{w_{a, t}}+z_{v_{a, t}}}{r}\right)$

Calculation	Equation
Anti-sway bar twist angle, θ_{a}	$\theta_{a}=-\tan ^{-1}\left(\frac{r \tan \theta_{0 a}-z_{w_{a, 1}}+z_{v_{a, 1}}}{r}\right)$
	$-\tan ^{-1}\left(\frac{r \tan \theta_{0 a}-z_{w_{a, 2}}+z_{v_{a, 2}}}{r}\right)$
Anti-sway bar torque, τ_{a}	$\tau_{a}=k_{a} \theta_{a}$
Anti-sway bar forces applied to the wheel on axle a, wheel t along wheel-fixed z-axis	$F_{z a s w y_{a, 1}}=\left(\frac{\tau_{a}}{r}\right) \cos \left(\theta_{0 a}-\tan ^{-1}\left(\frac{r \tan \theta_{0 a}-z_{w_{a, 1}}+z_{v_{a, 1}}}{r}\right)\right)$
	$F_{z a s w y_{a, 2}}=\left(\frac{\tau_{a}}{r}\right) \cos \left(\theta_{0 a}-\tan ^{-1}\left(\frac{r \tan \theta_{0 a}-z_{w_{a, 2}}+z_{v_{a, 2}}}{r}\right)\right)$

The equations and figure use these variables.

τ_{a}	Anti-sway bar torque
θ	Anti-sway bar twist angle
$\theta_{0 a}$	Initial anti-sway bar twist angle
$\Delta \theta_{a, t}$	Anti-sway bar angular deflection at axle a, wheel t
r	Anti-sway bar arm radius
z_{0}	Vertical distance from anti-sway bar connection point to anti-sway bar centerline
$F_{z s w a y_{a, t}}$	Anti-sway bar force applied to the wheel on axle a, wheel t along wheel-fixed z-axis
$z_{v_{a, t}}$	Vehicle displacement at axle a, wheel t , along the vehicle-fixed z-axis
$z_{w_{a, t}}$	Wheel displacement at axle a, wheel t, along the vehicle-fixed z-axis

Camber, Caster, and Toe Angles

To calculate the camber, caster, and toe angles, block uses linear functions of the suspension height and steering angle.

$$
\begin{aligned}
& \xi_{a, t}=\xi_{0 a}+m_{\text {hcamber }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a}, t}\right|\right)+m_{\text {cambersteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right| \\
& \eta_{a, t}=\eta_{0 a}+m_{\text {hcaster }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a}, t}\right|\right)+m_{\text {castersteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right| \\
& \zeta_{a, t}=\zeta_{0 a}+m_{\text {htoe }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+m_{\text {toesteer }_{a}}\left|\delta_{\text {steer }_{a}, t}\right|
\end{aligned}
$$

The equations use these variables.

$\xi_{a, t}$	Camber angle of wheel on axle a, wheel t
$\eta_{a, t}$	Caster angle of wheel on axle a, wheel t
$\zeta_{a, t}$	Toe angle of wheel on axle a, wheel t
$\xi_{0 a}, \eta_{0 a}, \zeta_{0 a}$	Nominal suspension axle a camber, caster, and toe angles, respectively, at $m_{\text {camber }_{a^{\prime}}}$ $m_{\text {hcosteo }_{a}{ }^{\prime}}$
zero steering angle	
Camber, caster, and toe angles, respectively, versus suspension height slope	
for axle a	

$m_{\text {camberster }_{a^{\prime}}} m_{\text {casterster }_{a^{\prime}}}$ Camber, caster, and toe angles, respectively, versus steering angle slope for
$m_{\text {toesteer }_{a}} \quad$ axle a
$m_{h s t e r_{a}} \quad$ Steering angle versus vertical force slope for axle a
$\delta_{\text {steer }_{a, t}} \quad$ Steering angle input for axle a, wheel t
$z_{v_{a t}}$
$z_{w_{a, t}}$

Vehicle displacement at axle a, wheel t , along the vehicle-fixed z-axis Wheel displacement at axle a, wheel t , along the vehicle-fixed z-axis

Steering Angles

Optionally, use the Steered axle enable by axle, StrgEnByAxl parameter to input steering angles for the wheels. To calculate the steering angles for the wheels, the block offsets the input steering angles with a linear function of the suspension height.

$$
\delta_{\text {whlsteer }_{a, t}}=\delta_{\text {steer }_{a, t}}+m_{\text {htoe }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+m_{\text {toesteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|
$$

The equation uses these variables.

$m_{\text {toesteer }_{a}}$	Axle a toe angle versus steering angle slope
$m_{\text {hsteer }_{a}}$	Axle a steering angle versus vertical force slope
$m_{\text {htoe }_{a}}$	Axle a toe angle versus suspension height slope
$\delta_{\text {whlster }_{a, t}}$	Wheel steering angle for axle a, wheel t
$\delta_{\text {stee }_{a, t}}$	Steering angle input for axle a, wheel t
$z_{v_{a, t}}$	Vehicle displacement at axle a, wheel t , along the vehicle-fixed z-axis
$z_{w_{a, t}}$	Wheel displacement at axle a , wheel t , along the vehicle-fixed z-axis

Power and Energy

The block calculates these suspension characteristics for each axle, a , wheel, t .

Calculation	Equation
Dissipated power, $P_{\text {susp }_{a, t}}$	$P_{\text {susp }_{a, t}}=F_{\text {wzlookup }^{\prime}}\left(\dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t} t^{\prime}} \dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t^{\prime}}} \delta_{\text {steer }_{a, t}}\right)$
Absorbed energy, $E_{\text {susp }_{\text {a }}}$	$E_{\text {susp }_{a, t}}=F_{\text {wzlookup }_{a}}\left(\dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t}} \dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t^{\prime}}} \delta_{\text {steer }}{ }_{a, t}\right)$
Suspension height, $H_{a, t}$	$H_{a, t}=-\left(z_{v_{a, t}}-z_{w_{a, t}}+\frac{F_{z 0_{a}}}{k_{z_{a}}}+m_{\text {hsteer }}\left\|\delta_{\text {steer }_{a, t}}\right\|\right)$
Distance from wheel carrier center to tire/road interface	$z_{w t r_{a, t}}=R e_{w_{a, t}}+H_{a, t}$

The equations use these variables.
$m_{\text {hsteer }}^{a} \quad$ Steering angle to vertical force slope applied at wheel carrier for wheels on axle a
$\delta_{\text {steer }_{a}} \quad$ Steering angle input for axle a , wheel t
$R e_{w_{a, t}} \quad$ Axle a, wheel t effective wheel radius from wheel carrier center to tire/road interface
$F_{z 0_{a}} \quad$ Vertical suspension spring preload force applied to the wheels on axle a
$z_{\text {wtr }_{a, t}} \quad$ Distance from wheel carrier center to tire/road interface, along the vehicle-fixed z axis
$z_{v_{a t}, t}{\dot{v_{a, t}}} \quad$ Vehicle displacement and velocity at axle a, wheel t , along the vehicle-fixed z-axis
$z_{w_{a, t}} \dot{z}_{w_{a, t}} \quad$ Wheel displacement and velocity at axle a, wheel t , along the vehicle-fixed z-axis

Ports

Input
WhIPz - Wheel z-axis displacement
array
Wheel displacement, z_{w}, along wheel-fixed z-axis, in m . Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlPz:

- Signal array dimensions are [1×4].

$$
\mathrm{WhlPz}=z_{w}=\left[z_{w_{1,1}} z_{w_{1,2}} z_{w_{2,1}} z_{w_{2,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlPz $(1,1)$	1	1
Front right	WhlPz $(1,2)$	1	2
Rear left	WhlPz $(1,3)$	2	1
Rear right	WhlPz $(1,4)$	2	2

WhIRe - Wheel effective radius
array
Effective wheel radius, $R e_{w}$, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlRe:

- Signal array dimensions are [1×4].

WhlRe $=\operatorname{Re} e_{w}=\left[R e_{w_{1,1}} R e_{w_{1,2}} R e_{w_{2,1}} R e_{w_{2}, 2}\right]$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlRe $(1,1)$	1	1
Front right	WhlRe $(1,2)$	1	2
Rear left	WhlRe $(1,3)$	2	1
Rear right	WhlRe $(1,4)$	2	2

WhIVz - Wheel z-axis velocity
array
Wheel velocity, \dot{z}_{w}, along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlVz:

- Signal array dimensions are [1×4].

WhlVz $=\dot{z}_{w}=\left[\begin{array}{lll}\dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}}\end{array} \dot{z}_{w_{2,2}}\right]$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlVz $(1,1)$	1	1
Front right	WhlVz $(1,2)$	1	2
Rear left	WhlVz $(1,3)$	2	1
Rear right	WhlVz $(1,4)$	2	2

WhIFx - Longitudinal wheel force on vehicle
array
Longitudinal wheel force applied to vehicle, $F_{w x}$, along the vehicle-fixed x-axis. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlFx:

- Signal array dimensions are [1×4].

WhlFx $=F_{w x}=\left[F_{w x_{1,1}} F_{w x_{1,2}} F_{w x_{2,1}} F_{w x_{2}, 2}\right]$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlFx $(1,1)$	1	1
Front right	WhlFx $(1,2)$	1	2
Rear left	WhlFx $(1,3)$	2	1
Rear right	WhlFx $(1,4)$	2	2

WhIFy - Lateral wheel force on vehicle
array
Lateral wheel force applied to vehicle, $F_{w y}$, along the vehicle-fixed y-axis. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlFy:

- Signal array dimensions are [1×4].

$$
\text { WhlFy }=F_{w y}=\left[F_{w y 1,1} F_{w y 1,2} F_{w y 2,1} F_{w y_{2,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlFy $(1,1)$	1	1
Front right	WhlFy $(1,2)$	1	2
Rear left	WhlFy (1.3)	2	1
Rear right	WhlFy $(1,4)$	2	2

WhIM - Suspension moment on wheel
array
Longitudinal, lateral, and vertical suspension moments at axle a, wheel t, applied to the wheel at the axle wheel carrier reference coordinate, in $N \cdot m$. Input array dimensions are 3 by the number of wheels on the vehicle.

- WhlM ($1, \ldots$) - Suspension moment applied to the wheel about the vehicle-fixed x-axis (longitudinal)
- WhlM ($2, \ldots$) - Suspension moment applied to the wheel about the vehicle-fixed y-axis (lateral)
- WhlM ($3, \ldots$) - Suspension moment applied to the wheel about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlM:

- Signal dimensions are [3×4].
- Signal contains suspension moments applied to four wheels according to their axle and wheel locations.

$$
\text { WhlM }=M_{w}=\left[\begin{array}{lllll}
M_{w x_{1,1}} & M_{w x_{1,2}} & M_{w x_{2,1}} & M_{w x_{2,2}} \\
M_{w y_{1,1}} & M_{w y_{1,2}} & M_{w y_{2,1}} & M_{w y_{2,2}} \\
M_{w z_{1,1}} & M_{w z_{1,2}} & M_{w z_{2,1}} & M_{w z_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Moment Axis
Front left	WhlM(1,1)	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	WhlM (1,2)	1	2	
Rear left	WhlM (1,3)	2	1	
Rear right	WhlM (1,4)	2	2	
Front left	WhlM(2,1)	1	1	Vehicle-fixed y-axis (lateral)
Front right	WhlM (2,2)	1	2	
Rear left	WhlM (2,3)	2	1	
Rear right	WhlM (2,4)	2	2	
Front left	WhlM (3,1)	1	1	Vehicle-fixed z-axis (vertical)
Front right	WhlM (3,2)	1	2	

Wheel	Array Element	Axle	Wheel Numbe r	Moment Axis
Rear left	WhlM(3,3)	2	1	
Rear right	WhlM(3,4)	2	2	

VehP - Vehicle displacement
array
Vehicle displacement from axle a, wheel t along vehicle-fixed coordinate system, in m. Input array dimensions are 3 the number of wheels on the vehicle.

- $\operatorname{VehP}(1, \ldots)-$ Vehicle displacement from wheel, x_{v}, along the vehicle-fixed x-axis
- $\operatorname{VehP}(2, \ldots)$ - Vehicle displacement from wheel, y_{v}, along the vehicle-fixed y-axis
- $\operatorname{VehP}(3, \ldots)-$ Vehicle displacement from wheel, z_{v}, along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two wheels per axle, the VehP:

- Signal dimensions are [3x4].
- Signal contains four displacements according to their axle and wheel locations.

VehP $=\left[\begin{array}{l}x_{v} \\ y_{v} \\ z_{v}\end{array}\right]=\left[\begin{array}{llll}x_{v_{1,1}} & x_{v_{1,2}} & x_{v_{2,1}} & x_{v_{2,2}} \\ y_{v_{1,1}} & y_{v_{1,2}} & y_{v_{2,1}} & y_{v_{2,2}} \\ z_{v_{1,1}} & z_{v_{1,2}} & z_{v_{2,1}} & z_{v_{2,2}}\end{array}\right]$

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Front left	$\operatorname{VehP}(1,1)$	1	1	Vehicle-fixed x-axis
Front right	$\operatorname{VehP}(1,2)$	1	2	
Rear left	$\operatorname{VehP}(1,3)$	2	1	
Rear right	$\operatorname{VehP}(1,4)$	2	2	
Front left	$\operatorname{VehP}(2,1)$	1	1	Vehicle-fixed y-axis
Front right	$\operatorname{VehP}(2,2)$	1	2	
Rear left	$\operatorname{VehP}(2,3)$	2	1	
Rear right	$\operatorname{VehP}(2,4)$	2	2	

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Front left	$\operatorname{VehP}(3,1)$	1	1	Vehicle-fixed z-axis
Front right	$\operatorname{VehP}(3,2)$	1	2	
Rear left	$\operatorname{VehP}(3,3)$	2	1	
Rear right	$\operatorname{VehP}(3,4)$	2	2	

VehV - Vehicle velocity

array
Vehicle velocity at axle a, wheel t along vehicle-fixed coordinate system, in m. Input array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{VehV}(1, \ldots)-$ Vehicle velocity at wheel, x_{v}, along the vehicle-fixed x-axis
- $\operatorname{VehV}(2, \ldots)$ - Vehicle velocity at wheel, y_{v}, along the vehicle-fixed y-axis
- $\operatorname{VehV}(3, \ldots)-$ Vehicle velocity at wheel, z_{v}, along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two wheels per axle, the VehV:

- Signal dimensions are [3x4].
- Signal contains 4 velocities according to their axle and wheel locations.

$$
\text { VehV }=\left[\begin{array}{c}
\dot{x}_{v} \\
\dot{y}_{v} \\
\dot{z}_{v}
\end{array}\right]=\left[\begin{array}{llll}
\dot{x}_{v_{1,1}} & \dot{x}_{v_{1,2}} & \dot{x}_{v_{2,1}} & \dot{x}_{v_{2,2}} \\
\dot{y}_{v_{1,1}} & \dot{y}_{v_{1,2}} & \dot{y}_{v_{2,1}} & \dot{y}_{v_{2,2}} \\
\dot{z}_{v_{1,1}} & \dot{z}_{v_{1,2}} & \dot{z}_{v_{2,1}} & \dot{z}_{v_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Front left	VehV $(1,1)$	1	1	Vehicle-fixed x-axis
Front right	VehV $(1,2)$	1	2	
Rear left	$\operatorname{VehV}(1,3)$	2	1	
Rear right	$\operatorname{VehV}(1,4)$	2	2	
Front left	$\operatorname{VehV}(2,1)$	1	1	Vehicle-fixed y-axis
Front right	$\operatorname{VehV}(2,2)$	1	2	

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Rear left	VehV $(2,3)$	2	1	
Rear right	VehV $(2,4)$	2	2	
Front left	VehV $(3,1)$	1	1	Vehicle-fixed z-axis
Front right	VehV(3,2)	1	2	
Rear left	VehV $(3,3)$	2	1	
Rear right	$\operatorname{VehV(3,4)}$	2	2	

StrgAng - Steering angle, optional array

Optional steering angle for each wheel, δ. Input array dimensions are 1 by the number of steered wheels.

For example, for a two-axle vehicle with two wheels per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set Steered axle enable by axle, StrgEnByAxl to [1 0]. The input signal array dimensions are [1×2].
- The StrgAng signal contains two steering angles according to their axle and wheel locations.

$$
\operatorname{StrgAng}=\delta_{\text {steer }}=\left[\delta_{\text {steer }_{1,1}} \delta_{\text {steer }_{1,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	StrgAng $(1,1)$	1	1
Front right	StrgAng $(1,2)$	1	2

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Output

Info - Bus signal
bus
Bus signal containing block values. The signals are arrays that depend on the wheel location.
For example, here are the indices for a two-axle, two-wheel vehicle. The total number of wheels is four.

- 1D array signal (1-by-4)

Wheel	Array Element	Axle	Wheel Number
Front left	$(1,1)$	1	1
Front right	$(1,2)$	1	2
Rear left	$(1,3)$	2	1
Rear right	$(1,4)$	2	2

- 3D array signal (3-by-4)

Wheel	Array Element	Axle	Wheel Number
Front left	$(1,1)$	1	1
Front right	$(1,2)$	1	2
Rear left	$(1,3)$	2	1
Rear right	$(1,4)$	2	2
Front left	$(2,1)$	1	1
Front right	$(2,2)$	1	2
Rear left	$(2,3)$	2	1
Rear right	$(2,4)$	2	2
Front left	$(3,1)$	1	1
Front right	$(3,2)$	2	1
Rear left	$(3,3)$	2	2
Rear right	$(3,4)$		

Signal	Description	Array Signal	Variable	Units
Camber	Wheel angles according to the axle and wheel location.	1D	WhlAng $[1, \ldots]=\xi=\left[\xi_{a, t}\right]$	rad
Caster			WhlAng $[2, \ldots]=\eta=\left[\eta_{a, t}\right]$	
Toe			WhlAng $[3, \ldots]=\zeta=\left[\zeta_{a, t}\right]$	
Height	Suspension height	1D	H	m
Power	Suspension power dissipation	1D	$P_{\text {susp }}$	W
Energy	Suspension absorbed energy	1D	$E_{\text {susp }}$	J

Signal	Description	Array Signal	Variable Units
VehF	Suspension forces applied to the vehicle	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { VehF }=F_{v}= \\ & {\left[\begin{array}{llll} F_{v x_{1,1}} & F_{v x_{1,2}} & F_{v x_{2,1}} & F_{v x_{2,2}} \\ F_{v v_{1,1}} & F_{v y_{1,2}} & F_{v y_{2,1}} & F_{v y_{2,2}} \\ F_{v z_{1,1}} & F_{v z_{1,2}} & F_{v z_{2,1}} & F_{v z_{2,2}} \end{array}\right.} \end{aligned}$
VehM	Suspension moments applied to vehicle	3D	For a two-axle, two wheels per axle vehicle:VehM $=M_{v}=$$\left[\begin{array}{llll}M_{v x_{1,1}} & M_{v x_{1,2}} & M_{v x_{2,1}} & M_{v \chi_{2,2}} \\ M_{v y_{1,1}} & M_{v y y_{1,2}} & M_{v y 2,1} & M_{v y 2,2} \\ M_{v z_{1,1}} & M_{v z_{1,2}} & M_{v z_{2,1}} & M_{v z_{2,2}}\end{array}\right]$
WhlF	Suspension force applied to wheel	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlF }=F_{w}= \\ & {\left[\begin{array}{llll} F_{w x_{1}, 1} & F_{w x_{1,2}} & F_{w x_{2,1}} & F_{w x_{2}, 2} \\ F_{w y 1,1} & F_{w y_{1,2}} & F_{w y 2,1} & F_{w y 2,2} \\ F_{w z_{1,1}} & F_{w z_{1,2}} & F_{w z 2,1} & F_{w 2_{2,2}} \end{array}\right.} \end{aligned}$

Signal	Description	Array Signal	Variable	Units
WhlP	Wheel displacement	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlP }=\left[\begin{array}{l} x_{w} \\ y_{w} \\ z_{w} \end{array}\right]= \\ & {\left[\begin{array}{llll} x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_{w_{2},} \\ y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_{w{ }_{2}} \\ z_{w t r_{1,1}} & z_{w t r_{1,2}} & z_{w t r_{2,1}} & z_{w t r_{2}} \end{array}\right.} \end{aligned}$	
Whlv	Wheel velocity	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlV }=\left[\begin{array}{l} \dot{x}_{w} \\ \dot{y}_{w} \\ \dot{z}_{w} \end{array}\right] \\ & = \\ & {\left[\begin{array}{lll} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} \\ \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} \\ \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} \\ \dot{z}_{w_{2,2}} \end{array}\right]} \end{aligned}$	m/s
WhlAng	Wheel camber, caster, toe angles	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlAng }=\left[\begin{array}{l} \xi \\ \eta \\ \zeta \end{array}\right] \\ & =\left[\begin{array}{lll} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} \\ \eta_{1,1} & \xi_{1,2} & \eta_{2,1} \\ \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} \\ \zeta_{2,2} \end{array}\right] \end{aligned}$	rad

VehF - Suspension force on vehicle array

Longitudinal, lateral, and vertical suspension force at axle a, wheel t, applied to the vehicle at the suspension connection point, in N. Array dimensions are 3 by the number of wheels on the vehicle.

- VehF (1, ...) - Suspension force applied to vehicle along the vehicle-fixed x-axis (longitudinal)
- $\operatorname{VehF}(2, \ldots)-$ Suspension force applied to vehicle along the vehicle-fixed y-axis (lateral)
- VehF (3, . .) - Suspension force applied to vehicle along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the VehF:

- Signal dimensions are [3x4].
- Signal contains suspension forces applied to the vehicle according to the axle and wheel locations.

$$
\text { VehF }=F_{v}=\left[\begin{array}{llll}
F_{v x_{1,1}} & F_{v x_{1,2}} & F_{v x_{2,1}} & F_{v x_{2,2}} \\
F_{v y_{1,1}} & F_{v y_{1,2}} & F_{v y_{2,1}} & F_{v y_{2,2}} \\
F_{v z_{1,1}} & F_{v z_{1,2}} & F_{v z_{2,1}} & F_{v z_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	$\operatorname{VehF}(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	$\operatorname{VehF}(1,2)$	1	2	
Rear left	$\operatorname{VehF}(1,3)$	2	1	
Rear right	$\operatorname{VehF}(1,4)$	2	2	
Front left	$\operatorname{VehF}(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
Front right	$\operatorname{VehF}(2,2)$	1	2	
Rear left	$\operatorname{VehF}(2,3)$	2	1	
Rear right	$\operatorname{VehF}(2,4)$	2	2	
Front left	$\operatorname{VehF}(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
Front right	$\operatorname{VehF}(3,2)$	1	2	
Rear left	$\operatorname{VehF}(3,3)$	2	1	
Rear right	$\operatorname{VehF}(3,4)$	2	2	

VehM - Suspension moment on vehicle
array
Longitudinal, lateral, and vertical suspension moment at axle a, wheel t, applied to the vehicle at the suspension connection point, in $N \cdot m$. Array dimensions are 3 by the number of wheels on the vehicle.

- VehM (1, ...) - Suspension moment applied to the vehicle about the vehicle-fixed x-axis (longitudinal)
- VehM ($2, \ldots$) - Suspension moment applied to the vehicle about the vehicle-fixed y-axis (lateral)
- VehM (3, ...) - Suspension moment applied to the vehicle about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the VehM:

- Signal dimensions are [3×4].
- Signal contains suspension moments applied to vehicle according to the axle and wheel locations.

$$
\text { VehM }=M_{v}=\left[\begin{array}{llll}
M_{v x_{1,1}} & M_{v x_{1,2}} & M_{v x_{2,1}} & M_{v x_{2,2}} \\
M_{v y 1,1} & M_{v y 1,2} & M_{v x_{2,1}} & M_{v y_{2,2}} \\
M_{v z_{1,1}} & M_{v z_{1,2}} & M_{v z_{2,1}} & M_{v z_{2,2}}
\end{array}\right]
$$

Array Element	Axle	Wheel Number	Moment Axis
$\operatorname{VehM}(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
$\operatorname{VehM}(1,2)$	1	2	
$\operatorname{VehM}(1,3)$	2	1	
VehM (1,4)	2	2	
$\operatorname{VehM}(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
VehM (2,2)	1	2	
VehM (2,3)	2	1	
$\operatorname{VehM}(2,4)$	2	2	
$\operatorname{VehM}(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
$\operatorname{VehM}(3,2)$	1	2	
$\operatorname{VehM}(3,3)$	2	1	
VehM (3,4)	2	2	

WhIF - Suspension force on wheel
array
Longitudinal, lateral, and vertical suspension forces at axle a, wheel t, applied to the wheel at the axle wheel carrier reference coordinate, in N. Array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{WhlF}(1, \ldots)$ - Suspension force on wheel along the vehicle-fixed x-axis (longitudinal)
- $\operatorname{WhlF}(2, \ldots)$ - Suspension force on wheel along the vehicle-fixed y-axis (lateral)
- $\operatorname{WhlF}(3, \ldots)$ - Suspension force on wheel along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlF:

- Signal dimensions are [3×4].
- Signal contains wheel forces applied to the vehicle according to the axle and wheel locations.

$$
\text { WhlF }=F_{w}=\left[\begin{array}{lllll}
F_{w x_{1,1}} & F_{w x_{1,2}} & F_{w x_{2,1}} & F_{w x_{2,2}} \\
F_{w y_{1,1}} & F_{w y 1,2} & F_{w y 2,1} & F_{w y 2,2} \\
F_{w z_{1,1}} & F_{w z_{1,2}} & F_{w z 2,1} & F_{w z_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	WhlF $(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	WhlF $(1,2)$	1	2	
Rear left	WhlF $(1,3)$	2	1	
Rear right	WhlF $(1,4)$	2	2	
Front left	WhlF $(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
Front right	WhlF $(2,2)$	1	2	
Rear left	WhlF $(2,3)$	2	1	
Rear right	WhlF $(2,4)$	2	2	
Front left	WhlF $(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
Front right	WhlF $(3,2)$	1	2	
Rear left	WhlF $(3,3)$	2	1	
Rear right	WhlF $(3,4)$	2	2	

WhIV - Wheel velocity
array
Longitudinal, lateral, and vertical wheel velocity at axle a, wheel t, in m / s. Array dimensions are 3 by the number of wheels on the vehicle.

- WhlV (1, ...) - Wheel velocity along the vehicle-fixed x-axis (longitudinal)
- WhlV $(2, \ldots)$ - Wheel velocity along the vehicle-fixed y-axis (lateral)
- WhlV $(3, \ldots)-$ Wheel velocity along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the Whlv:

- Signal dimensions are [3×4].
- Signal contains wheel forces applied to the vehicle according to the axle and wheel locations.

$$
\text { WhlV }=\left[\begin{array}{c}
\dot{x}_{w} \\
\dot{y}_{w} \\
\dot{z}_{w}
\end{array}\right]=\left[\begin{array}{llll}
\dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\
\dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\
\dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	WhlV $(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	WhlV $(1,2)$	1	2	
Rear left	WhlV $(1,3)$	2	1	
Rear right	WhlV $(1,4)$	2	2	
Front left	WhlV $(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
Front right	WhlV $(2,2)$	1	2	
Rear left	WhlV $(2,3)$	2	1	
Rear right	WhlV $(2,4)$	2	2	
Front left	WhlV $(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
Front right	WhlV $(3,2)$	1	2	
Rear left	WhlV $(3,3)$	2	1	
Rear right	WhlV $(3,4)$	2	2	

WhIAng - Wheel camber, caster, toe angles
array
Camber, caster, and toe angles at axle a, wheel t, in rad. Array dimensions are 3 by the number of wheels on the vehicle.

- WhlAng (1,...) - Camber angle
- WhlAng $(2, \ldots)$ - Caster angle
- WhlAng $(3, \ldots)$ - Toe angle

For example, for a two-axle vehicle with two wheels per axle, the WhlAng:

- Signal dimensions are [3x4].
- Signal contains angles according to the axle and wheel locations.

$$
\text { WhlAng }=\left[\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right]=\left[\begin{array}{llll}
\xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\
\eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\
\zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Angle
Front left	WhlAng (1,1)	1	1	Camber
Front right	WhlAng (1,2)	1	2	
Rear left	WhlAng (1,3)	2	1	
Rear right	WhlAng (1,4)	2	2	
Front left	WhlAng (2,1)	1	1	Caster
Front right	WhlAng (2,2)	1	2	
Rear left	WhlAng (2,3)	2	1	
Rear right	WhlAng (2,4)	2	2	
Front left	WhlAng (3,1)	1	1	Toe
Front right	WhlF(3,2)	1	2	
Rear left	WhlF(3,3)	2	1	
Rear right	WhlF(3,4)	2	2	

Parameters

Enable active damping - Include damping

off (default) | off
Include damping

Dependencies

Selecting this parameter creates:

- Damping coefficient map, f_act_susp_cz

- Damping actuator duty cycle breakpoints, f_act_susp_duty_bpt
- Damping actuator velocity breakpoints, f_act_susp_zdot_bpt

Number of axles, NumAxI - Number of axles
2 (default) | scalar
Number of axles, N_{a}, dimensionless.
Number of wheels by axle, NumWhlsByAxI - Number of wheels per axle
[2 2] (default) |vector
Number of wheels per axle, $N t_{a}$, dimensionless. Vector is 1 by the number of vehicle axles, N_{a}. For example, [1,2] represents one wheel on axle one and two wheels on axle two.

Steered axle enable by axle, StrgEnByAxI - Boolean vector to enable axle steering
[1 0] (default)|vector
Boolean vector that enables axle steering, $E n_{\text {steer }}$, dimensionless. Vector is 1 by the number of vehicle axles, N_{a}. For example:

- [10] — For a two-axle vehicle, enables axle 1 steering and disables axle 2 steering
- [ll $\left.\begin{array}{ll}1 & 1\end{array}\right]$ - For a two-axle vehicle, enables axle 1 and axle 2 steering

Dependencies

Setting any element of the Steered axle enable by axle, StrgEnByAxl vector to 1 creates:

- Input port StrgAng.
- Parameters:
- Toe angle vs steering angle slope, ToeStrgSlp
- Caster angle vs steering angle slope, CasterStrgSlp
- Camber angle vs steering angle slope, CamberStrgSlp
- Suspension height vs steering angle slope, StrgHgtSIp

For example, for a two-axle vehicle with two wheels per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set Steered axle enable by axle, StrgEnByAxl to [1 0]. The input signal array dimensions are [1×2].
- The StrgAng signal contains two steering angles according to their axle and wheel locations.

$$
\text { StrgAng }=\delta_{\text {steer }}=\left[\delta_{\text {steer }_{1,1}} \delta_{\text {steer }_{1,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	StrgAng $(1,1)$	1	1
Front right	StrgAng $(1,2)$	1	2

Anti-sway axle enable by axle, AntiSwayEnByAxI - Boolean vector to enable axle anti-sway [0 0] (default)|vector

Boolean vector that enables axle anti-sway for axle a, dimensionless. For example, [10] enables axle 1 anti-sway and disables axle 2 anti-sway. Vector is 1 by the number of vehicle axles, N_{a}.

Dependencies

Setting an element of the Anti-sway axle enable by axle, AntiSwayEnByAxl vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

Suspension

Compliance and Damping - Passive
Suspension spring constant, Kz - Suspension spring constant
64370 (default) | scalar | vector
Linear vertical spring constant for independent suspension wheels on axle a, $k_{z_{\alpha^{\prime}}}$ in N / m.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Suspension spring preload, FOz - Suspension spring preload

9810 (default) | scalar | vector
Vertical preload spring force applied to the wheels on the axle at wheel carrier reference coordinates, $F_{z 0_{a^{\prime}}}$ in N. Positive preload forces:

- Cause the vehicle to lift.
- Point along the negative vehicle-fixed z-axis.

Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Suspension shock damping constant, Cz - Suspension shock damping constant 10000 (default) | scalar | vector

Linear vertical damping constant for independent suspension wheels on axle a, $c_{z_{d^{\prime}}}$ in Ns / m.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create this parameter, clear Enable active damping.

Suspension maximum height, Hmax - Height

0.5 (default) | scalar | vector

Maximum suspension extension or minimum suspension compression height, $H_{\text {max }}$, for axle a before the suspension reaches a hardstop, in m.

Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Compliance and Damping - Active

Damping coefficient map, f_act_susp_cz - Lookup table

[10000 10000;10000 10000] (default) | M-by-N array
Damping coefficient table as a function of active duty cycle and actuator compression velocity, in $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}$. Each value specifies the damping for a specific combination of actuator duty cycle and velocity. The array dimensions must match the duty cycle, M , and actuator velocity, N , breakpoint vector dimensions.

Dependencies

To create this parameter, clear Enable active damping.
Damping actuator duty cycle breakpoints, f_act_susp_duty_bpt - Duty cycle breakpoints [0 1] (default) | 1-by-M vector

Damping actuator duty cycle breakpoints, dimensionless.

Dependencies

To create this parameter, clear Enable active damping.
Damping actuator velocity breakpoints, f_act_susp_zdot_bpt - Velocity breakpoints
[-1 1] (default) | 1-by-N vector
Damping actuator velocity breakpoints, in m/s.

Dependencies

To create this parameter, clear Enable active damping.

Geometry

Toe angle at steering center, Toe - Toe angle
0.0349 (default) | scalar

Nominal suspension toe angle at zero steering angle, $\zeta_{0 a}$, in rad.
Roll steer vs suspension height slope, RollStrgSIp - Steer angle suspension slope -0. 2269 (default) | scalar | vector

Roll steer angle versus suspension height, $m_{\text {htoe } a_{a}}$, in rad $/ \mathrm{m}$.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Toe angle vs steering angle slope, ToeStrgSIp - Toe angle steering slope
0.01 (default) | scalar | vector

Toe angle versus steering angle slope, $m_{\text {toesteer }_{a^{\prime}}}$ dimensionless.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Caster angle at steering center, Caster - Caster angle at steering center 0.0698 (default) | scalar

Nominal suspension caster angle at zero steering angle, $\eta_{0 a}$, in rad.
Caster angle vs suspension height slope, CasterHslp - Caster angle versus suspension height slope
-0. 2269 (default) | scalar | vector
Caster angle versus suspension height, $m_{\text {haster }_{a^{\prime}}}$ in rad $/ \mathrm{m}$.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Caster angle vs steering angle slope, CasterStrgSIp - Caster angle versus steering angle slope 0.01 (default) | scalar | vector

Caster angle versus steering angle slope, $m_{\text {castersteer }_{a^{\prime}}}$ dimensionless.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Camber angle at steering center, Camber - Camber angle at steering center 0.0698 (default) | scalar

Nominal suspension camber angle at zero steering angle, $\xi_{0 a}$, in rad.
Camber angle vs suspension height slope, CamberHslp - Camber angle versus suspension height slope
-0. 2269 (default) | scalar | vector
Camber angle versus suspension height, $m_{\text {hcamber }{ }_{a}}$ in rad $/ \mathrm{m}$.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Camber angle vs steering angle slope, CamberStrgSIp - Camber angle versus steering angle slope
0.01 (default) | scalar | vector

Camber angle versus steering angle slope, $m_{\text {cambersteer }_{a}}$, dimensionless.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Suspension height vs steering angle slope, StrgHgtSIp - Suspension height versus steering angle slope
0.1432 (default) | scalar | vector

Steering angle to vertical force slope applied at suspension wheel carrier reference point, $m_{\text {hsteer }_{a^{\prime}}}$ in $\mathrm{m} / \mathrm{rad}$.

Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Anti-Sway
Anti-sway arm radius, AntiSwayR - Anti-sway arm radius
0.2 (default) | scalar | vector

Anti-sway arm radius, r, in m.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

Setting an element of the Anti-sway axle enable by axle, AntiSwayEnByAxl vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

Anti-sway arm neutral angle, AntiSwayNtrIAng - Anti-sway arm neutral angle
0.5236 (default) | scalar | vector

Anti-sway arm neutral angle, $\theta_{0 a}$, at nominal suspension height, in rad.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

Setting an element of the Anti-sway axle enable by axle, AntiSwayEnByAxl vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

Anti-sway torsion spring constant, AntiSwayTrsK - Anti-sway torsion spring constant $5.7296 \mathrm{e}+03$ (default) | scalar | vector

Anti-sway bar torsion spring constant, k_{a}, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

Setting an element of the Anti-sway axle enable by axle, AntiSwayEnByAxl vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

Version History

Introduced in R2018a

R2022b: Parameter name change from NumTracksByAxl to NumWhlsByAxl Behavior changed in R2022b

The Number of tracks by axle, NumTracksByAxl parameter is renamed to Number of wheels by axle, NumWhlsByAxl.

The block uses the number of wheels per axle to index the input and output block signals.

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
[2] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
[3] Technical Committee. Road vehicles - Vehicle dynamics and road-holding ability - Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Independent Suspension - MacPherson | Independent Suspension - Mapped | Independent Suspension - K and C

Independent Suspension - MacPherson

MacPherson independent suspension

Libraries:

Vehicle Dynamics Blockset / Suspension

Description

The Independent Suspension - MacPherson block implements an independent MacPherson suspension for multiple axles with multiple wheels per axle.

The block models the suspension compliance, damping, and geometric effects as functions of the relative positions and velocities of the vehicle and wheel carrier with axle-specific compliance and damping parameters. Using the suspension compliance and damping, the block calculates the suspension force on the vehicle and wheel. The block uses the Z-down coordinate system (defined in SAE J670).

For Each	You Can Specify
Axle	$\bullet \quad$ Multiple wheels
	$\bullet \quad$ An anti-sway bar for axles with two wheels
	$\bullet \quad$ Suspension parameters
Wheel	$\bullet \quad$ Steering angles

The block contains energy-storing spring elements and energy-dissipating damper elements. It does not contain energy-storing mass elements. The block assumes that the vehicle (sprung) and wheel (unsprung) blocks connected to the block store the mass-related suspension energy.

This table summarizes the block parameter settings for a vehicle with:

- Two axles
- Two wheels per axle
- Steering angle input for both wheels on the front axle
- An anti-sway bar on the front axle

Parameter	Setting
Number of axles, NumAxl	2
Number of wheels by axle, NumWhlsByAxl	$\left[\begin{array}{ll}2 & 2\end{array}\right]$
Steered axle enable by axle, StrgEnByAxl	$\left[\begin{array}{ll}1 & 0\end{array}\right]$
Anti-Sway axle enable by axle, AntiSwayEnByAxl	$\left[\begin{array}{ll}1 & 0\end{array}\right]$

The block uses the wheel number, t, to index the input and output signals. This table summarizes the wheel, axle, and corresponding wheel number for a vehicle with:

- Two axles
- Two wheels per axle

Wheel	Axle	Wheel Number
Front left	Front	1
Front right	Front	2
Rear left	Rear	1
Rear right	Rear	2

Suspension Compliance and Damping

The block uses a linear spring and damper to model the vertical dynamic effects of the suspension system. Using the relative positions and velocities of the vehicle and wheel carrier, the block calculates the vertical suspension forces on the wheel and vehicle. The block uses a linear equation that relates the vertical damping and compliance to the suspension height, suspension height rate of change, and absolute value of the steering angles.

The block implements this equation.

$$
F_{w z_{a, t}}=F_{z 0_{a}}+k_{z_{a}}\left(z_{v_{a, t}}-z_{w_{a, t}}+m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+c\left(\dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t}}\right)+F_{z h s t o p_{a, t}}+F_{z a s w y_{a, t}}
$$

The damping coefficient, c, depends on the Enable active damping parameter setting.

Enable active damping Setting	Damping
off	Constant, $c=c_{z_{a}}$
on	Lookup table that is a function of active damper duty cycle and actuator velocity
	$c=f\left(\right.$ duty, $\left.\left(\dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t}}\right)\right)$

The block assumes that the suspension elements have no mass. Therefore, the suspension forces and moments applied to the vehicle are equal to the suspension forces and moments applied to the wheel.

$$
\begin{aligned}
& F_{v x_{a, t}}=F_{w x_{a, t}} \\
& F_{v y_{a, t}}=F_{w y_{a, t}} \\
& F_{v z_{a, t}}=-F_{w z_{a, t}} \\
& M_{v x_{a, t}}=M_{w x_{a, t}}+F_{w y_{a, t}}\left(R e_{w y_{a, t}}+H_{a, t}\right) \\
& M_{v y_{a, t}}=M_{w y_{a, t}}+F_{w x_{a, t}}\left(R e_{w x_{a, t}}+H_{a, t}\right) \\
& M_{v x_{a, t}}=M_{w z_{a, t}}
\end{aligned}
$$

The block sets the wheel positions and velocities equal to the vehicle lateral and longitudinal positions and velocities.

$$
\begin{aligned}
& x_{w_{a, t}}=x_{v_{a, t}} \\
& y_{w_{a, t}}=y_{v_{a, t}} \\
& \dot{x}_{w_{a, t}}=\dot{x}_{v_{a, t}} \\
& \dot{y}_{w_{a, t}}=\dot{y}_{v_{a, t}}
\end{aligned}
$$

The equations use these variables.

$F_{w z_{a, t}} M_{w z_{0, t}}$	Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed z-axis
$F_{w \chi_{a, t}} M_{w x_{a, t}}$	Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed x-axis
$F_{w y_{a, t}} M_{w y_{a, t}}$	Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed y-axis
$F_{v z_{a, l}} M_{v z_{\text {a }}, t}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed z-axis
$F_{v \chi_{a, t}} M_{v \chi^{\prime}, t}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed x-axis
$F_{v y_{a, t}} M_{v y^{\prime}, t}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed y-axis
$F_{z 0_{a}}$	Vertical suspension spring preload force applied to the wheels on axle a
$k_{z_{a}}$	Vertical spring constant applied to wheels on axle a
$k w a_{z}$	Wheel and axle interface compliance constant
$m_{\text {hsteer }}^{\text {a }}$	Steering angle to vertical force slope applied at wheel carrier for wheels on axle a
$\delta_{\text {ster }_{\text {at }}}$	Steering angle input for axle a, wheel t
$c_{z_{a}}$	Vertical damping constant applied to wheels on axle a
cwa ${ }_{z}$	Wheel and axle interface damping constant
$R e_{w_{a, t}}$	Effective wheel radius for axle a, wheel t
$F_{z h s t o p_{a, t}}$	Vertical hardstop force at axle a , wheel t , along the vehicle-fixed z-axis
$F_{z a s w y a t e}$	Vertical anti-sway force at axle a, wheel t , along the vehicle-fixed z-axis
$F w a_{z 0}$	Wheel and axle interface compliance constant
$z_{v_{a, t}} \dot{z}_{v_{a, t}}$	Vehicle displacement and velocity at axle a, wheel t, along the vehiclefixed z-axis
$z_{w_{w_{a, t}}} \dot{z}_{w_{a, t}}$	Wheel displacement and velocity at axle a, wheel t , along the vehicle-fixed z-axis
$\chi_{v_{a, t}} \dot{\chi}_{v_{a, t}}$	Vehicle displacement and velocity at axle a , wheel t , along the vehiclefixed z-axis
$\chi_{w_{w_{t, t}}} \dot{\chi}_{w_{a, t}}$	Wheel displacement and velocity at axle a, wheel t, along the vehicle-fixed z-axis
$y_{v_{a, t}} \dot{y}_{v_{a, t}}$	Vehicle displacement and velocity at axle a , wheel t , along the vehiclefixed y-axis

$y_{w_{a, t}} \dot{y}_{w_{a, t}}$	Wheel displacement and velocity at axle a, wheel t, along the vehicle-fixed
$H_{a, t}$	y-axis
$R e_{w_{a, t}}$	Suspension height at axle a, wheel t
	Effective wheel radius at axle a, wheel t

Hardstop Forces

The hardstop feedback force, $F_{\text {zhstop } a_{a, 1}}$ that the block applies depends on whether the suspension is compressing or extending. The block applies the force:

- In compression, when the suspension is compressed more than the maximum distance specified by the Suspension maximum height, Hmax parameter.
- In extension, when the suspension extension is greater than maximum extension specified by the Suspension maximum height, Hmax parameter.

To calculate the force, the block uses a stiffness based on a hyperbolic tangent and exponential scaling.

Anti-Sway Bar

Optionally, use the Anti-sway axle enable by axle, AntiSwayEnByAxl parameter to implement an anti-sway bar force, $F_{z a s w y_{a, t}}$ for axles that have two wheels. This figure shows how the anti-sway bar transmits torque between two independent suspension wheels on a shared axle. Each independent suspension applies a torque to the anti-sway bar via a radius arm that extends from the anti-sway bar back to the independent suspension connection point.

To calculate the sway bar force, the block implements these equations.

Calculation	Equation
Anti-sway bar angular deflection for a given axle and wheel, $\Delta \theta_{a, t}$	$\theta_{0 a}=\tan ^{-1}\left(\frac{z_{0}}{r}\right)$
	$\Delta \theta_{a, t}=\tan ^{-1}\left(\frac{r \tan \theta_{0 a}-z_{w_{a, t}}+z_{v_{a, t}}}{r}\right)$

Calculation	Equation
Anti-sway bar twist angle, θ_{a}	$\theta_{a}=-\tan ^{-1}\left(\frac{r \tan \theta_{0 a}-z_{w_{a, 1}}+z_{v_{a, 1}}}{r}\right)$
	$-\tan ^{-1}\left(\frac{r \tan \theta_{0 a}-z_{w_{a, 2}}+z_{v_{a, 2}}}{r}\right)$
Anti-sway bar torque, τ_{a}	$\tau_{a}=k_{a} \theta_{a}$
Anti-sway bar forces applied to the wheel on axle a, wheel t along wheel-fixed z-axis	$F_{z a s w y_{a, 1}}=\left(\frac{\tau_{a}}{r}\right) \cos \left(\theta_{0 a}-\tan ^{-1}\left(\frac{r \tan \theta_{0 a}-z_{w_{a, 1}}+z_{v_{a, 1}}}{r}\right)\right)$
	$F_{z a s w y_{a, 2}}=\left(\frac{\tau_{a}}{r}\right) \cos \left(\theta_{0 a}-\tan ^{-1}\left(\frac{r \tan \theta_{0 a}-z_{w_{a, 2}}+z_{v_{a, 2}}}{r}\right)\right)$

The equations and figure use these variables.

τ_{a}	Anti-sway bar torque
θ	Anti-sway bar twist angle
$\theta_{0 a}$	Initial anti-sway bar twist angle
$\Delta \theta_{a, t}$	Anti-sway bar angular deflection at axle a, wheel t
r	Anti-sway bar arm radius
z_{0}	Vertical distance from anti-sway bar connection point to anti-sway bar centerline
$F_{z s w a y_{a, t}}$	Anti-sway bar force applied to the wheel on axle a, wheel t along wheel-fixed z-axis
$z_{v_{a, t}}$	Vehicle displacement at axle a, wheel t , along the vehicle-fixed z-axis
$z_{w_{a, t}}$	Wheel displacement at axle a, wheel t, along the vehicle-fixed z-axis

Camber, Caster, and Toe Angles

To calculate the camber, caster, and toe angles, block uses linear functions of the suspension height and steering angle.

$$
\begin{aligned}
& \xi_{a, t}=\xi_{0 a}+m_{\text {hcamber }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a}, t}\right|\right)+m_{\text {cambersteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right| \\
& \eta_{a, t}=\eta_{0 a}+m_{\text {hcaster }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a}, t}\right|\right)+m_{\text {castersteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right| \\
& \zeta_{a, t}=\zeta_{0 a}+m_{\text {htoe }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+m_{\text {toesteer }_{a}}\left|\delta_{\text {steer }_{a}, t}\right|
\end{aligned}
$$

The equations use these variables.

$\xi_{a, t}$	Camber angle of wheel on axle a, wheel t
$\eta_{a, t}$	Caster angle of wheel on axle a, wheel t
$\zeta_{a, t}$	Toe angle of wheel on axle a, wheel t
$\xi_{0 a}, \eta_{0 a}, \zeta_{0 a}$	Nominal suspension axle a camber, caster, and toe angles, respectively, at $m_{\text {camber }_{a^{\prime}}}$ $m_{\text {hcosteo }_{a}{ }^{\prime}}$
zero steering angle	
Camber, caster, and toe angles, respectively, versus suspension height slope	
for axle a	

$m_{\text {cambersteer }_{a^{\prime}}} m_{\text {castersteer }_{a^{\prime}}}$ Camber, caster, and toe angles, respectively, versus steering angle slope for $m_{\text {toesteer }_{a}} \quad$ axle a
$m_{\text {hsteer }_{a}} \quad$ Steering angle versus vertical force slope for axle a
$\delta_{\text {steer }_{a, t}} \quad$ Steering angle input for axle a, wheel t
$z_{v_{a, t}}$
$z_{w_{a, t}}$
Vehicle displacement at axle a , wheel t , along the vehicle-fixed z-axis Wheel displacement at axle a, wheel t, along the vehicle-fixed z-axis

Steering Angles

Optionally, use the Steered axle enable by axle, StrgEnByAxl parameter to input steering angles for the wheels. To calculate the steering angles for the wheels, the block offsets the input steering angles with a linear function of the suspension height.

$$
\delta_{\text {whlsteer }_{a, t}}=\delta_{\text {steer }_{a, t}}+m_{\text {htoe }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+m_{\text {toesteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|
$$

The equation uses these variables.

$m_{\text {toesteer }_{a}}$	Axle a toe angle versus steering angle slope
$m_{\text {hsteer }_{a}}$	Axle a steering angle versus vertical force slope
$m_{\text {htoe }_{a}}$	Axle a toe angle versus suspension height slope
$\delta_{\text {whlsteer }_{a, t}}$	Wheel steering angle for axle a, wheel t
$\delta_{\text {steer }_{a, t}}$	Steering angle input for axle a, wheel t
$z_{v_{a, t}}$	Vehicle displacement at axle a, wheel t , along the vehicle-fixed z-axis
$z_{w_{a, t}}$	Wheel displacement at axle a, wheel t , along the vehicle-fixed z-axis

Power and Energy

The block calculates these suspension characteristics for each axle, a, wheel, t.

Calculation	Equation
Dissipated power, $P_{\text {susp }_{\text {a,t }}}$	$P_{\text {susp }_{a, t}}=F_{\text {wzlookup }}\left(\dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t}{ }^{\prime}} \dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t^{\prime}}} \delta_{\text {steer }_{a, t}}\right)$
Absorbed energy, $E_{\text {susp }_{\text {a }}}$	$E_{\text {susp }_{a, t}}=F_{w z \text { lookup }_{a}}\left(\dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t}{ }^{\prime}} \dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t}} \delta_{\text {steer }}^{a, t}\right.$ $)$
Suspension height, $H_{a, t}$	$H_{a, t}=-\left(z_{v_{a, t}}-z_{w_{a, t}}+\frac{F_{z 0_{a}}}{k_{z_{a}}}+m_{\text {hsteer }_{a}}\left\|\delta_{\text {steer }_{a, t}}\right\|\right)$
Distance from wheel carrier center to tire/road interface	$z_{w t r_{a, t}}=R e_{w_{a, t}}+H_{a, t}$

The equations use these variables.
$m_{\text {hsteer }_{a}} \quad$ Steering angle to vertical force slope applied at wheel carrier for wheels on axle a
$\delta_{\text {steer }_{a, t}} \quad$ Steering angle input for axle a, wheel t
$R e_{w_{a, t}} \quad$ Axle a, wheel t effective wheel radius from wheel carrier center to tire/road interface
$F_{z 0_{a}} \quad$ Vertical suspension spring preload force applied to the wheels on axle a
$z_{\text {wtr }_{a, t}} \quad$ Distance from wheel carrier center to tire/road interface, along the vehicle-fixed z axis
$z_{v_{a t}, t}{\dot{v_{a, t}}} \quad$ Vehicle displacement and velocity at axle a, wheel t , along the vehicle-fixed z-axis
$z_{w_{a, t}} \dot{z}_{w_{a, t}} \quad$ Wheel displacement and velocity at axle a, wheel t , along the vehicle-fixed z-axis

Ports

Input
WhIPz - Wheel z-axis displacement
array
Wheel displacement, z_{w}, along wheel-fixed z-axis, in m . Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlPz:

- Signal array dimensions are [1×4].

$$
\mathrm{WhlPz}=z_{w}=\left[z_{w_{1,1}} z_{w_{1,2}} z_{w_{2,1}} z_{w_{2,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlPz $(1,1)$	1	1
Front right	WhlPz $(1,2)$	1	2
Rear left	WhlPz $(1,3)$	2	1
Rear right	WhlPz $(1,4)$	2	2

WhIRe - Wheel effective radius
array
Effective wheel radius, $R e_{w}$, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlRe:

- Signal array dimensions are [1×4].

WhlRe $=\operatorname{Re} e_{w}=\left[R e_{w_{1,1}} R e_{w_{1,2}} R e_{w_{2,1}} R e_{w_{2}, 2}\right]$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlRe $(1,1)$	1	1
Front right	WhlRe $(1,2)$	1	2
Rear left	WhlRe $(1,3)$	2	1
Rear right	WhlRe $(1,4)$	2	2

WhIVz - Wheel z-axis velocity
array
Wheel velocity, \dot{z}_{w}, along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlVz:

- Signal array dimensions are [1×4].

WhlVz $=\dot{z}_{w}=\left[\begin{array}{lll}\dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}}\end{array} \dot{z}_{w_{2}, 2}\right]$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlVz $(1,1)$	1	1
Front right	WhlVz $(1,2)$	1	2
Rear left	WhlVz $(1,3)$	2	1
Rear right	WhlVz $(1,4)$	2	2

WhIFx - Longitudinal wheel force on vehicle
array
Longitudinal wheel force applied to vehicle, $F_{w x}$, along the vehicle-fixed x-axis. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlFx:

- Signal array dimensions are [1×4].

WhlFx $=F_{w x}=\left[F_{w x_{1,1}} F_{w x_{1,2}} F_{w x_{2,1}} F_{w x_{2}, 2}\right]$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlFx $(1,1)$	1	1
Front right	WhlFx $(1,2)$	1	2
Rear left	WhlFx $(1,3)$	2	1
Rear right	WhlFx $(1,4)$	2	2

WhIFy - Lateral wheel force on vehicle
array
Lateral wheel force applied to vehicle, $F_{w y}$, along the vehicle-fixed y-axis. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlFy:

- Signal array dimensions are [1×4].

$$
\text { WhlFy }=F_{w y}=\left[F_{w y 1,1} F_{w y 1,2} F_{w y 2,1} F_{w y_{2,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlFy $(1,1)$	1	1
Front right	WhlFy $(1,2)$	1	2
Rear left	WhlFy (1.3)	2	1
Rear right	WhlFy $(1,4)$	2	2

WhIM - Suspension moment on wheel
array
Longitudinal, lateral, and vertical suspension moments at axle a, wheel t, applied to the wheel at the axle wheel carrier reference coordinate, in $N \cdot m$. Input array dimensions are 3 by the number of wheels on the vehicle.

- WhlM ($1, \ldots$) - Suspension moment applied to the wheel about the vehicle-fixed x-axis (longitudinal)
- WhlM ($2, \ldots$) - Suspension moment applied to the wheel about the vehicle-fixed y-axis (lateral)
- WhlM ($3, \ldots$) - Suspension moment applied to the wheel about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlM:

- Signal dimensions are [3×4].
- Signal contains suspension moments applied to four wheels according to their axle and wheel locations.

$$
\text { WhlM }=M_{w}=\left[\begin{array}{lllll}
M_{w x_{1,1}} & M_{w x_{1,2}} & M_{w x_{2,1}} & M_{w x_{2,2}} \\
M_{w y_{1,1}} & M_{w y_{1,2}} & M_{w y_{2,1}} & M_{w y_{2,2}} \\
M_{w z_{1,1}} & M_{w z_{1,2}} & M_{w z_{2,1}} & M_{w z_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Moment Axis
Front left	WhlM (1,1)	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	WhlM (1,2)	1	2	
Rear left	WhlM(1,3)	2	1	
Rear right	WhlM (1,4)	2	2	
Front left	WhlM $(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
Front right	WhlM (2,2)	1	2	
$\begin{array}{\|l} \hline \begin{array}{l} \text { Rear } \\ \text { left } \end{array} \\ \hline \end{array}$	WhlM (2,3)	2	1	
Rear right	WhlM (2,4)	2	2	
Front left	WhlM (3,1)	1	1	Vehicle-fixed z-axis (vertical)
Front right	WhlM (3,2)	1	2	

Wheel	Array Element	Axle	Wheel Numbe r	Moment Axis
Rear left	WhlM(3,3)	2	1	
Rear right	WhlM(3,4)	2	2	

VehP - Vehicle displacement
array
Vehicle displacement from axle a, wheel t along vehicle-fixed coordinate system, in m. Input array dimensions are 3 the number of wheels on the vehicle.

- $\operatorname{VehP}(1, \ldots)$ - Vehicle displacement from wheel, χ_{v}, along the vehicle-fixed x-axis
- $\operatorname{VehP}(2, \ldots)$ - Vehicle displacement from wheel, y_{v}, along the vehicle-fixed y-axis
- $\operatorname{VehP}(3, \ldots)-$ Vehicle displacement from wheel, z_{v}, along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two wheels per axle, the VehP:

- Signal dimensions are [3x4].
- Signal contains four displacements according to their axle and wheel locations.

VehP $=\left[\begin{array}{l}x_{v} \\ y_{v} \\ z_{v}\end{array}\right]=\left[\begin{array}{llll}x_{v_{1,1}} & x_{v_{1,2}} & x_{v_{2,1}} & x_{v_{2,2}} \\ y_{v_{1,1}} & y_{v_{1,2}} & y_{v_{2,1}} & y_{v_{2,2}} \\ z_{v_{1,1}} & z_{v_{1,2}} & z_{v_{2,1}} & z_{v_{2,2}}\end{array}\right]$

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Front left	$\operatorname{VehP}(1,1)$	1	1	Vehicle-fixed x-axis
Front right	$\operatorname{VehP}(1,2)$	1	2	
Rear left	$\operatorname{VehP}(1,3)$	2	1	
Rear right	$\operatorname{VehP}(1,4)$	2	2	
Front left	$\operatorname{VehP}(2,1)$	1	1	Vehicle-fixed y-axis
Front right	$\operatorname{VehP}(2,2)$	1	2	
Rear left	$\operatorname{VehP}(2,3)$	2	1	
Rear right	$\operatorname{VehP}(2,4)$	2	2	

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Front left	$\operatorname{VehP}(3,1)$	1	1	Vehicle-fixed z-axis
Front right	$\operatorname{VehP}(3,2)$	1	2	
Rear left	$\operatorname{VehP}(3,3)$	2	1	
Rear right	$\operatorname{VehP}(3,4)$	2	2	

VehV - Vehicle velocity

array
Vehicle velocity at axle a, wheel t along vehicle-fixed coordinate system, in m. Input array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{VehV}(1, \ldots)-$ Vehicle velocity at wheel, x_{v}, along the vehicle-fixed x-axis
- $\operatorname{VehV}(2, \ldots)$ - Vehicle velocity at wheel, y_{v}, along the vehicle-fixed y-axis
- $\operatorname{VehV}(3, \ldots)-$ Vehicle velocity at wheel, z_{v}, along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two wheels per axle, the VehV:

- Signal dimensions are [3x4].
- Signal contains 4 velocities according to their axle and wheel locations.

$$
\text { VehV }=\left[\begin{array}{c}
\dot{x}_{v} \\
\dot{y}_{v} \\
\dot{z}_{v}
\end{array}\right]=\left[\begin{array}{llll}
\dot{x}_{v_{1,1}} & \dot{x}_{v_{1,2}} & \dot{x}_{v_{2,1}} & \dot{x}_{v_{2,2}} \\
\dot{y}_{v_{1,1}} & \dot{y}_{v_{1,2}} & \dot{y}_{v_{2,1}} & \dot{y}_{v_{2,2}} \\
\dot{z}_{v_{1,1}} & \dot{z}_{v_{1,2}} & \dot{z}_{v_{2,1}} & \dot{z}_{v_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Front left	VehV(1,1)	1	1	Vehicle-fixed x-axis
Front right	VehV(1,2)	1	2	
Rear left	VehV(1,3)	2	1	
Rear right	VehV(1,4)	2	2	
Front left	VehV(2,1)	1	1	Vehicle-fixed y-axis
Front right	VehV(2,2)	1	2	

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Rear left	VehV $(2,3)$	2	1	
Rear right	VehV $(2,4)$	2	2	
Front left	VehV $(3,1)$	1	1	Vehicle-fixed z-axis
Front right	VehV(3,2)	1	2	
Rear left	VehV $(3,3)$	2	1	
Rear right	$\operatorname{VehV(3,4)}$	2	2	

StrgAng - Steering angle, optional
array
Optional steering angle for each wheel, δ. Input array dimensions are 1 by the number of steered wheels.

For example, for a two-axle vehicle with two wheels per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set Steered axle enable by axle, StrgEnByAxl to [10]. The input signal array dimensions are [1×2].
- The StrgAng signal contains two steering angles according to their axle and wheel locations.

$$
\operatorname{StrgAng}=\delta_{\text {steer }}=\left[\delta_{\text {steer }_{1,1}} \delta_{\text {steer }_{1,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	StrgAng $(1,1)$	1	1
Front right	StrgAng $(1,2)$	1	2

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Output

Info - Bus signal
bus
Bus signal containing block values. The signals are arrays that depend on the wheel location.
For example, here are the indices for a two-axle, two-wheel vehicle. The total number of wheels is four.

- 1D array signal (1-by-4)

Wheel	Array Element	Axle	Wheel Number
Front left	$(1,1)$	1	1
Front right	$(1,2)$	1	2
Rear left	$(1,3)$	2	1
Rear right	$(1,4)$	2	2

- 3D array signal (3-by-4)

Wheel	Array Element	Axle	Wheel Number
Front left	$(1,1)$	1	1
Front right	$(1,2)$	1	2
Rear left	$(1,3)$	2	1
Rear right	$(1,4)$	2	2
Front left	$(2,1)$	1	1
Front right	$(2,2)$	1	2
Rear left	$(2,3)$	2	1
Rear right	$(2,4)$	2	2
Front left	$(3,1)$	1	1
Front right	$(3,2)$	2	1
Rear left	$(3,3)$	2	2
Rear right	$(3,4)$		

Signal	Description	Array Signal	Variable	Units
Camber	Wheel angles according to the axle and wheel location.	1D	WhlAng $[1, \ldots]=\xi=\left[\xi_{a, t}\right]$	rad
Caster			WhlAng $[2, \ldots]=\eta=\left[\eta_{a, t}\right]$	
Toe			WhlAng $[3, \ldots]=\zeta=\left[\zeta_{a, t}\right]$	
Height	Suspension height	1D	H	m
Power	Suspension power dissipation	1D	$P_{\text {susp }}$	W
Energy	Suspension absorbed energy	1D	$E_{\text {susp }}$	J

Signal	Description	Array Signal	Variable Units
VehF	Suspension forces applied to the vehicle	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { VehF }=F_{v}= \\ & {\left[\begin{array}{llll} F_{v x_{1,1}} & F_{v x_{1,2}} & F_{v x_{2,1}} & F_{v x_{2,2}} \\ F_{v v_{1,1}} & F_{v y_{1,2}} & F_{v y_{2,1}} & F_{v y_{2,2}} \\ F_{v z_{1,1}} & F_{v z_{1,2}} & F_{v z_{2,1}} & F_{v z_{2,2}} \end{array}\right.} \end{aligned}$
VehM	Suspension moments applied to vehicle	3D	For a two-axle, two wheels per axle vehicle:VehM $=M_{v}=$$\left[\begin{array}{llll}M_{v x_{1,1}} & M_{v x_{1,2}} & M_{v x_{2,1}} & M_{v \chi_{2,2}} \\ M_{v y_{1,1}} & M_{v y y_{1,2}} & M_{v y 2,1} & M_{v y 2,2} \\ M_{v z_{1,1}} & M_{v z_{1,2}} & M_{v z_{2,1}} & M_{v z_{2,2}}\end{array}\right]$
WhlF	Suspension force applied to wheel	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlF }=F_{w}= \\ & {\left[\begin{array}{llll} F_{w x_{1}, 1} & F_{w x_{1,2}} & F_{w x_{2,1}} & F_{w x_{2}, 2} \\ F_{w y 1,1} & F_{w y_{1,2}} & F_{w y 2,1} & F_{w y 2,2} \\ F_{w z_{1,1}} & F_{w z_{1,2}} & F_{w z 2,1} & F_{w 2_{2,2}} \end{array}\right.} \end{aligned}$

Signal	Description	Array Signal	Variable	Units
WhlP	Wheel displacement	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlP }=\left[\begin{array}{l} x_{w} \\ y_{w} \\ z_{w} \end{array}\right]= \\ & {\left[\begin{array}{llll} x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_{w_{2},} \\ y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_{w{ }_{2}} \\ z_{w t r_{1,1}} & z_{w t r_{1,2}} & z_{w t r_{2,1}} & z_{w t r_{2}} \end{array}\right.} \end{aligned}$	
Whlv	Wheel velocity	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlV }=\left[\begin{array}{l} \dot{x}_{w} \\ \dot{y}_{w} \\ \dot{z}_{w} \end{array}\right] \\ & = \\ & {\left[\begin{array}{lll} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} \\ \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} \\ \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} \\ \dot{z}_{w_{2,2}} \end{array}\right]} \end{aligned}$	m/s
WhlAng	Wheel camber, caster, toe angles	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlAng }=\left[\begin{array}{l} \xi \\ \eta \\ \zeta \end{array}\right] \\ & =\left[\begin{array}{lll} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} \\ \eta_{1,1} & \xi_{1,2} & \eta_{2,1} \\ \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} \\ \zeta_{2,2} \end{array}\right] \end{aligned}$	rad

VehF - Suspension force on vehicle array

Longitudinal, lateral, and vertical suspension force at axle a, wheel t, applied to the vehicle at the suspension connection point, in N. Array dimensions are 3 by the number of wheels on the vehicle.

- VehF (1, ...) - Suspension force applied to vehicle along the vehicle-fixed x-axis (longitudinal)
- VehF (2,...) - Suspension force applied to vehicle along the vehicle-fixed y-axis (lateral)
- VehF (3, . .) - Suspension force applied to vehicle along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the VehF:

- Signal dimensions are [3x4].
- Signal contains suspension forces applied to the vehicle according to the axle and wheel locations.

$$
\text { VehF }=F_{v}=\left[\begin{array}{llll}
F_{v x_{1,1}} & F_{v x_{1}, 2} & F_{v x_{2,1}} & F_{v x_{2,2}} \\
F_{v y_{1,1}} & F_{v y_{1,2}} & F_{v y_{2,1}} & F_{v y_{2,2}} \\
F_{v z_{1,1}} & F_{v z_{1,2}} & F_{v z_{2,1}} & F_{v z_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	$\operatorname{VehF}(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	$\operatorname{VehF}(1,2)$	1	2	
Rear left	$\operatorname{VehF}(1,3)$	2	1	
Rear right	$\operatorname{VehF}(1,4)$	2	2	
Front left	$\operatorname{VehF}(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
Front right	$\operatorname{VehF}(2,2)$	1	2	
Rear left	$\operatorname{VehF}(2,3)$	2	1	
Rear right	$\operatorname{VehF}(2,4)$	2	2	
Front left	$\operatorname{VehF}(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
Front right	$\operatorname{VehF}(3,2)$	1	2	
Rear left	$\operatorname{VehF}(3,3)$	2	1	
Rear right	$\operatorname{VehF}(3,4)$	2	2	

VehM - Suspension moment on vehicle
array
Longitudinal, lateral, and vertical suspension moment at axle a, wheel t, applied to the vehicle at the suspension connection point, in $N \cdot m$. Array dimensions are 3 by the number of wheels on the vehicle.

- VehM (1, ...) - Suspension moment applied to the vehicle about the vehicle-fixed x-axis (longitudinal)
- VehM ($2, \ldots$) - Suspension moment applied to the vehicle about the vehicle-fixed y-axis (lateral)
- VehM (3, ...) - Suspension moment applied to the vehicle about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the VehM:

- Signal dimensions are [3×4].
- Signal contains suspension moments applied to vehicle according to the axle and wheel locations.

$$
\text { VehM }=M_{v}=\left[\begin{array}{llll}
M_{v x_{1,1}} & M_{v x_{1,2}} & M_{v x_{2,1}} & M_{v x_{2,2}} \\
M_{v y 1,1} & M_{v y 1,2} & M_{v x_{2,1}} & M_{v y_{2,2}} \\
M_{v z_{1,1}} & M_{v z_{1,2}} & M_{v z_{2,1}} & M_{v z_{2,2}}
\end{array}\right]
$$

Array Element	Axle	Wheel Number	Moment Axis
$\operatorname{VehM}(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
$\operatorname{VehM}(1,2)$	1	2	
$\operatorname{VehM}(1,3)$	2	1	
VehM (1,4)	2	2	
$\operatorname{VehM}(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
VehM (2,2)	1	2	
VehM (2,3)	2	1	
$\operatorname{VehM}(2,4)$	2	2	
$\operatorname{VehM}(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
$\operatorname{VehM}(3,2)$	1	2	
$\operatorname{VehM}(3,3)$	2	1	
VehM (3,4)	2	2	

WhIF - Suspension force on wheel
array
Longitudinal, lateral, and vertical suspension forces at axle a, wheel t, applied to the wheel at the axle wheel carrier reference coordinate, in N. Array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{WhlF}(1, \ldots)$ - Suspension force on wheel along the vehicle-fixed x-axis (longitudinal)
- $\operatorname{WhlF}(2, \ldots)$ - Suspension force on wheel along the vehicle-fixed y-axis (lateral)
- $\operatorname{WhlF}(3, \ldots)$ - Suspension force on wheel along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlF:

- Signal dimensions are [3×4].
- Signal contains wheel forces applied to the vehicle according to the axle and wheel locations.

$$
\text { WhlF }=F_{w}=\left[\begin{array}{lllll}
F_{w x_{1,1}} & F_{w x_{1,2}} & F_{w x_{2,1}} & F_{w x_{2,2}} \\
F_{w y_{1,1}} & F_{w y 1,2} & F_{w y 2,1} & F_{w y 2,2} \\
F_{w z_{1,1}} & F_{w z_{1,2}} & F_{w z 2,1} & F_{w z_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	WhlF (1,1)	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	WhlF(1,2)	1	2	
Rear left	WhlF(1,3)	2	1	
Rear right	WhlF(1,4)	2	2	
Front left	WhlF (2,1)	1	1	Vehicle-fixed y-axis (lateral)
Front right	WhlF (2,2)	1	2	
$\begin{array}{\|l} \text { Rear } \\ \text { left } \end{array}$	WhlF (2,3)	2	1	
Rear right	WhlF (2,4)	2	2	
$\begin{aligned} & \text { Front } \\ & \text { left } \end{aligned}$	WhlF (3,1)	1	1	Vehicle-fixed z-axis (vertical)
Front right	WhlF(3,2)	1	2	
Rear left	WhlF (3, 3)	2	1	
Rear right	WhlF (3,4)	2	2	

WhIV - Wheel velocity
array
Longitudinal, lateral, and vertical wheel velocity at axle a, wheel t, in m / s. Array dimensions are 3 by the number of wheels on the vehicle.

- WhlV (1, ...) - Wheel velocity along the vehicle-fixed x-axis (longitudinal)
- WhlV $(2, \ldots)$ - Wheel velocity along the vehicle-fixed y-axis (lateral)
- WhlV $(3, \ldots)-$ Wheel velocity along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the Whlv:

- Signal dimensions are [3×4].
- Signal contains wheel forces applied to the vehicle according to the axle and wheel locations.

$$
\text { WhlV }=\left[\begin{array}{c}
\dot{x}_{w} \\
\dot{y}_{w} \\
\dot{z}_{w}
\end{array}\right]=\left[\begin{array}{llll}
\dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\
\dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\
\dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	WhlV $(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	WhlV $(1,2)$	1	2	
Rear left	WhlV $(1,3)$	2	1	
Rear right	WhlV $(1,4)$	2	2	
Front left	WhlV $(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
Front right	WhlV $(2,2)$	1	2	
Rear left	WhlV $(2,3)$	2	1	
Rear right	WhlV $(2,4)$	2	2	
Front left	WhlV $(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
Front right	WhlV $(3,2)$	1	2	
Rear left	WhlV $(3,3)$	2	1	
Rear right	WhlV $(3,4)$	2	2	

WhIAng - Wheel camber, caster, toe angles
array
Camber, caster, and toe angles at axle a, wheel t, in rad. Array dimensions are 3 by the number of wheels on the vehicle.

- WhlAng (1,...) - Camber angle
- WhlAng $(2, \ldots)$ - Caster angle
- Whlang $(3, \ldots)$ - Toe angle

For example, for a two-axle vehicle with two wheels per axle, the WhlAng:

- Signal dimensions are [3x4].
- Signal contains angles according to the axle and wheel locations.

$$
\text { WhlAng }=\left[\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right]=\left[\begin{array}{llll}
\xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\
\eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\
\zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Angle
Front left	WhlAng (1,1)	1	1	Camber
Front right	WhlAng (1,2)	1	2	
Rear left	WhlAng (1,3)	2	1	
Rear right	WhlAng (1,4)	2	2	
Front left	WhlAng (2,1)	1	1	Caster
Front right	WhlAng (2,2)	1	2	
Rear left	WhlAng (2,3)	2	1	
Rear right	WhlAng (2,4)	2	2	
Front left	WhlAng (3,1)	1	1	Toe
Front right	WhlF(3,2)	1	2	
Rear left	WhlF(3,3)	2	1	
Rear right	WhlF(3,4)	2	2	

Parameters

Enable active damping - Include damping

off (default) | off
Include damping

Dependencies

Selecting this parameter creates:

- Damping coefficient map, f_act_susp_cz

- Damping actuator duty cycle breakpoints, f_act_susp_duty_bpt
- Damping actuator velocity breakpoints, f_act_susp_zdot_bpt

Number of axles, NumAxI - Number of axles
2 (default) | scalar
Number of axles, N_{a}, dimensionless.
Number of wheels by axle, NumWhlsByAxI - Number of wheels per axle
[2 2] (default)|vector
Number of wheels per axle, $N t_{a}$, dimensionless. Vector is 1 by the number of vehicle axles, N_{a}. For example, [1,2] represents one wheel on axle one and two wheels on axle two.

Steered axle enable by axle, StrgEnByAxI - Boolean vector to enable axle steering
[1 0] (default)|vector
Boolean vector that enables axle steering, $E n_{\text {steer }}$, dimensionless. Vector is 1 by the number of vehicle axles, N_{a}. For example:

- [10 $\left.\begin{array}{ll}1 & 0\end{array}\right]$ - For a two-axle vehicle, enables axle 1 steering and disables axle 2 steering
- [ll $\left.\begin{array}{ll}1 & 1\end{array}\right]$ - For a two-axle vehicle, enables axle 1 and axle 2 steering

Dependencies

Setting any element of the Steered axle enable by axle, StrgEnByAxl vector to 1 creates:

- Input port StrgAng.
- Parameters:
- Toe angle vs steering angle slope, ToeStrgSlp
- Caster angle vs steering angle slope, CasterStrgSlp
- Camber angle vs steering angle slope, CamberStrgSlp
- Suspension height vs steering angle slope, StrgHgtSIp

For example, for a two-axle vehicle with two wheels per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set Steered axle enable by axle, StrgEnByAxl to [1 0]. The input signal array dimensions are [1×2].
- The StrgAng signal contains two steering angles according to their axle and wheel locations.

$$
\operatorname{StrgAng}=\delta_{\text {steer }}=\left[\delta_{\text {steer }_{1,1}} \delta_{\text {steer }_{1,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	StrgAng $(1,1)$	1	1
Front right	StrgAng $(1,2)$	1	2

Anti-sway axle enable by axle, AntiSwayEnByAxI - Boolean vector to enable axle anti-sway [0 0] (default) |vector

Boolean vector that enables axle anti-sway for axle a, dimensionless. For example, [10] enables axle 1 anti-sway and disables axle 2 anti-sway. Vector is 1 by the number of vehicle axles, N_{a}.

Dependencies

Setting an element of the Anti-sway axle enable by axle, AntiSwayEnByAxl vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

Suspension

Compliance and Damping - Passive
Suspension spring constant, Kz - Suspension spring constant
64370 (default) | scalar | vector
Linear vertical spring constant for independent suspension wheels on axle a, $k_{z_{\alpha^{\prime}}}$ in N / m.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Suspension spring preload, FOz - Suspension spring preload

9810 (default) | scalar | vector
Vertical preload spring force applied to the wheels on the axle at wheel carrier reference coordinates, $F_{z 0_{a^{\prime}}}$ in N. Positive preload forces:

- Cause the vehicle to lift.
- Point along the negative vehicle-fixed z-axis.

Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Suspension shock damping constant, Cz - Suspension shock damping constant 10000 (default) | scalar | vector

Linear vertical damping constant for independent suspension wheels on axle a, $c_{z_{a^{\prime}}}$ in Ns / m.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create this parameter, clear Enable active damping.

Suspension maximum height, Hmax - Height

0.5 (default) | scalar | vector

Maximum suspension extension or minimum suspension compression height, $H_{\text {max }}$, for axle a before the suspension reaches a hardstop, in m.

Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Compliance and Damping - Active

Damping coefficient map, f_act_susp_cz - Lookup table

[10000 10000;10000 10000] (default) | M-by-N array
Damping coefficient table as a function of active duty cycle and actuator compression velocity, in $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}$. Each value specifies the damping for a specific combination of actuator duty cycle and velocity. The array dimensions must match the duty cycle, M , and actuator velocity, N , breakpoint vector dimensions.

Dependencies

To create this parameter, clear Enable active damping.
Damping actuator duty cycle breakpoints, f_act_susp_duty_bpt - Duty cycle breakpoints [0 1] (default) | 1-by-M vector

Damping actuator duty cycle breakpoints, dimensionless.

Dependencies

To create this parameter, clear Enable active damping.
Damping actuator velocity breakpoints, f_act_susp_zdot_bpt - Velocity breakpoints
[-1 1] (default) | 1-by-N vector
Damping actuator velocity breakpoints, in m / s.

Dependencies

To create this parameter, clear Enable active damping.

Geometry

Toe angle at steering center, Toe - Toe angle
0.0349 (default) | scalar

Nominal suspension toe angle at zero steering angle, $\zeta_{0 a}$, in rad.
Roll steer vs suspension height slope, RollStrgSIp - Steer angle suspension slope -0. 2269 (default) | scalar | vector

Roll steer angle versus suspension height, $m_{\text {htoe } a_{a}}$, in rad $/ \mathrm{m}$.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Toe angle vs steering angle slope, ToeStrgSIp - Toe angle steering slope
0.01 (default) | scalar | vector

Toe angle versus steering angle slope, $m_{\text {toesteer }_{a^{\prime}}}$ dimensionless.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Caster angle at steering center, Caster - Caster angle at steering center 0.0698 (default) | scalar

Nominal suspension caster angle at zero steering angle, $\eta_{0 a}$, in rad.
Caster angle vs suspension height slope, CasterHslp - Caster angle versus suspension height slope
-0. 2269 (default) | scalar | vector
Caster angle versus suspension height, $m_{\text {haster }_{a^{\prime}}}$ in rad $/ \mathrm{m}$.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Caster angle vs steering angle slope, CasterStrgSIp - Caster angle versus steering angle slope 0.01 (default) | scalar | vector

Caster angle versus steering angle slope, $m_{\text {castersteer }_{a^{\prime}}}$ dimensionless. .
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Camber angle at steering center, Camber - Camber angle at steering center 0.0698 (default) | scalar

Nominal suspension camber angle at zero steering angle, $\xi_{0 a}$, in rad.
Camber angle vs suspension height slope, CamberHslp - Camber angle versus suspension height slope

- 0.2269 (default) | scalar | vector

Camber angle versus suspension height, $m_{\text {hcamber }{ }_{a}}$ in rad $/ \mathrm{m}$.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Camber angle vs steering angle slope, CamberStrgSIp - Camber angle versus steering angle slope
0.01 (default) | scalar | vector

Camber angle versus steering angle slope, $m_{\text {cambersteer }_{a}}$, dimensionless.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Suspension height vs steering angle slope, StrgHgtSIp - Suspension height versus steering angle slope
0.1432 (default) | scalar | vector

Steering angle to vertical force slope applied at suspension wheel carrier reference point, $m_{\text {hsteer }_{a^{\prime}}}$ in $\mathrm{m} / \mathrm{rad}$.

Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Anti-Sway
Anti-sway arm radius, AntiSwayR - Anti-sway arm radius
0.2 (default) | scalar | vector

Anti-sway arm radius, r, in m.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

Setting an element of the Anti-sway axle enable by axle, AntiSwayEnByAxl vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

Anti-sway arm neutral angle, AntiSwayNtrIAng - Anti-sway arm neutral angle
0.5236 (default) | scalar | vector

Anti-sway arm neutral angle, $\theta_{0 a}$, at nominal suspension height, in rad.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

Setting an element of the Anti-sway axle enable by axle, AntiSwayEnByAxl vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

Anti-sway torsion spring constant, AntiSwayTrsK - Anti-sway torsion spring constant
$5.7296 \mathrm{e}+03$ (default) | scalar | vector
Anti-sway bar torsion spring constant, k_{a}, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

Setting an element of the Anti-sway axle enable by axle, AntiSwayEnByAxl vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

Version History

Introduced in R2018a

R2022b: Parameter name change from NumTracksByAxl to NumWhlsByAxl Behavior changed in R2022b

The Number of tracks by axle, NumTracksByAxl parameter is renamed to Number of wheels by axle, NumWhlsByAxl.

The block uses the number of wheels per axle to index the input and output block signals.

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
[2] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
[3] Technical Committee. Road vehicles - Vehicle dynamics and road-holding ability - Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Independent Suspension - Double Wishbone | Independent Suspension - Mapped | Independent Suspension - K and C

Independent Suspension - Mapped

Mapped independent suspension

Libraries:

Vehicle Dynamics Blockset / Suspension

Description

The Independent Suspension - Mapped block implements a mapped independent suspension for multiple axles with multiple wheels per axle. You can use the block to model suspension geometry, compliance, and damping effects from measured or simulated suspension response data.

The block models the suspension compliance, damping, and geometric effects as functions of the relative positions and velocities of the vehicle and wheel carrier with axle-specific compliance and damping parameters. Using the suspension compliance and damping, the block calculates the suspension force on the vehicle and wheel. The block uses the Z-down coordinate system (defined in SAE J670).

For Each	You Can Specify
Axle	$\bullet \quad$ Multiple wheels
	$\bullet \quad$ An anti-sway bar for axles with two wheels
	$\bullet \quad$ Suspension parameters
Wheel	$\bullet \quad$ Steering angles

The block contains energy-storing spring elements and energy-dissipating damper elements. It does not contain energy-storing mass elements. The block assumes that the vehicle (sprung) and wheel (unsprung) blocks connected to the block store the mass-related suspension energy.

This table summarizes the block parameter settings for a vehicle with:

- Two axles
- Two wheels per axle
- Steering angle input for both wheels on the front axle
- An anti-sway bar on the front axle

Parameter	Setting
Number of axles, NumAxl	2
Number of wheels by axle, NumWhlsByAxl	$\left[\begin{array}{ll}2 & 2\end{array}\right]$
Steered axle enable by axle, StrgEnByAxl	$\left[\begin{array}{ll}1 & 0\end{array}\right]$
Anti-sway axle enable by axle, AntiSwayEnByAxl	$\left[\begin{array}{ll}1 & 0\end{array}\right]$

The block uses the wheel number, t, to index the input and output signals. This table summarizes the wheel, axle, and corresponding wheel number for a vehicle with:

- Two axles
- Two wheels per axle

Wheel	Axle	Wheel Number
Front left	Front	1
Front right	Front	2
Rear left	Rear	1
Rear right	Rear	2

Suspension Compliance and Damping

The block uses a lookup table that relates the vertical damping and compliance to the suspension height, suspension height rate of change, and steering angle. You can calibrate the wheel force lookup table so that steering angle changes from the nominal center position generate a force that increases the vehicle height.

The block implements these equations.

$$
\begin{aligned}
& F_{w z l o o k u p_{a}}=f\left(z_{v_{a, t}}-z_{w_{a, t}} \dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t},} \delta_{\text {steer }_{a, t}}\right) \\
& F_{w z_{a, t}}=F_{w z l o o k u p_{a}}+F_{z a s w y_{a, t}}
\end{aligned}
$$

The block assumes that the suspension elements have no mass. Therefore, the suspension forces and moments applied to the vehicle are equal to the suspension forces and moments applied to the wheel.

$$
\begin{aligned}
& F_{v x_{a, t}}=F_{w x_{a, t}} \\
& F_{v y_{a, t}}=F_{w y_{a, t}} \\
& F_{v z_{a, t}}=-F_{w z_{a, t}} \\
& M_{v x_{a, t}}=M_{w x_{a, t}}+F_{w y_{a, t}}\left(R e_{w y_{a, t}}+H_{a, t}\right) \\
& M_{v y_{a, t}}=M_{w y_{a, t}}+F_{w x_{a, t}}\left(R e_{w x_{a, t}}+H_{a, t}\right) \\
& M_{v z_{a, t}}=M_{w z_{a, t}}
\end{aligned}
$$

The block sets the wheel positions and velocities equal to the vehicle lateral and longitudinal positions and velocities.

$$
\begin{aligned}
x_{w_{a, t}} & =x_{v_{a, t}} \\
y_{w_{a, t}} & =y_{v_{a, t}} \\
\dot{x}_{w_{a, t}} & =\dot{x}_{v_{a, t}} \\
\dot{y}_{w_{a, t}} & =\dot{y}_{v_{a, t}}
\end{aligned}
$$

The equations use these variables.

$F_{w z_{a, t},} M_{w z_{a, t}}$	Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed z-axis
$F_{w x_{a, t}} M_{w \chi_{a, t}}$	Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed x-axis
$F_{w y_{y_{a}, t}} M_{w y_{a, t}}$	Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed y-axis
$F_{v z_{a, t}} M_{v z_{a, t}}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed z-axis
$F_{v x_{a, t}} M_{v x_{0}, t}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed x-axis
$F_{v y_{a, t}} M_{v y^{\prime}, t}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed y-axis
$F_{z 0_{a}}$	Vertical suspension spring preload force applied to the wheels on axle a
$k_{z_{a}}$	Vertical spring constant applied to wheels on axle a
kwa ${ }_{\text {z }}$	Wheel and axle interface compliance constant
$m_{\text {hsteer }}^{\text {a }}$	Steering angle to vertical force slope applied at wheel carrier for wheels on axle a
$\delta_{\text {steer }}{ }_{\text {at }}$	Steering angle input for axle a, wheel t
$C_{z_{a}}$	Vertical damping constant applied to wheels on axle a
$c w a_{z}$	Wheel and axle interface damping constant
$R e_{w_{a, t}}$	Effective wheel radius for axle a, wheel t
$F_{z h s t o p a t}$	Vertical hardstop force at axle a , wheel t , along the vehicle-fixed z-axis
$F_{\text {zaswy }}^{\text {a }}$,	Vertical anti-sway force at axle a , wheel t , along the vehicle-fixed z-axis
$F w a_{z 0}$	Wheel and axle interface compliance constant
$z_{v_{a, t}} \dot{z}_{v_{a, t}}$	Vehicle displacement and velocity at axle a, wheel t, along the vehiclefixed z-axis
$z_{w_{a, t}} \dot{z}_{w_{a}, t}$	Wheel displacement and velocity at axle a , wheel t , along the vehicle-fixed z-axis
$\chi_{v_{a, t}}, \dot{\chi}_{v_{a, t}}$	Vehicle displacement and velocity at axle a, wheel t, along the vehiclefixed z-axis
$\chi_{w_{a, t}} \dot{x}_{w_{a, t}}$	Wheel displacement and velocity at axle a, wheel t , along the vehicle-fixed z-axis
$y_{v_{a, t}} \dot{y}_{v_{a, t}}$	Vehicle displacement and velocity at axle a , wheel t , along the vehiclefixed y-axis
$y_{w_{a, t}} \dot{y}_{w_{a, t}}$	Wheel displacement and velocity at axle a, wheel t, along the vehicle-fixed y-axis
$H_{a, t}$	Suspension height at axle a, wheel t
$R e_{w_{a, t}}$	Effective wheel radius at axle a , wheel t

Anti-Sway Bar

Optionally, use the Anti-sway axle enable by axle, AntiSwayEnByAxl parameter to implement an anti-sway bar force, $F_{\text {zaswy } y_{a},}$ for axles that have two wheels. This figure shows how the anti-sway bar transmits torque between two independent suspension wheels on a shared axle. Each independent
suspension applies a torque to the anti-sway bar via a radius arm that extends from the anti-sway bar back to the independent suspension connection point.

To calculate the sway bar force, the block implements these equations.
\(\left.$$
\begin{array}{|l|l|}\hline \text { Calculation } & \text { Equation } \\
\hline \begin{array}{l}\text { Anti-sway bar angular deflection } \\
\text { for a given axle and wheel, } \Delta \theta_{a, t}\end{array} & \begin{array}{l}\theta_{0 a}=\tan ^{-1}\left(\frac{z_{0}}{r}\right) \\
\\
\Delta \theta_{a, t}=\tan ^{-1}\left(\frac{r \tan \theta_{0 a}-z_{w_{a, t}}+z_{v_{a, t}}}{r}\right)\end{array}
$$

\hline Anti-sway bar twist angle, \theta_{a} \& \theta_{a}=-\tan ^{-1}\left(\frac{r \tan \theta_{0 a}-z_{w_{a, 1}}+z_{v_{a, 1}}}{r}\right)

-\tan ^{-1}\left(\frac{r \tan \theta_{0 a}-z_{w_{a, 2}}+z_{v_{a, 2}}}{r}\right)\end{array}\right]\)\begin{tabular}{ll|}

\hline | Anti-sway bar forces applied to |
| :--- |
| the wheel on axle a, wheel t |
| along wheel-fixed z-axis | \& $F_{z a s w y_{a, 1}}=\left(\frac{\tau_{a}}{r}\right) \cos \left(\theta_{0 a}-\tan ^{-1}\left(\frac{r \tan \theta_{0 a}-z_{w_{a, 1}}+z_{v_{a, 1}}}{r}\right)\right)$

\hline
\end{tabular}

The equations and figure use these variables.

τ_{a}	Anti-sway bar torque
θ	Anti-sway bar twist angle
$\theta_{0 a}$	Initial anti-sway bar twist angle
$\Delta \theta_{a, t}$	Anti-sway bar angular deflection at axle a, wheel t
r	Anti-sway bar arm radius
z_{0}	Vertical distance from anti-sway bar connection point to anti-sway bar centerline

$F_{z s w a y}^{a t} \quad$ Anti-sway bar force applied to the wheel on axle a, wheel t along wheel-fixed z-axis
$z_{v_{a, t}} \quad$ Vehicle displacement at axle a, wheel t , along the vehicle-fixed z-axis
$z_{w_{a, t}} \quad$ Wheel displacement at axle a, wheel t , along the vehicle-fixed z-axis

Camber, Caster, and Toe Angles

To calculate the camber, caster, and toe angles, the block uses a lookup table, $G_{\text {alookup }}$, that is a function of the suspension height and steering angle.

$$
\left[\xi_{a, t} \eta_{a, t} \zeta_{a, t}\right]=G_{a l o o k u p} f\left(z_{w_{a, t}}-z_{v_{a, t^{\prime}}} \delta_{\text {steer }_{a, t}}\right)
$$

The equations use these variables.

$\xi_{a, t}$	Camber angle of wheel on axle a , wheel t			
$\eta_{a, t}$	Caster angle of wheel on axle a , wheel t			
$\zeta_{a, t}$	Toe angle of wheel on axle a, wheel t			
$\delta_{\text {steer }}^{a, t}$		\quad	$z_{v_{a, t}}$	Steering angle input for axle a, wheel t
:---	:---			
$z_{w_{a, t}}$	Vehicle displacement at axle a, wheel t , along vehicle-fixed z-axis			
	Wheel displacement at axle a, wheel t , along vehicle-fixed z-axis			

Steering Angles

Optionally, you can input steering angles for the wheels. To calculate the steering angles for the wheels, the block offsets the input steering angles as a function of the suspension height. For the calculation, the block uses a lookup table, $G_{\text {alookup }}$, that is a function of the suspension position and steering angle.

$$
\delta_{\text {whlsteer }_{a, t}}=\delta_{\text {steer }_{a, t}}+G_{\text {alookup }} f\left(z_{w_{a, t}}-z_{v_{a, t^{\prime}}} \delta_{\text {steer }_{a, t}}\right)
$$

The equation uses these variables.
$\delta_{\text {whlster }_{a t}} \quad$ Wheel steering angle for axle a, wheel t
$\delta_{\text {steer }_{\text {at }}} \quad$ Steering angle input for axle a, wheel t
$z_{v_{a, t}} \quad$ Vehicle displacement at axle a, wheel t , along the vehicle-fixed z-axis
$z_{w_{a, t}} \quad$ Wheel displacement at axle a, wheel t , along the vehicle-fixed z-axis

Power and Energy

The block calculates these suspension characteristics for each axle, a , wheel, t .

Calculation	Equation
Dissipated power, $P_{\text {susp }}^{a, t}$	$P_{\text {susp }_{a, t}}=F_{\text {wzlookupa }\left(\dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t}}, \dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t}} \delta_{\text {steer }_{a, t}}\right)}$
Absorbed energy, $E_{\text {susp }_{a, t}}$	$E_{\text {susp }_{a, t}}=F_{\text {wzlookupa }\left(\dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t},{ }^{\prime}} \dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t^{\prime}}} \delta_{\text {steer }_{a, t}}\right)}$
Suspension height, $H_{a, t}$	$H_{a, t}=-\left(z_{v_{a, t}}-z_{w_{a, t}}-\operatorname{median}\left(f_{-}\right.\right.$susp_d $\left.\left.z_{-} b p\right)\right)$

Calculation	
Distance from wheel carrier center to tire/road interface	
The equations use these variables.	

$m_{\text {hsteer }_{a}} \quad$ Steering angle to vertical force slope applied at wheel carrier for wheels on axle a
$\delta_{\text {steer }_{\text {at }}} \quad$ Steering angle input for axle a , wheel t
$R e_{w_{a, t}} \quad$ Axle a, wheel t effective wheel radius from wheel carrier center to tire/road interface
f_susp_dz_bp Vertical axis suspension height breakpoints
$z_{w t r_{a t}} \quad$ Distance from wheel carrier center to tire/road interface, along the vehicle-fixed z axis
$z_{v_{a t i}} \dot{z}_{v_{a, t}} \quad$ Vehicle displacement and velocity at axle a, wheel t , along the vehicle-fixed z-axis
$z_{w_{a, t}} \dot{z}_{w_{a, t}} \quad$ Wheel displacement and velocity at axle a, wheel t , along the vehicle-fixed z-axis

Ports

Input

WhIPz - Wheel z-axis displacement
array
Wheel displacement, z_{w}, along wheel-fixed z-axis, in m . Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlPz:

- Signal array dimensions are [1x4].

$$
\text { WhlPz }=z_{w}=\left[\begin{array}{llll}
z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlPz $(1,1)$	1	1
Front right	WhlPz $(1,2)$	1	2
Rear left	WhlPz $(1,3)$	2	1
Rear right	WhlPz $(1,4)$	2	2

WhIRe - Wheel effective radius
array
Effective wheel radius, $R e_{w}$, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlRe:

- Signal array dimensions are [1x4].

$$
\text { WhlRe }=R e_{w}=\left[\begin{array}{lll}
R e_{w_{1,1}} & R e_{w_{1,2}} & R e_{w_{2,1}}
\end{array} R e_{w_{2,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlRe $(1,1)$	1	1
Front right	WhlRe $(1,2)$	1	2
Rear left	WhlRe $(1,3)$	2	1
Rear right	WhlRe $(1,4)$	2	2

WhIVz - Wheel z-axis velocity array

Wheel velocity, \dot{z}_{w}, along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlVz:

- Signal array dimensions are [1×4].

$$
\text { WhlVz }=\dot{z}_{w}=\left[\dot{z}_{w_{1,1}} \dot{z}_{w_{1,2}} \dot{z}_{w_{2,1}} \dot{z}_{w_{2,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlVz $(1,1)$	1	1
Front right	WhlVz $(1,2)$	1	2
Rear left	WhlVz $(1,3)$	2	1
Rear right	WhlVz $(1,4)$	2	2

WhIFx - Longitudinal wheel force on vehicle
array
Longitudinal wheel force applied to vehicle, $F_{w x}$, along the vehicle-fixed x-axis. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlFx:

- Signal array dimensions are [1×4].

WhlFx $=F_{w x}=\left[F_{w x_{1,1}} F_{w x_{1,2}} F_{w x_{2,1}} F_{w x_{2,2}}\right]$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlFx(1,1)	1	1
Front right	WhlFx(1,2)	1	2
Rear left	WhlFx(1,3)	2	1
Rear right	WhlFx(1,4)	2	2

WhIFy - Lateral wheel force on vehicle
array
Lateral wheel force applied to vehicle, $F_{w y}$, along the vehicle-fixed y-axis. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlFy:

- Signal array dimensions are [1x4].

$$
\text { WhlFy }=F_{w y}=\left[F_{w y_{1,1}} F_{w y_{1,2}} F_{w y_{2,1}} F_{w y_{2,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlFy $(1,1)$	1	1
Front right	WhlFy $(1,2)$	1	2
Rear left	WhlFy (1.3)	2	1
Rear right	WhlFy $(1,4)$	2	2

WhIM - Suspension moment on wheel
array
Longitudinal, lateral, and vertical suspension moments at axle a, wheel t, applied to the wheel at the axle wheel carrier reference coordinate, in $\mathrm{N} \cdot \mathrm{m}$. Input array dimensions are 3 by the number of wheels on the vehicle.

- WhlM (1, . .) - Suspension moment applied to the wheel about the vehicle-fixed x-axis (longitudinal)
- $\operatorname{WhlM}(2, \ldots)$ - Suspension moment applied to the wheel about the vehicle-fixed y-axis (lateral)
- WhlM $(3, \ldots)$ - Suspension moment applied to the wheel about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlM:

- Signal dimensions are [3×4].
- Signal contains suspension moments applied to four wheels according to their axle and wheel locations.

$$
\text { WhlM }=M_{w}=\left[\begin{array}{lllll}
M_{w x_{1,1}} & M_{w x_{1,2}} & M_{w x_{2,1}} & M_{w x_{2,2}} \\
M_{w y_{1,1}} & M_{w y 1,2} & M_{w y_{2,1}} & M_{w y 2,2} \\
M_{w z_{1,1}} & M_{w z_{1,2}} & M_{w z_{2,1}} & M_{w z_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Moment Axis
Front left	WhlM(1,1)	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	WhlM(1,2)	1	2	
Rear left	WhlM $(1,3)$	2	1	
Rear right	WhlM(1,4)	2	2	
Front left	WhlM $(2,1)$	1	1	Vehicle-fixed y-axis (lateral)

Wheel	Array Element	Axle	Wheel Numbe r	Moment Axis
Front right	WhlM $(2,2)$	1	2	
Rear left	WhlM $(2,3)$	2	1	
Rear right	WhlM $(2,4)$	2	2	
Front left	WhlM $(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
Front right	WhlM $(3,2)$	1	2	
Rear left	WhlM(3,3)	2	1	
Rear right	WhlM(3,4)	2	2	

VehP - Vehicle displacement
array
Vehicle displacement from axle a, wheel t along vehicle-fixed coordinate system, in m. Input array dimensions are 3 the number of wheels on the vehicle.

- $\operatorname{VehP}(1, \ldots)$ - Vehicle displacement from wheel, χ_{v}, along the vehicle-fixed x-axis
- $\operatorname{VehP}(2, \ldots)$ - Vehicle displacement from wheel, y_{v}, along the vehicle-fixed y-axis
- $\operatorname{VehP}(3, \ldots)$ - Vehicle displacement from wheel, z_{v}, along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two wheels per axle, the VehP:

- Signal dimensions are [3×4].
- Signal contains four displacements according to their axle and wheel locations.

VehP $=\left[\begin{array}{l}x_{v} \\ y_{v} \\ z_{v}\end{array}\right]=\left[\begin{array}{llll}x_{v_{1,1}} & x_{v_{1,2}} & x_{v_{2,1}} & x_{v_{2,2}} \\ y_{v_{1,1}} & y_{v_{1,2}} & v_{v_{2,1}} & y_{v_{2,2}} \\ z_{v_{1,1}} & z_{v_{1,2}} & z_{v_{2,1}} & z_{v_{2,2}}\end{array}\right]$

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Front left	VehP $(1,1)$	1	1	Vehicle-fixed x-axis
Front right	$\operatorname{VehP}(1,2)$	1	2	
Rear left	$\operatorname{VehP}(1,3)$	2	1	

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Rear right	$\operatorname{VehP}(1,4)$	2	2	
Front left	$\operatorname{VehP}(2,1)$	1	1	Vehicle-fixed y-axis
Front right	$\operatorname{VehP}(2,2)$	1	2	
Rear left	$\operatorname{VehP}(2,3)$	2	1	
Rear right	$\operatorname{VehP}(2,4)$	2	2	
Front left	$\operatorname{VehP}(3,1)$	1	1	Vehicle-fixed z-axis
Front right	$\operatorname{VehP}(3,2)$	1	2	
Rear left	$\operatorname{VehP}(3,3)$	2	1	
Rear right	$\operatorname{VehP}(3,4)$	2	2	

VehV - Vehicle velocity
array
Vehicle velocity at axle a, wheel t along vehicle-fixed coordinate system, in m. Input array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{VehV}(1, \ldots)-$ Vehicle velocity at wheel, x_{v}, along the vehicle-fixed x-axis
- VehV $(2, \ldots)-$ Vehicle velocity at wheel, y_{v}, along the vehicle-fixed y-axis
- VehV $(3, \ldots)-$ Vehicle velocity at wheel, z_{v}, along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two wheels per axle, the VehV:

- Signal dimensions are [3×4].
- Signal contains 4 velocities according to their axle and wheel locations.

VehV $=\left[\begin{array}{l}\dot{x}_{v} \\ \dot{y}_{v} \\ \dot{z}_{v}\end{array}\right]=\left[\begin{array}{lllll}\dot{x}_{v_{1,1}} & \dot{x}_{v_{1,2}} & \dot{x}_{v_{2,1}} & \dot{x}_{v_{2,2}} \\ \dot{y}_{v_{1,1}} & \dot{y}_{v_{1,2}} & \dot{y}_{v_{2,1}} & \dot{y}_{v_{2,2}} \\ \dot{z}_{v_{1,1}} & \dot{z}_{v_{1,2}} & \dot{z}_{v_{2,1}} & \dot{z}_{v_{2,2}}\end{array}\right]$

Wheel	Array Element	Axle	Wheel Numbe \mathbf{r}	Axis
Front left	VehV $(1,1)$	1	1	Vehicle-fixed x-axis

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Front right	VehV $(1,2)$	1	2	
Rear left	VehV $(1,3)$	2	1	
Rear right	VehV $(1,4)$	2	2	
Front left	VehV $(2,1)$	1	1	Vehicle-fixed y-axis
Front right	VehV(2,2)	1	2	
Rear left	VehV(2,3)	2	1	
Rear right	VehV(2,4)	2	2	
Front left	VehV(3,1)	1	1	Vehicle-fixed z-axis
Front right	VehV(3,2)	1	2	
Rear left	VehV(3,3)	2	1	
Rear right	VehV(3,4)	2	2	

StrgAng - Steering angle, optional

array
Optional steering angle for each wheel, δ. Input array dimensions are 1 by the number of steered wheels.

For example, for a two-axle vehicle with two wheels per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set Steered axle enable by axle, StrgEnByAxl to [1 0]. The input signal array dimensions are [1×2].
- The StrgAng signal contains two steering angles according to their axle and wheel locations.

$$
\text { StrgAng }=\delta_{\text {steer }}=\left[\delta_{\text {steer }_{1,1}} \delta_{\text {steer }_{1,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	StrgAng $(1,1)$	1	1
Front right	StrgAng $(1,2)$	1	2

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Output

Info - Bus signal
bus
Bus signal containing block values. The signals are arrays that depend on the wheel location.
For example, here are the indices for a two-axle, two-wheel vehicle. The total number of wheels is four.

- 1D array signal (1-by-4)

Wheel	Array Element	Axle	Wheel Number
Front left	$(1,1)$	1	1
Front right	$(1,2)$	1	2
Rear left	$(1,3)$	2	1
Rear right	$(1,4)$	2	2

- 3D array signal (3-by-4)

Wheel	Array Element	Axle	Wheel Number
Front left	$(1,1)$	1	1
Front right	$(1,2)$	1	2
Rear left	$(1,3)$	2	1
Rear right	$(1,4)$	2	2
Front left	$(2,1)$	1	1
Front right	$(2,2)$	1	2
Rear left	$(2,3)$	2	1
Rear right	$(2,4)$	2	2
Front left	$(3,1)$	1	1
Front right	$(3,2)$	1	2
Rear left	$(3,3)$	2	1
Rear right	$(3,4)$	2	2

$\begin{array}{|l|l|l|l|l|}\hline \text { Signal } & \text { Description } & \text { Array Signal } & \text { Variable } & \text { Units } \\ \hline \text { Camber } & \text { Wheel angles according } & \text { 1D } & \text { WhlAng }[1, \ldots]=\xi=\left[\xi_{a, t}\right] & \text { rad } \\$\cline { 1 - 3 } \& to the axle and wheel\end{array}$)$

Signal	Description	Array Signal	Variable	Units
Power	Suspension power dissipation	1D	$P_{\text {susp }}$	W
Energy	Suspension absorbed energy	1D	$E_{\text {susp }} \mathrm{J}$	J
VehF	Suspension forces applied to the vehicle	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { VehF }=F_{v}= \\ & {\left[\begin{array}{llll} F_{v x_{1,1}} & F_{v x_{1,2}} & F_{v x_{2,1}} & F_{v x_{2}, 2} \\ F_{v v_{1,1}} & F_{v v_{1,2}} & F_{v v_{2,1}} & F_{v y_{2,2}} \\ F_{v z 1,1} & F_{v z_{1,2}} & F_{v z_{2,1}} & F_{v z_{2,2}} \end{array}\right.} \end{aligned}$	N
VehM	Suspension moments applied to vehicle	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { VehM }=M_{v}= \\ & {\left[\begin{array}{lllll} M_{v x_{1}, 1} & M_{v x_{1}, 2} & M_{v x_{2}, 1} & M_{v \times 2} \\ M_{v y_{1}, 1} & M_{v y_{1}, 2} & M_{v y 2,1} & M_{v y 2} \\ M_{v z_{1,1}} & M_{v z_{1,2}} & M_{v z_{2,1}} & M_{v z_{2}} \end{array}\right.} \end{aligned}$	$\mathrm{N} \cdot \mathrm{~m}$ 2,2 2,2 2,2

Signal	Description	Array Signal	Variable	Units
WhlF	Suspension force applied to wheel	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlF }=F_{w}= \\ & {\left[\begin{array}{llll} F_{w x_{1}, 1} & F_{w x_{1,2}} & F_{w x_{2}, 1} & F_{w x_{2}} \\ F_{w y 1,1} & F_{w y_{1,2}} & F_{w y 2,1} & F_{w y_{2}} \\ F_{w z_{1,1}} & F_{w z_{1,2}} & F_{w z_{2,1}} & F_{w z_{2}} \end{array}\right.} \end{aligned}$	
WhlP	Wheel displacement	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlP }=\left[\begin{array}{l} x_{w} \\ y_{w} \\ z_{w} \end{array}\right]= \\ & {\left[\begin{array}{llll} x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_{w_{2}}, \\ y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_{w y_{2}} \\ z_{w t r_{1,1}} & z_{w t t_{1,2}} & z_{w t r_{2,1}} & z_{w t r_{2}} \end{array}\right.} \end{aligned}$	
Whlv	Wheel velocity	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlV }=\left[\begin{array}{c} \dot{x}_{w} \\ \dot{y}_{w} \\ \dot{z}_{w} \end{array}\right] \\ & = \\ & {\left[\begin{array}{lll} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} \\ \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} \\ \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} \\ \dot{z}_{w_{2,2}} \end{array}\right]} \end{aligned}$	m/s

Signal	Description	Array Signal	Variable	Units
WhlAng	Wheel camber, caster toe angles	3D	For a two-axle, two wheels per axle vehicle: $\left.\begin{array}{l} \text { WhlAng }=\left[\begin{array}{l} \xi \\ \eta \\ \zeta \end{array}\right] \\ =\left[\begin{array}{lll} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} \\ \xi_{2,2} \\ \eta_{1,1} & \eta_{1,2} & \eta_{2,1} \\ \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} \end{array} \zeta_{2,2}\right. \end{array}\right] . \begin{aligned} & \eta_{2} \end{aligned}$	rad

VehF - Suspension force on vehicle

array
Longitudinal, lateral, and vertical suspension force at axle a, wheel t, applied to the vehicle at the suspension connection point, in N . Array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{VehF}(1, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed x-axis (longitudinal)
- $\operatorname{VehF}(2, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed y-axis (lateral)
- $\operatorname{VehF}(3, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the VehF:

- Signal dimensions are [3×4].
- Signal contains suspension forces applied to the vehicle according to the axle and wheel locations.

$$
\text { VehF }=F_{v}=\left[\begin{array}{lllll}
F_{v x_{1,1}} & F_{v x_{1,2}} & F_{v x_{2,1}} & F_{v x_{2,2}} \\
F_{v y_{1,1}} & F_{v y_{1,2}} & F_{v y_{2,1}} & F_{v y_{2,2}} \\
F_{v z_{1,1}} & F_{v z_{1,2}} & F_{v z_{2,1}} & F_{v z_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	$\operatorname{VehF}(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	$\operatorname{VehF}(1,2)$	1	2	
Rear left	$\operatorname{VehF}(1,3)$	2	1	
Rear right	$\operatorname{VehF}(1,4)$	2	2	
Front left	$\operatorname{VehF}(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
Front right	$\operatorname{VehF}(2,2)$	1	2	

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Rear left	$\operatorname{VehF}(2,3)$	2	1	
Rear right	$\operatorname{VehF}(2,4)$	2	2	
Front left	$\operatorname{VehF}(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
Front right	$\operatorname{VehF}(3,2)$	1	2	
Rear left	$\operatorname{VehF}(3,3)$	2	1	
Rear right	$\operatorname{VehF}(3,4)$	2	2	

VehM - Suspension moment on vehicle
array
Longitudinal, lateral, and vertical suspension moment at axle a, wheel t, applied to the vehicle at the suspension connection point, in $\mathrm{N} \cdot \mathrm{m}$. Array dimensions are 3 by the number of wheels on the vehicle.

- VehM (1, ...) - Suspension moment applied to the vehicle about the vehicle-fixed x-axis (longitudinal)
- VehM ($2, \ldots$) - Suspension moment applied to the vehicle about the vehicle-fixed y-axis (lateral)
- Vehm ($3, \ldots$) - Suspension moment applied to the vehicle about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the VehM:

- Signal dimensions are [3×4].
- Signal contains suspension moments applied to vehicle according to the axle and wheel locations.

VehM $=M_{v}=\left[\begin{array}{lllll}M_{v x_{1,1}} & M_{v x_{1,2}} & M_{v x_{2,1}} & M_{v x_{2,2}} \\ M_{v y_{1,1}} & M_{v y_{1,2}} & M_{v y_{2,1}} & M_{v y_{2,2}} \\ M_{v z_{1,1}} & M_{v z_{1,2}} & M_{v z_{2,1}} & M_{v z_{2,2}}\end{array}\right]$

Array Element	Axle	Wheel Number	Moment Axis
$\operatorname{VehM}(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
$\operatorname{VehM}(1,2)$	1	2	
$\operatorname{VehM}(1,3)$	2	1	
$\operatorname{VehM}(1,4)$	2	2	
$\operatorname{VehM}(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
$\operatorname{VehM}(2,2)$	1	2	

Array Element	Axle	Wheel Number	Moment Axis
$\operatorname{VehM}(2,3)$	2	1	
$\operatorname{VehM}(2,4)$	2	2	
$\operatorname{VehM}(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
$\operatorname{VehM}(3,2)$	1	2	
$\operatorname{VehM}(3,3)$	2	1	
$\operatorname{VehM}(3,4)$	2	2	

WhIF - Suspension force on wheel
array
Longitudinal, lateral, and vertical suspension forces at axle a, wheel t, applied to the wheel at the axle wheel carrier reference coordinate, in N . Array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{WhlF}(1, \ldots)$ - Suspension force on wheel along the vehicle-fixed x-axis (longitudinal)
- $\operatorname{WhlF}(2, \ldots)$ - Suspension force on wheel along the vehicle-fixed y-axis (lateral)
- WhlF $(3, \ldots)$ - Suspension force on wheel along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlF:

- Signal dimensions are [3×4].
- Signal contains wheel forces applied to the vehicle according to the axle and wheel locations.

WhlF $=F_{w}=\left[\begin{array}{lllll}F_{w x_{1,1}} & F_{w x_{1,2}} & F_{w x_{2,1}} & F_{w x_{2,2}} \\ F_{w y_{1,1}} & F_{w y_{1,2}} & F_{w y_{2,1}} & F_{w y_{2,2}} \\ F_{w z_{1,1}} & F_{w z_{1,2}} & F_{w z_{2,1}} & F_{w z_{2,2}}\end{array}\right]$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	WhlF $(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	WhlF $(1,2)$	1	2	
Rear left	WhlF $(1,3)$	2	1	
Rear right	WhlF $(1,4)$	2	2	
Front left	WhlF $(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
Front right	WhlF $(2,2)$	1	2	

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Rear left	WhlF $(2,3)$	2	1	
Rear right	WhlF $(2,4)$	2	2	
Front left	WhlF (3,1)	1	1	Vehicle-fixed z-axis (vertical)
Front right	WhlF (3,2)	1	2	
Rear left	WhlF $(3,3)$	2	1	
Rear right	WhlF (3,4)	2	2	

WhIV - Wheel velocity
array
Longitudinal, lateral, and vertical wheel velocity at axle a, wheel t , in m / s. Array dimensions are 3 by the number of wheels on the vehicle.

- WhlV (1, ...) - Wheel velocity along the vehicle-fixed x-axis (longitudinal)
- WhlV $(2, \ldots)$ - Wheel velocity along the vehicle-fixed y-axis (lateral)
- WhlV $(3, \ldots)-$ Wheel velocity along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the Whlv:

- Signal dimensions are [3×4].
- Signal contains wheel forces applied to the vehicle according to the axle and wheel locations.

$$
\text { WhlV }=\left[\begin{array}{l}
\dot{x}_{w} \\
\dot{y}_{w} \\
\dot{z}_{w}
\end{array}\right]=\left[\begin{array}{llll}
\dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\
\dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\
\dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	WhlV $(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	WhlV $(1,2)$	1	2	
Rear left	WhlV $(1,3)$	2	1	
Rear right	WhlV $(1,4)$	2	2	

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	WhlV $(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
Front right	WhlV $(2,2)$	1	2	
Rear left	WhlV $(2,3)$	2	1	
Rear right	WhlV $(2,4)$	2	2	
Front left	WhlV $(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
Front right	WhlV $(3,2)$	1	2	
Rear left	WhlV(3,3)	2	1	
Rear right	WhlV(3,4)	2	2	

WhIAng - Wheel camber, caster, toe angles
array
Camber, caster, and toe angles at axle a, wheel t, in rad. Array dimensions are 3 by the number of wheels on the vehicle.

- WhlAng (1,...) - Camber angle
- WhlAng $(2, \ldots)$ - Caster angle
- Whlang $(3, \ldots)$ - Toe angle

For example, for a two-axle vehicle with two wheels per axle, the WhlAng:

- Signal dimensions are [3x4].
- Signal contains angles according to the axle and wheel locations.

$$
\text { WhlAng }=\left[\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right]=\left[\begin{array}{llll}
\xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\
\eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\
\zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Angle
Front left	WhlAng (1,1)	1	1	Camber
Front right	WhlAng (1,2)	1	2	

Wheel	Array Element	Axle	Wheel Numbe r	Angle
Rear left	WhlAng (1,3)	2	1	
Rear right	WhlAng (1,4)	2	2	
Front left	WhlAng (2,1)	1	1	Caster
Front right	WhlAng (2,2)	1	2	
Rear left	WhlAng (2,3)	2	1	
Rear right	WhlAng(2,4)	2	2	
Front left	WhlAng(3,1)	1	1	Toe
Front right	WhlF(3,2)	1	2	
Rear left	WhlF(3,3)	2	1	
Rear right	WhlF(3,4)	2	2	

Parameters

Axles

Number of axles, NumAxI - Number of axles
2 (default) | scalar
Number of axles, N_{a}, dimensionless.
Number of wheels by axle, NumWhlsByAxI - Number of wheels per axle
[2 2] (default)|vector
Number of wheels per axle, $N t_{a}$, dimensionless. Vector is 1 by the number of vehicle axles, N_{a}. For example, [1,2] represents one wheel on axle one and two wheels on axle two.

Steered axle enable by axle, StrgEnByAxI - Boolean vector to enable axle steering
[1 0] (default)| vector
Boolean vector that enables axle steering, $E n_{\text {steer }}$, dimensionless. Vector is 1 by the number of vehicle axles, N_{a}. For example:

- [10] - For a two-axle vehicle, enables axle 1 steering and disables axle 2 steering
- [ll 1 1] - For a two-axle vehicle, enables axle 1 and axle 2 steering

Dependencies

Setting any element of the Steered axle enable by axle, StrgEnByAxl vector to 1 creates:

- Input port StrgAng.
- Parameters:
- Toe angle vs steering angle slope, ToeStrgSlp
- Caster angle vs steering angle slope, CasterStrgSlp
- Camber angle vs steering angle slope, CamberStrgSlp
- Suspension height vs steering angle slope, StrgHgtSlp

For example, for a two-axle vehicle with two wheels per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set Steered axle enable by axle, StrgEnByAxl to [1 0]. The input signal array dimensions are [1×2].
- The StrgAng signal contains two steering angles according to their axle and wheel locations.

$$
\text { StrgAng }=\delta_{\text {steer }}=\left[\delta_{\text {steer }_{1,1}} \delta_{\text {steer }_{1,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	StrgAng $(1,1)$	1	1
Front right	StrgAng $(1,2)$	1	2

Anti-sway axle enable by axle, AntiSwayEnByAxI - Boolean vector to enable axle anti-sway [0 0] (default)|vector

Boolean vector that enables axle anti-sway for axle a, dimensionless. For example, [10] enables axle 1 anti-sway and disables axle 2 anti-sway. Vector is 1 by the number of vehicle axles, N_{a}.

Dependencies

Setting an element of the Anti-sway axle enable by axle, AntiSwayEnByAxl vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

Suspension

Mapped

Axle breakpoints, f_susp_axl_bp - Breakpoints
[1 2] (default) | 1-by-P array
Axle breakpoints, dimensionless.
Vertical axis suspension height breakpoints, f_susp_dz_bp - Breakpoints
1-by-M array
Vertical axis suspension height breakpoints, in m.

Vertical axis suspension height velocity breakpoints, f_susp_dzdot_bp - Breakpoints

 1-by-N arrayVertical axis suspension height velocity breakpoints, in m / s.

Vertical axis suspension force and moment responses, f_susp_fmz - Output array

 zeros (31, 31, 61, 2, 4) (default) | M-by-N-by-0-by-P-by-4 arrayArray of output values as a function of:

- Vertical suspension height, M
- Vertical suspension height velocity, N
- Steering angle, O
- Axle, P
- 4 output types
- 1 - Vertical force, in N
- 2 - User-defined
- 3-Stored energy, in J
- 4 - Absorbed power, in W

The array dimensions must match the breakpoint dimensions
Suspension geometry responses, f_susp_geom - Suspension geometry responses zeros (31,61, 2, 3) (default) | M-by-0-by-P-by-3 array

Array of geometric suspension values as a function of:

- Vertical suspension height, M
- Steering angle, O
- Axle, P
- 3 output types
- 1 - Camber angle, in rad
- 2 - Caster angle, in rad
- 3-Toe angle, in rad

The array dimensions must match the breakpoint dimensions
Steering angle breakpoints, f_susp_strgdelta_bp - Steering angle breakpoints 1-by-0 array

Steering angle breakpoints, in rad.

Anti-Sway

Anti-sway arm radius, AntiSwayR - Anti-sway arm radius
0.2 (default) | scalar | vector

Anti-sway arm radius, r, in m.

Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

Setting an element of the Anti-sway axle enable by axle, AntiSwayEnByAxl vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

Anti-sway arm neutral angle, AntiSwayNtrIAng - Anti-sway arm neutral angle 0.5236 (default) | scalar | vector

Anti-sway arm neutral angle, $\theta_{0 a}$, at nominal suspension height, in rad.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

Setting an element of the Anti-sway axle enable by axle, AntiSwayEnByAxl vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

Anti-sway torsion spring constant, AntiSwayTrsK - Anti-sway torsion spring constant $5.7296 \mathrm{e}+03$ (default) | scalar | vector

Anti-sway bar torsion spring constant, k_{a}, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

Setting an element of the Anti-sway axle enable by axle, AntiSwayEnByAxl vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

Version History

Introduced in R2018a

R2022b: Parameter name change from NumTracksByAxl to NumWhlsByAxl Behavior changed in R2022b

The Number of tracks by axle, NumTracksByAxl parameter is renamed to Number of wheels by axle, NumWhlsByAxl.

The block uses the number of wheels per axle to index the input and output block signals.

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
[2] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
[3] Technical Committee. Road vehicles - Vehicle dynamics and road-holding ability - Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\text {TM }}$.

See Also

Independent Suspension - Double Wishbone | Independent Suspension - MacPherson | Independent Suspension - K and C

Solid Axle Suspension - Mapped

Mapped solid axle suspension

Libraries:

Vehicle Dynamics Blockset / Suspension

Description

The Solid Axle Suspension - Mapped block implements a mapped solid axle suspension for multiple axles with multiple wheels per axle.

The block models the suspension compliance, damping, and geometric effects as functions of the wheel positions and velocities, with axle-specific compliance and damping parameters. Using the wheel position and velocity, the block calculates the vertical wheel position and suspension forces on the vehicle and wheel. The block uses the Z-down (defined in SAE J670) and a solid axle coordinate system. The solid axle coordinate system, shown here, is aligned with the Z-down vehicle coordinate system, with the x-axis in the direction of forward vehicle motion.

For Each	You Can Specify
Axle	• Multiple wheels
	- Suspension parameters
Wheel	• Steering angles

The block contains energy-storing spring elements and energy-dissipating damper elements. The block also stores energy via the axle roll angular acceleration and axle center of mass vertical and lateral acceleration.

This table summarizes the block parameter settings for a vehicle with:

- Two axles
- Two wheels per axle
- Steering angle input for both wheels on the front axle

Parameter	Setting
Number of axles, NumAxl	2
Number of wheels by axle, NumWhlsByAxl	$\left[\begin{array}{ll}2 & 2\end{array}\right]$
Steered axle enable by axle, StrgEnByAxl	$\left[\begin{array}{ll}1 & 0\end{array}\right]$

The block uses the wheel number, t, to index the input and output signals. This table summarizes the wheel, axle, and corresponding wheel number for a vehicle with:

- Two axles
- Two wheels per axle

Wheel	Axle	Wheel Number
Front left	Front	1
Front right	Front	2
Rear left	Rear	1
Rear right	Rear	2

Suspension Compliance and Damping

The block uses a lookup table that relates the vertical damping and compliance to the suspension height, suspension height rate of change, and steering angle. You can calibrate the wheel force lookup table so that steering angle changes from the nominal center position generate a force that increases the vehicle height. Specifically, the block:

Uses	To Calculate
-Longitudinal and lateral displacement and velocity of the vehicle.	-Suspension forces applied to the axle center. - Lorgitudinal and lateral displacement and velocity of the wheel. - Vertical wheel forces applied to the vehicle. vehicle and wheel.
	-Longitudinal, lateral, and vertical suspension forces and moments applied to the vehicle. Longitudinal, lateral, and vertical suspension forces and moments applied to the wheel.

To calculate the dynamics of the axle, the block implements these equations. The block neglects the effects of:

- Lateral and longitudinal translational velocity.
- Angular velocity about the vertical and lateral axes.

$$
\begin{aligned}
& {\left[\begin{array}{l}
\ddot{x}_{a} \\
\ddot{y}_{a} \\
\ddot{z}_{a}
\end{array}\right]=\frac{1}{M_{a}}\left[\begin{array}{l}
F_{x a} \\
F_{y a} \\
F_{z a}
\end{array}\right]+\left[\begin{array}{c}
\dot{x}_{a} \\
\dot{y}_{a} \\
\dot{z}_{a}
\end{array}\right] \times\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\frac{1}{M_{a}}\left[\begin{array}{c}
0 \\
0 \\
F_{z a}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\dot{z}_{a}
\end{array}\right] \times\left[\begin{array}{l}
p \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
g
\end{array}\right]=\left[\begin{array}{c}
0 \\
p \dot{z}_{a} \\
\frac{F_{z a}}{M_{a}}+g
\end{array}\right]} \\
& {\left[\begin{array}{l}
\dot{p} \\
\dot{q} \\
\dot{r}
\end{array}\right]=\left[\left[\begin{array}{l}
M_{x} \\
M_{y} \\
M_{z}
\end{array}\right]-\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right] \times\left[\begin{array}{ccc}
I_{x x} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right]\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right]\left[\begin{array}{ccc}
I_{x x} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right]-1\right.} \\
& =\left[\left[\begin{array}{c}
M_{x} \\
0 \\
0
\end{array}\right]-\left[\begin{array}{c}
p \\
q \\
0
\end{array}\right] \times\left[\begin{array}{ccc}
I_{x x} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right]\left[\begin{array}{c}
p \\
0 \\
0
\end{array}\right]\left[\begin{array}{ccc}
I_{x x} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right]^{-1}=\left[\begin{array}{c}
\frac{M_{x}}{I_{x x}} \\
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

For the forces and moments, the block uses lookup tables.

$$
\begin{aligned}
& F_{w z_{a, t}}=f\left(z_{v_{a, t}}-z_{w_{a, t}, z} \dot{v}_{v_{a, t}}-\dot{z}_{w_{a, t}} \delta_{\text {steer }_{a, t}}\right) \\
& M_{v z_{a, t}}=f\left(z_{v_{a, t}}-z_{w_{a, t}} \dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t^{\prime}}} \delta_{\text {steer }_{a, t}}\right)
\end{aligned}
$$

The suspension forces and moments applied to the vehicle are equal to the suspension forces and moments applied to the wheel.

$$
\begin{aligned}
& F_{v x_{a, t}}=F_{w x_{a, t}} \\
& F_{v y_{a, t}}=F_{w y_{a, t}} \\
& F_{v x_{a, t}}=-F_{w z_{a, t}} \\
& M_{v x_{a, t}}=M_{w x_{a, t}}+F_{w y_{a, t}}\left(R e_{w y_{a, t}}+H_{a, t}\right) \\
& M_{v y_{a, t}}=M_{w y_{a, t}}+F_{w x_{a, t}}\left(R e_{w x_{a, t}}+H_{a, t}\right) \\
& M_{v x_{a, t}}=M_{w z_{a, t}}
\end{aligned}
$$

The equations use these variables.

$F_{w z_{a, t}}, M_{w z_{a, t}}$	Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed z-axis
$F_{w x_{a, t}} M_{w x_{a, t}}$	Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed x-axis
$F_{w y_{a, t}}, M_{w y_{a, t}}$	Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed y-axis
$F_{v z_{a, t}}, M_{v z_{a, t}}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed z-axis
$F_{v x_{a, t}}, M_{v x_{a, t}}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed x-axis
$F_{v y_{a, t}}, M_{v y_{a, t}}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed y-axis
$F_{z 0_{a}}$	Vertical suspension spring preload force applied to the wheels on axle a

$k_{z_{a}}$	Vertical spring constant applied to wheels on axle a
$k w a_{z}$	Wheel and axle interface compliance constant
$m_{\text {hsteer }}{ }_{\text {a }}$	Steering angle to vertical force slope applied at wheel carrier for wheels on axle a
$\delta_{\text {steer }_{a, t}}$	Steering angle input for axle a, wheel t
$C_{z_{a}}$	Vertical damping constant applied to wheels on axle a
cwaz	Wheel and axle interface damping constant
$R e_{w_{a, t}}$	Effective wheel radius for axle a, wheel t
$F_{z h s t o p_{a, t}}$	Vertical hardstop force at axle a, wheel t , along the vehicle-fixed z-axis
$F_{z a s w y_{\text {at }}}$	Vertical anti-sway force at axle a, wheel t, along the vehicle-fixed z-axis
$F w a_{z 0}$	Wheel and axle interface compliance constant
$z_{v_{a, t}} \dot{z}_{v_{a, t}}$	Vehicle displacement and velocity at axle a, wheel t, along the vehiclefixed z-axis
$z_{w_{a, t}} \dot{z}_{w_{a, t}}$	Wheel displacement and velocity at axle a, wheel t, along the vehicle-fixed z-axis
$\chi_{v_{a, t}} \dot{\chi}_{v_{a, t}}$	Vehicle displacement and velocity at axle a, wheel t, along the vehiclefixed z-axis
$\chi_{w_{a, t}} \dot{x}_{w_{a, t}}$	Wheel displacement and velocity at axle a, wheel t, along the vehicle-fixed z-axis
$y_{v_{a, t}} \dot{y}_{v_{a, t}}$	Vehicle displacement and velocity at axle a, wheel t, along the vehiclefixed y-axis
$y_{w_{a, t}} \dot{y}_{w_{a, t}}$	Wheel displacement and velocity at axle a, wheel t, along the vehicle-fixed y-axis
$H_{a, t}$	Suspension height at axle a, wheel t
$R e_{w_{a, t}}$	Effective wheel radius at axle a , wheel t

Camber, Caster, and Toe Angles

To calculate the camber, caster, and toe angles, the block uses a lookup table, $G_{\text {alookup }}$, that is a function of the suspension height and steering angle.

$$
\left[\xi_{a, t} \eta_{a, t} \zeta_{a, t}\right]=G_{a l o o k u p} f\left(z_{w_{a, t}}-z_{v_{a, t^{\prime}}} \delta_{\text {steer }_{a, t}}\right)
$$

The equations use these variables.

$\xi_{a, t}$	Camber angle of wheel on axle a, wheel t
$\eta_{a, t}$	Caster angle of wheel on axle a, wheel t
$\zeta_{a, t}$	Toe angle of wheel on axle a, wheel t
$\delta_{\text {steer }}^{a, t}$	
$z_{v_{a, t}}$	Steering angle input for axle a, wheel t
$z_{w_{a, t}}$	Vehicle displacement at axle a, wheel t , along vehicle-fixed z-axis
	Wheel displacement at axle a, wheel t , along vehicle-fixed z-axis

Steering Angles

Optionally, you can input steering angles for the wheels. To calculate the steering angles for the wheels, the block offsets the input steering angles as a function of the suspension height. For the
calculation, the block uses a lookup table, $G_{\text {alookup }}$, that is a function of the suspension position and steering angle.

$$
\delta_{\text {whlsteer }_{a, t}}=\delta_{\text {steer }_{a, t}}+G_{\text {alookup }} f\left(z_{w_{a, t}}-z_{v_{a, t}}, \delta_{\text {steer }_{a, t}}\right)
$$

The equation uses these variables.

$\delta_{\text {whlsteer }_{a, t}}$	Wheel steering angle for axle a, wheel t
$\delta_{\text {steer }_{a, t}}$	Steering angle input for axle a, wheel t
$z_{\mathrm{v}_{a, t}}$	Vehicle displacement at axle a, wheel t , along the vehicle-fixed z-axis
$z_{w_{a, t}}$	Wheel displacement at axle a, wheel t , along the vehicle-fixed z-axis

Power and Energy

The block calculates these suspension characteristics for each axle, a, wheel, t.

Calculation	Equation
Dissipated power, $P_{\text {susp }_{a, t}}$	$P_{\text {susp }_{a, t}}=F_{\text {wzlookup }_{a}}\left(\dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t}} \dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t},} \delta_{\text {steer }_{a, t}}\right)$
Absorbed energy, $E_{\text {susp }_{a, t}}$	$E_{\text {susp }_{a, t}}=F_{w z l o o k u p_{a}}\left(\dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t}} \dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t},} \delta_{s t e e r_{a, t}}\right)$
Suspension height, $H_{a, t}$	$\left.H_{a, t}=-\left(z_{v_{a, t}}-z_{w_{a, t}}-\operatorname{median(f_ \text {susp_}} d z_{-} b p\right)\right)$
Distance from wheel carrier center to tire/road interface	$z_{w t r_{a, t}}=\operatorname{Re}_{w_{a, t}}+H_{a, t}$

The equations use these variables.
$m_{\text {hsteer }_{a}} \quad$ Steering angle to vertical force slope applied at wheel carrier for wheels on axle a
$\delta_{\text {steer }_{a, t}} \quad$ Steering angle input for axle a, wheel t
$R e_{w_{a, t}} \quad$ Axle a, wheel t effective wheel radius from wheel carrier center to tire/road interface
f _susp_dz_bp Vertical axis suspension height breakpoints
$z_{w t r_{a, t}} \quad$ Distance from wheel carrier center to tire/road interface, along the vehicle-fixed z axis
$z_{v_{a, t}} \dot{v}_{v_{a t t}} \quad$ Vehicle displacement and velocity at axle a, wheel t , along the vehicle-fixed z-axis
$z_{w_{a, t}} \dot{z}_{w_{a, t}} \quad$ Wheel displacement and velocity at axle a, wheel t , along the vehicle-fixed z-axis

Ports

Input
WhIPz - Wheel z-axis displacement
array
Wheel displacement, z_{w}, along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlPz:

- Signal array dimensions are [1x4].

WhlPz $=z_{w}=\left[z_{w_{1,1}} z_{w_{1,2}} z_{w_{2,1}} z_{w_{2,2}}\right]$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlPz $(1,1)$	1	1
Front right	WhlPz $(1,2)$	1	2
Rear left	WhlPz $(1,3)$	2	1
Rear right	WhlPz $(1,4)$	2	2

WhIRe - Wheel effective radius
array
Effective wheel radius, $R e_{w}$, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlRe:

- Signal array dimensions are [1×4].

WhlRe $=R e_{w}=\left[\begin{array}{ll}R e_{w_{1,1}} & R e_{w_{1,2}} R e_{w_{2,1}} R e_{w_{2,2}}\end{array}\right]$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlRe $(1,1)$	1	1
Front right	WhlRe $(1,2)$	1	2
Rear left	WhlRe $(1,3)$	2	1
Rear right	WhlRe $(1,4)$	2	2

WhIVz - Wheel z-axis velocity
array
Wheel velocity, \dot{z}_{w}, along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlVz:

- Signal array dimensions are [1x4].

WhlVz $=\dot{z}_{w}=\left[\begin{array}{lll}\dot{z}_{1,1} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} \\ \dot{z}_{w_{2,2}}\end{array}\right]$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlVz $(1,1)$	1	1
Front right	WhlVz $(1,2)$	1	2
Rear left	WhlVz $(1,3)$	2	1
Rear right	WhlVz $(1,4)$	2	2

WhIFx - Longitudinal wheel force on vehicle
array

Longitudinal wheel force applied to vehicle, $F_{w x}$, along the vehicle-fixed x-axis. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlFx:

- Signal array dimensions are [1×4].

$$
\mathrm{WhlFx}=F_{w x}=\left[\begin{array}{ll}
F_{w x_{1,1}} & F_{w x_{1,2}} \\
F_{w x_{2,1}} & F_{w x_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlFx $(1,1)$	1	1
Front right	WhlFx $(1,2)$	1	2
Rear left	WhlFx $(1,3)$	2	1
Rear right	WhlFx $(1,4)$	2	2

WhIFy - Lateral wheel force on vehicle
array
Lateral wheel force applied to vehicle, $F_{w y}$, along the vehicle-fixed y-axis. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlFy:

- Signal array dimensions are [1x4].

$$
\text { WhlFy }=F_{w y}=\left[F_{w y_{1,1}} F_{w y_{1,2}} F_{w y_{2,1}} F_{w y_{2,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlFy $(1,1)$	1	1
Front right	WhlFy $(1,2)$	1	2
Rear left	WhlFy (1.3)	2	1
Rear right	WhlFy $(1,4)$	2	2

WhIM - Suspension moment on wheel
array
Longitudinal, lateral, and vertical suspension moments at axle a, wheel t, applied to the wheel at the axle wheel carrier reference coordinate, in $N \cdot m$. Input array dimensions are 3 by the number of wheels on the vehicle.

- WhlM (1, ...) - Suspension moment applied to the wheel about the vehicle-fixed x-axis (longitudinal)
- WhlM ($2, \ldots$) - Suspension moment applied to the wheel about the vehicle-fixed y-axis (lateral)
- WhlM ($3, \ldots$) - Suspension moment applied to the wheel about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlM:

- Signal dimensions are [3×4].
- Signal contains suspension moments applied to four wheels according to their axle and wheel locations.

$$
\text { WhlM }=M_{w}=\left[\begin{array}{llll}
M_{w x_{1,1}} & M_{w x_{1,2}} & M_{w x_{2,1}} & M_{w x_{2,2}} \\
M_{w y_{1,1}} & M_{w y 1,2} & M_{w y 2,1} & M_{w y 2,2} \\
M_{w z_{1,1}} & M_{w z_{1,2}} & M_{w z_{2,1}} & M_{w z 2,2}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Moment Axis
Front left	WhlM(1,1)	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	WhlM(1,2)	1	2	
Rear left	WhlM(1,3)	2	1	
Rear right	WhlM(1,4)	2	2	
Front left	WhlM(2,1)	1	1	Vehicle-fixed y-axis (lateral)
Front right	WhlM(2,2)	1	2	
Rear left	WhlM(2,3)	2	1	
Rear right	WhlM(2,4)	2	2	
Front left	WhlM(3,1)	1	1	Vehicle-fixed z-axis (vertical)
Front right	WhlM(3,2)	1	2	
Rear left	WhlM(3,3)	2	1	
Rear right	WhlM(3,4)	2	2	

VehP - Vehicle displacement
array
Vehicle displacement from axle a, wheel t along vehicle-fixed coordinate system, in m. Input array dimensions are 3 the number of wheels on the vehicle.

- VehP $(1, \ldots)$ - Vehicle displacement from wheel, χ_{v}, along the vehicle-fixed x-axis
- $\operatorname{VehP}(2, \ldots)$ - Vehicle displacement from wheel, y_{v}, along the vehicle-fixed y-axis
- $\operatorname{VehP}(3, \ldots)-$ Vehicle displacement from wheel, z_{v}, along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two wheels per axle, the VehP:

- Signal dimensions are [3x4].
- Signal contains four displacements according to their axle and wheel locations.

$$
\text { VehP }=\left[\begin{array}{l}
x_{v} \\
y_{v} \\
z_{v}
\end{array}\right]=\left[\begin{array}{llll}
x_{v_{1,1}} & x_{v_{1,2}} & x_{v_{2,1}} & x_{v_{2,2}} \\
y_{v_{1,1}} & y_{v_{1,2}} & y_{v_{2,1}} & y_{v_{2,2}} \\
z_{v_{1,1}} & z_{v_{1,2}} & z_{v_{2,1}} & z_{v_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Front left	$\operatorname{VehP}(1,1)$	1	1	Vehicle-fixed x-axis
Front right	$\operatorname{VehP}(1,2)$	1	2	
$\begin{array}{\|l} \hline \begin{array}{l} \text { Rear } \\ \text { left } \end{array} \\ \hline \end{array}$	$\operatorname{VehP}(1,3)$	2	1	
Rear right	$\operatorname{VehP}(1,4)$	2	2	
Front left	$\operatorname{VehP}(2,1)$	1	1	Vehicle-fixed y-axis
Front right	$\operatorname{VehP}(2,2)$	1	2	
$\begin{array}{\|l} \text { Rear } \\ \text { left } \end{array}$	$\operatorname{VehP}(2,3)$	2	1	
Rear right	$\operatorname{VehP}(2,4)$	2	2	
Front left	$\operatorname{VehP}(3,1)$	1	1	Vehicle-fixed z-axis
Front right	$\operatorname{VehP}(3,2)$	1	2	
$\begin{array}{\|l} \begin{array}{l} \text { Rear } \\ \text { left } \end{array} \\ \hline \end{array}$	$\operatorname{VehP}(3,3)$	2	1	
Rear right	$\operatorname{VehP}(3,4)$	2	2	

VehV - Vehicle velocity
array
Vehicle velocity at axle a, wheel t along vehicle-fixed coordinate system, in m . Input array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{VehV}(1, \ldots)-$ Vehicle velocity at wheel, x_{v}, along the vehicle-fixed x-axis
- $\operatorname{VehV}(2, \ldots)$ - Vehicle velocity at wheel, y_{v}, along the vehicle-fixed y-axis
- $\operatorname{VehV}(3, \ldots)-$ Vehicle velocity at wheel, z_{v}, along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two wheels per axle, the VehV:

- Signal dimensions are [3×4].
- Signal contains 4 velocities according to their axle and wheel locations.

$$
\mathrm{VehV}=\left[\begin{array}{c}
\dot{x}_{v} \\
\dot{y}_{v} \\
\dot{z}_{v}
\end{array}\right]=\left[\begin{array}{llll}
\dot{x}_{v_{1,1}} & \dot{x}_{v_{1,2}} & \dot{x}_{v_{2,1}} & \dot{x}_{v_{2,2}} \\
\dot{y}_{v_{1,1}} & \dot{y}_{v_{1,2}} & \dot{y}_{v_{2,1}} & \dot{y}_{v_{2,2}} \\
\dot{z}_{v_{1,1}} & \dot{z}_{v_{1,2}} & \dot{z}_{v_{2,1}} & \dot{z}_{v_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Front left	$\operatorname{VehV}(1,1)$	1	1	Vehicle-fixed x-axis
Front right	$\operatorname{VehV}(1,2)$	1	2	
Rear left	$\operatorname{VehV}(1,3)$	2	1	
Rear right	$\operatorname{VehV}(1,4)$	2	2	
Front left	$\operatorname{VehV}(2,1)$	1	1	Vehicle-fixed y-axis
Front right	$\operatorname{VehV}(2,2)$	1	2	
Rear left	$\operatorname{VehV}(2,3)$	2	1	
Rear right	$\operatorname{VehV}(2,4)$	2	2	
Front left	$\operatorname{VehV}(3,1)$	1	1	Vehicle-fixed z-axis
Front right	$\operatorname{VehV}(3,2)$	1	2	
Rear left	$\operatorname{VehV}(3,3)$	2	1	
Rear right	$\operatorname{VehV}(3,4)$	2	2	

StrgAng - Steering angle, optional
array
Optional steering angle for each wheel, δ. Input array dimensions are 1 by the number of steered wheels.

For example, for a two-axle vehicle with two wheels per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set Steered axle enable by axle, StrgEnByAxl to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and wheel locations.

$$
\text { StrgAng }=\delta_{\text {steer }}=\left[\delta_{\text {steer }_{1,1}} \delta_{\text {steer }_{1,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	StrgAng (1, 1)	1	1
Front right	StrgAng (1,2)	1	2

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Output

Info - Bus signal
bus
Bus signal containing block values. The signals are arrays that depend on the wheel location.
For example, here are the indices for a two-axle, two-wheel vehicle. The total number of wheels is four.

- 1D array signal (1-by-4)

Array Element	Axle	Wheel Number
$(1,1)$	1	1
$(1,2)$	1	2
$(1,3)$	2	1
$(1,4)$	2	2

- 3D array signal (3-by-4)

Array Element	Axle	Wheel Number
$(1,1)$	1	1
$(1,2)$	1	2
$(1,3)$	2	1
$(1,4)$	2	2
$(2,1)$	1	1
$(2,2)$	1	2
$(2,3)$	2	1
$(2,4)$	2	2
$(3,1)$	1	1
$(3,2)$	1	2
$(3,3)$	2	1
$(3,4)$	2	2

Signal	Description	Array Signal	Variable	Units
Camber	Wheel angles according to the axle.	1 D	WhlAng $[1, \ldots]=\xi=\left[\xi_{a, t}\right]$	rad

Signal	Description	Array Signal	Variable	Units
Caster			WhlAng $[2, \ldots]=\eta=\left[\eta_{a, t}\right]$	
Toe			WhlAng $[3, \ldots]=\zeta=\left[\zeta_{a, t}\right]$	
Height	Suspension height	1D	H	m
Power	Suspension power dissipation	1D	$P_{\text {susp }}$	W
Energy	Suspension absorbed energy	1D	$E_{\text {susp }} \mathrm{J}$	J
VehF	Suspension forces applied to the vehicle	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { VehF }=F_{v}= \\ & {\left[\begin{array}{llll} F_{v x_{1,1}} & F_{v x_{1,2}} & F_{v x_{2,1}} & F_{v x_{2}, 2} \\ F_{v v_{1,1}} & F_{v v_{1,2}} & F_{v y 2,1} & F_{v y 2,2} \\ F_{v z_{1,1}} & F_{v z_{1,2}} & F_{v z_{2,1}} & F_{v z_{2,2}} \end{array}\right.} \end{aligned}$	
VehM	Suspension moments applied to vehicle	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { VehM }=M_{v}= \\ & {\left[\begin{array}{lllll} M_{v x_{1}, 1} & M_{v x_{1}, 2} & M_{v \chi_{2,1}} & M_{v \times 2} \\ M_{v y_{1}, 1} & M_{v y_{1}, 2} & M_{v y{ }_{2}, 1} & M_{v y 2} \\ M_{v z_{1}, 1} & M_{v z_{1,2}} & M_{v z_{2,1}} & M_{v z_{2}} \end{array}\right.} \end{aligned}$	$\mathrm{N} \cdot \mathrm{m}$ 2,2 2,2 2,2

Signal	Description	Array Signal	Variable	Units
WhlF	Suspension force applied to wheel	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlF }=F_{w}= \\ & {\left[\begin{array}{llll} F_{w x_{1}, 1} & F_{w x_{1,2}} & F_{w x_{2}, 1} & F_{w x_{2}} \\ F_{w y 1,1} & F_{w y_{1,2}} & F_{w y 2,1} & F_{w y_{2}} \\ F_{w z_{1,1}} & F_{w z_{1,2}} & F_{w z_{2,1}} & F_{w z_{2}} \end{array}\right.} \end{aligned}$	
WhlP	Wheel displacement	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlP }=\left[\begin{array}{l} x_{w} \\ y_{w} \\ z_{w} \end{array}\right]= \\ & {\left[\begin{array}{llll} x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_{w_{2}} \\ y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_{w y_{2}} \\ z_{w t r_{1,1}} & z_{w t r_{1,2}} & z_{w t r_{2,1}} & z_{w t{ }_{2}} \end{array}\right.} \end{aligned}$	
Whlv	Wheel velocity	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlV }=\left[\begin{array}{l} \dot{x}_{w} \\ \dot{y}_{w} \\ \dot{z}_{w} \end{array}\right] \\ & = \\ & {\left[\begin{array}{llll} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}} \end{array}\right]} \end{aligned}$	m/s

Signal	Description	Array Signal	Variable	Units
WhlAng	Wheel camber, caster, toe angles	3D	For a two-axle, two wheels per axle vehicle:	rad

VehF - Suspension force on vehicle
array
Longitudinal, lateral, and vertical suspension force at axle a, wheel t, applied to the vehicle at the suspension connection point, in N. Array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{VehF}(1, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed x-axis (longitudinal)
- $\operatorname{VehF}(2, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed y-axis (lateral)
- $\operatorname{VehF}(3, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the VehF:

- Signal dimensions are [3×4].
- Signal contains suspension forces applied to the vehicle according to the axle and wheel locations.

VehF $=F_{v}=\left[\begin{array}{llll}F_{v x_{1,1}} & F_{v x_{1,2}} & F_{v x_{2,1}} & F_{v x_{2,2}} \\ F_{v v_{1,1}} & F_{v y_{1,2}} & F_{v y_{2,1}} & F_{v y_{2,2}} \\ F_{v z_{1,1}} & F_{v z_{1,2}} & F_{v z_{2,1}} & F_{v z_{2,2}}\end{array}\right]$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	$\operatorname{VehF}(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	$\operatorname{VehF}(1,2)$	1	2	
Rear left	$\operatorname{VehF}(1,3)$	2	1	
Rear right	$\operatorname{VehF}(1,4)$	2	2	
Front left	$\operatorname{VehF}(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
Front right	$\operatorname{VehF}(2,2)$	1	2	

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Rear left	VehF $(2,3)$	2	1	
Rear right	VehF $(2,4)$	2	2	
Front left	$\operatorname{VehF}(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
Front right	$\operatorname{VehF}(3,2)$	1	2	
Rear left	$\operatorname{VehF}(3,3)$	2	1	
Rear right	$\operatorname{VehF}(3,4)$	2	2	

VehM - Suspension moment on vehicle array

Longitudinal, lateral, and vertical suspension moment at axle a, wheel t, applied to the vehicle at the suspension connection point, in $\mathrm{N} \cdot \mathrm{m}$. Array dimensions are 3 by the number of wheels on the vehicle.

- VehM(1, ...) - Suspension moment applied to the vehicle about the vehicle-fixed x-axis (longitudinal)
- VehM ($2, \ldots$) - Suspension moment applied to the vehicle about the vehicle-fixed y-axis (lateral)
- Vehm ($3, \ldots$) - Suspension moment applied to the vehicle about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the VehM:

- Signal dimensions are [3×4].
- Signal contains suspension moments applied to vehicle according to the axle and wheel locations.

VehM $=M_{v}=\left[\begin{array}{llll}M_{v x_{1,1}} & M_{v x_{1,2}} & M_{v x_{2,1}} & M_{v x_{2,2}} \\ M_{v y 1,1} & M_{v y_{1,2}} & M_{v y_{2,1}} & M_{v y_{2,2}} \\ M_{v z_{1,1}} & M_{v z_{1,2}} & M_{v z_{2,1}} & M_{v z_{2,2}}\end{array}\right]$

Array Element	Axle	Wheel Number	Moment Axis
$\operatorname{VehM}(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
$\operatorname{VehM}(1,2)$	1	2	
$\operatorname{VehM}(1,3)$	2	1	
$\operatorname{VehM}(1,4)$	2	2	
$\operatorname{VehM}(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
$\operatorname{VehM}(2,2)$	1	2	

Array Element	Axle	Wheel Number	Moment Axis
$\operatorname{VehM}(2,3)$	2	1	
$\operatorname{VehM}(2,4)$	2	2	
$\operatorname{VehM}(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
$\operatorname{VehM}(3,2)$	1	2	
$\operatorname{VehM}(3,3)$	2	1	
$\operatorname{VehM}(3,4)$	2	2	

WhIF - Suspension force on wheel
array
Longitudinal, lateral, and vertical suspension forces at axle a, wheel t, applied to the wheel at the axle wheel carrier reference coordinate, in N. Array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{WhlF}(1, \ldots)-$ Suspension force on wheel along the vehicle-fixed x-axis (longitudinal)
- $\operatorname{WhlF}(2, \ldots)$ - Suspension force on wheel along the vehicle-fixed y-axis (lateral)
- WhlF $(3, \ldots)$ - Suspension force on wheel along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlF:

- Signal dimensions are [3×4].
- Signal contains wheel forces applied to the vehicle according to the axle and wheel locations.

WhlF $=F_{w}=\left[\begin{array}{llll}F_{w x_{1,1}} & F_{w x_{1,2}} & F_{w x_{2,1}} & F_{w x_{2,2}} \\ F_{w y_{1,1}} & F_{w y_{1,2}} & F_{w y_{2,1}} & F_{w y_{2,2}} \\ F_{w z_{1,1}} & F_{w z_{1,2}} & F_{w z_{2,1}} & F_{w z_{2,2}}\end{array}\right]$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	WhlF $(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	WhlF $(1,2)$	1	2	
Rear left	WhlF $(1,3)$	2	1	
Rear right	WhlF $(1,4)$	2	2	
Front left	WhlF $(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
Front right	WhlF $(2,2)$	1	2	

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Rear left	WhlF $(2,3)$	2	1	
Rear right	WhlF $(2,4)$	2	2	
Front left	WhlF $(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
Front right	WhlF(3,2)	1	2	
Rear left	WhlF $(3,3)$	2	1	
Rear right	WhlF(3,4)	2	2	

WhIV - Wheel velocity
array
Longitudinal, lateral, and vertical wheel velocity at axle a, wheel t , in m / s. Array dimensions are 3 by the number of wheels on the vehicle.

- WhlV (1, ...) - Wheel velocity along the vehicle-fixed x-axis (longitudinal)
- WhlV $(2, \ldots)$ - Wheel velocity along the vehicle-fixed y-axis (lateral)
- WhlV $(3, \ldots)-$ Wheel velocity along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the Whlv:

- Signal dimensions are [3×4].
- Signal contains wheel forces applied to the vehicle according to the axle and wheel locations.

$$
\text { WhlV }=\left[\begin{array}{c}
\dot{x}_{w} \\
\dot{y}_{w} \\
\dot{z}_{w}
\end{array}\right]=\left[\begin{array}{llll}
\dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\
\dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\
\dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	WhlV $(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	WhlV $(1,2)$	1	2	
Rear left	WhlV $(1,3)$	2	1	
Rear right	WhlV $(1,4)$	2	2	

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	WhlV $(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
Front right	WhlV $(2,2)$	1	2	
Rear left	WhlV $(2,3)$	2	1	
Rear right	WhlV $(2,4)$	2	2	
Front left	WhlV $(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
Front right	WhlV $(3,2)$	1	2	
Rear left	WhlV(3,3)	2	1	
Rear right	WhlV(3,4)	2	2	

WhIAng - Wheel camber, caster, toe angles
array
Camber, caster, and toe angles at axle a, wheel t, in rad. Array dimensions are 3 by the number of wheels on the vehicle.

- WhlAng(1,...) - Camber angle
- WhlAng (2,...) - Caster angle
- Whlang $(3, \ldots)$ - Toe angle

For example, for a two-axle vehicle with two wheels per axle, the WhlAng:

- Signal dimensions are [3×4].
- Signal contains angles according to the axle and wheel locations.

$$
\text { WhlAng }=\left[\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right]=\left[\begin{array}{llll}
\xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\
\eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\
\zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Angle
Front left	WhlAng (1,1)	1	1	Camber
Front right	WhlAng (1,2)	1	2	

Wheel	Array Element	Axle	Wheel Numbe r	Angle
Rear left	WhlAng (1,3)	2	1	
Rear right	WhlAng (1,4)	2	2	
Front left	WhlAng (2,1)	1	1	Caster
Front right	WhlAng (2,2)	1	2	
Rear left	WhlAng (2,3)	2	1	
Rear right	WhlAng(2,4)	2	2	
Front left	WhlAng (3,1)	1	1	Toe
Front right	WhlF(3,2)	1	2	
Rear left	WhlF(3,3)	2	1	
Rear right	WhlF(3,4)	2	2	

Parameters

Axles

Number of axles, NumAxI - Number of axles

2 (default) | scalar
Number of axles, N_{a}, dimensionless.
Number of wheels by axle, NumWhlsByAxI - Number of wheels per axle
[2 2] (default)|vector
Number of wheels per axle, $N t_{a}$, dimensionless. Vector is 1 by the number of vehicle axles, N_{a}. For example, [1,2] represents one wheel on axle one and two wheels on axle two.

Steered axle enable by axle, StrgEnByAxI - Boolean vector to enable axle steering
[1 0] (default) |vector
Boolean vector that enables axle steering, $E n_{\text {steer }}$, dimensionless. Vector is 1 by the number of vehicle axles, N_{a}. For example:

- [llll-For a two-axle vehicle, enables axle one steering and disables axle two steering
- [1 1]-For a two-axle vehicle, enables axle one and axle two steering

Dependencies

Setting an element of the Steered axle enable by axle, StrgEnByAxl vector to 1:

- Creates input port StrgAng.
- Creates these parameters
- Toe angle vs steering angle slope, ToeStrgSlp
- Caster angle vs steering angle slope, CasterStrgSlp
- Camber angle vs steering angle slope, CamberStrgSlp
- Suspension height vs steering angle slope, StrgHgtSlp

For example, for a two-axle vehicle with two wheels per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set Steered axle enable by axle, StrgEnByAxl to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and wheel locations.

$$
\text { StrgAng }=\delta_{\text {steer }}=\left[\delta_{\text {steer }_{1,1}} \delta_{\text {steer }_{1}, 2}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	StrgAng (1, 1)	1	1
Front right	StrgAng (1,2)	1	2

Axle and wheels lumped principal moments of inertia about longitudinal axis, AxIIxx Inertia
300 (default) | vector
Axle and wheels lumped principal moments of inertia about longitudinal axis, AxleIxx a, in $\mathrm{kg}^{*} \mathrm{~m} \wedge 2$.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Axle and wheels lumped mass, AxIM - Mass

[2 2] (default)|vector
Axle and wheels lumped mass, a, in kg.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Track hardpoint coordinates relative to axle center, TrackCoords - Point
[0 0 0 0;-1 1 -1 1;0 0 0 0] (default)|array
Track hardpoint coordinates, $T c_{t}$, along the solid axle x, y, and z-axes, in m .
For example, for a two-axle vehicle with two wheels per axle, the TrackCoords array:

- Dimensions are [3x4].
- Contains four track hardpoint coordinates according to their axle and wheel locations.

$$
T c_{t}=\left[\begin{array}{llll}
x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_{w_{2,2}} \\
y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_{w_{2,2}} \\
z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}}
\end{array}\right]
$$

Array Element	Axle	Wheel Number	Axis
TrackCoords(1, 1)	1	1	Solid axle x-axis
TrackCoords(1, 2)	1	2	
```TrackCoords(1, 3)```	2	1	
TrackCoords(1, 4)	2	2	
TrackCoords(2, 1)	1	1	Solid axle $y$-axis
TrackCoords(2, 2)	1	2	
TrackCoords(2, 3)	2	1	
TrackCoords(2, 4)	2	2	
TrackCoords(3, 1)	1	1	Solid axle $z$-axis
TrackCoords(3, 2)	1	2	
TrackCoords(3, 3)	2	1	
TrackCoords(3,   4)	2	2	

## Suspension hardpoint coordinates relative to axle center, SuspCoords - Point

## [0 0 0 0;-1 1-1 1;0 0 0 0] (default)|array

Suspension hardpoint coordinates, $S c_{t}$, along the solid axle $x$-, $y$-, and $z$-axes, in m .
For example, for a two-axle vehicle with two wheels per axle, the SuspCoords array:

- Dimensions are [3×4].
- Contains four track hardpoint coordinates according to their axle and track locations.

$$
S_{c_{t}}=\left[\begin{array}{llll}
x_{s_{1,1}} & x_{s_{1,2}} & x_{s_{2,1}} & x_{s_{2,2}} \\
y_{s_{1,1}} & y_{s_{1,2}} & y_{s_{2,1}} & y_{s_{2,2}} \\
z_{s_{1,1}} & z_{s_{1,2}} & z_{s_{2,1}} & z_{s_{2,2}}
\end{array}\right]
$$

Array Element	Axle	Track	Axis
SuspCoords (1,1 )	1	1	Solid axle $x$-axis
$\begin{aligned} & \text { SuspCoords(1,2 } \\ & \text { ) } \end{aligned}$	1	2	
$\begin{aligned} & \begin{array}{l} \text { SuspCoords (1,3 } \\ \text { ) } \end{array} \\ & \hline \end{aligned}$	2	1	
$\begin{aligned} & \begin{array}{l} \text { SuspCoords (1,4 } \\ \text { ) } \end{array} \\ & \hline \end{aligned}$	2	2	
SuspCoords(2,1 )	1	1	Solid axle $y$-axis
$\begin{aligned} & \text { SuspCoords(2,2 } \\ & \text { ) } \end{aligned}$	1	2	
SuspCoords(2,3 )	2	1	
$\begin{array}{\|l} \hline \begin{array}{l} \text { SuspCoords }(2,4 \\ ) \end{array} \\ \hline \end{array}$	2	2	
SuspCoords (3,1 )	1	1	Solid axle $z$-axis
SuspCoords(3,2 )	1	2	
$\begin{aligned} & \begin{array}{l} \text { SuspCoords (3,3 } \\ \text { ) } \end{array} \\ & \hline \end{aligned}$	2	1	
$\begin{array}{\|l} \hline \begin{array}{l} \text { SuspCoords }(3,4 \\ ) \end{array} \\ \hline \end{array}$	2	2	

Wheel and axle interface compliance constant, KzWhIAxI - Spring rate 6437000 (default) | scalar

Wheel and axle interface compliance constant, $k w a_{z}$, in $\mathrm{N} / \mathrm{m}$.
Wheel and axle interface compliance preload, FOzWhIAxI - Spring rate 9810 (default) | scalar

Wheel and axle interface compliance preload, $F w a_{z 0}$, in N .

## Wheel and axle interface damping constant, CzWhIAxI - Damping

10000 (default) | scalar
Wheel and axle interface damping constant, $c w a_{z}$, in $m$.

## Suspension

## Mapped

Axle breakpoints, f_susp_axl_bp - Breakpoints
[1 2] (default)| 1-by-P array
Axle breakpoints, dimensionless.

## Vertical axis suspension height breakpoints, f_susp_dz_bp - Breakpoints

1-by-M array
Vertical axis suspension height breakpoints, in $m$.

## Vertical axis suspension height velocity breakpoints, f_susp_dzdot_bp - Breakpoints

 1-by-N arrayVertical axis suspension height velocity breakpoints, in $\mathrm{m} / \mathrm{s}$.

## Vertical axis suspension force and moment responses, f_susp_fmz - Output array

 zeros (31, 31, 61, 2, 4) (default) | M-by-N-by-0-by-P-by-4 arrayArray of output values as a function of:

- Vertical suspension height, $M$
- Vertical suspension height velocity, $N$
- Steering angle, $O$
- Axle, $P$
- 4 output types
- 1 - Vertical force, in N
- 2 - User-defined
- 3 - Stored energy, in J
- 4-Absorbed power, in W

The array dimensions must match the breakpoint dimensions
Suspension geometry responses, f_susp_geom - Suspension geometry responses zeros (31, 61, 2, 3) (default) | M-by-0-by-P-by-3 array

Array of geometric suspension values as a function of:

- Vertical suspension height, M
- Steering angle, $O$
- Axle, $P$
- 3 output types
- 1 - Camber angle, in rad
- 2 - Caster angle, in rad
- 3-Toe angle, in rad

The array dimensions must match the breakpoint dimensions
Steering angle breakpoints, f_susp_strgdelta_bp - Steering angle breakpoints
1-by-0 array
Steering angle breakpoints, in rad.

## Version History

Introduced in R2018a
R2022b: Parameter name change from NumTracksByAxl to NumWhlsByAxl
Behavior changed in R2022b
The Number of tracks by axle, NumTracksByAxl parameter is renamed to Number of wheels by axle, NumWhlsByAxl.

The block uses the number of wheels per axle to index the input and output block signals.

## References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
[2] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
[3] Technical Committee. Road vehicles - Vehicle dynamics and road-holding ability - Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink $\circledR_{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

## See Also

Solid Axle Suspension | Solid Axle Suspension - Coil Spring | Solid Axle Suspension - Leaf Spring

## Solid Axle Suspension

Solid axle suspension for multiple axles


## Libraries:

Vehicle Dynamics Blockset / Suspension

## Description

The Solid Axle Suspension block implements a solid axle suspension for multiple axles with multiple wheels per axle.

The block models the suspension compliance, damping, and geometric effects as functions of the wheel positions and velocities, with axle-specific compliance and damping parameters. Using the wheel position and velocity, the block calculates the vertical wheel position and suspension forces on the vehicle and wheel. The block uses the Z-down (defined in SAE J670) and a solid axle coordinate system. The solid axle coordinate system, shown here, is aligned with the Z-down vehicle coordinate system, with the $x$-axis in the direction of forward vehicle motion.


For Each	You Can Specify
Axle	• Multiple wheels   $\quad$ Suspension parameters
Wheel	• Steering angles

The block contains energy-storing spring elements and energy-dissipating damper elements. The block also stores energy via the axle roll angular acceleration and axle center of mass vertical and lateral acceleration.

This table summarizes the block parameter settings for a vehicle with:

- Two axles
- Two wheels per axle
- Steering angle input for both wheels on the front axle

Parameter	Setting
Number of axles, NumAxl	2
Number of wheels by axle, NumWhlsByAxl	$\left[\begin{array}{ll}2 & 2\end{array}\right]$
Steered axle enable by axle, StrgEnByAxl	$\left[\begin{array}{ll}1 & 0\end{array}\right]$

The block uses the wheel number, $t$, to index the input and output signals. This table summarizes the wheel, axle, and corresponding wheel number for a vehicle with:

- Two axles
- Two wheels per axle

Wheel	Axle	Wheel Number
Front left	Front	1
Front right	Front	2
Rear left	Rear	1
Rear right	Rear	2

## Suspension Compliance and Damping

The block uses a linear spring and damper to model the vertical dynamic effects of the suspension system on the vehicle and wheel. Specifically, the block:

Uses	To Calculate
-Longitudinal and lateral displacement and   velocity of the vehicle.	-Suspension forces applied to the axle center.   -   Lortical displacements and velocities of the   velocity of the wheel.   - Vertical wheel forces applied to the vehicle.
	-vehicle and wheel.   Longitudinal, lateral and vertical suspension   forces and moments applied to the vehicle.   Longitudinal, lateral and vertical suspension   forces and moments applied to the wheel.

To calculate the dynamics of the axle, the block implements these equations. The block neglects the effects of:

- Lateral and longitudinal translational velocity.
- Angular velocity about the vertical and lateral axes.

$$
\begin{aligned}
& {\left[\begin{array}{l}
\ddot{x}_{a} \\
\ddot{y}_{a} \\
\ddot{z}_{a}
\end{array}\right]=\frac{1}{M_{a}}\left[\begin{array}{l}
F_{x a} \\
F_{y a} \\
F_{z a}
\end{array}\right]+\left[\begin{array}{l}
\dot{x}_{a} \\
\dot{y}_{a} \\
\dot{z}_{a}
\end{array}\right] \times\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\frac{1}{M_{a}}\left[\begin{array}{c}
0 \\
0 \\
F_{z a}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\dot{z}_{a}
\end{array}\right] \times\left[\begin{array}{l}
p \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
g
\end{array}\right]=\left[\begin{array}{c}
0 \\
p \dot{z}_{a} \\
\frac{F_{z a}}{M_{a}}+g
\end{array}\right]} \\
& {\left[\begin{array}{l}
\dot{p} \\
\dot{q} \\
\dot{r}
\end{array}\right]=\left[\left[\begin{array}{l}
M_{x} \\
M_{y} \\
M_{z}
\end{array}\right]-\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right] \times\left[\begin{array}{ccc}
I_{x x} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right]\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right]\left[\begin{array}{ccc}
I_{x x} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right]-1\right.} \\
& =\left[\left[\begin{array}{c}
M_{x} \\
0 \\
0
\end{array}\right]-\left[\begin{array}{l}
p \\
q \\
0
\end{array}\right] \times\left[\begin{array}{ccc}
I_{x x} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right]\left[\begin{array}{c}
p \\
0 \\
0
\end{array}\right]\left[\begin{array}{ccc}
I_{x x} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right]^{-1}=\left[\begin{array}{c}
\frac{M_{x}}{I_{x x}} \\
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

The net vertical force on the axle center of mass is the sum of the wheel and suspension forces acting on the axle.

$$
F_{z a}=\sum_{t=1}^{N t a}\left(F_{w z_{a, t}}+F_{z 0_{a}}+k_{z_{a}}\left(z_{v_{a, t}}-z_{s_{a, t}}+m_{h s t e e r_{a}}\left|\delta_{s t e e r_{a, t}}\right|\right)+c_{z_{a}}\left(\dot{z}_{v_{a, t}}-\dot{z}_{s_{a, t}}\right)\right)
$$

The net moment about the roll axis of the solid axle suspension accounts for the hardpoint coordinates of the suspension and wheels.

$$
\begin{aligned}
& M_{x}=\sum_{t=1}^{N t a}\left(F_{w z_{a, t}} y_{w_{t}}+\left(F_{z 0_{a}}+k_{z_{a}}\left(z_{v_{a, t}}-z_{s_{a, t}}+m_{\text {hsteera }} \mid \delta_{\text {steer }}^{a, t}\right.\right.\right. \\
& \\
& \left.\left.+M_{w x_{a, t}} \frac{I_{x x}}{I_{x x}+M_{a} y_{w_{t}}}\right)+c_{z_{a}}\left(\dot{z}_{v_{a, t}}-\dot{z}_{s_{a, t}}\right)\right) y_{s_{t}}
\end{aligned}
$$

Block parameters provide the track and suspension hardpoints coordinates.

$$
\begin{gathered}
T c_{t}=\left[\begin{array}{lll}
x_{w_{1}} & x_{w_{2}} & \cdots \\
y_{w_{1}} & y_{w_{2}} & \cdots \\
z_{w_{1}} & z_{w_{2}} & \cdots
\end{array}\right] \\
S c_{t}=\left[\begin{array}{lll}
x_{s_{1}} & x_{s_{2}} & \cdots \\
y_{s_{1}} & y_{s_{2}} & \cdots \\
z_{s_{1}} & z_{s_{2}} & \cdots
\end{array}\right]
\end{gathered}
$$

The block uses Euler angles to transform the track and suspension displacements, velocities, and accelerations to the vehicle coordinate system.

To calculate the suspension forces applied to the vehicle, the block implements this equation.

$$
F_{v z_{a, t}}=-\left(F_{z 0_{a}}+k_{z_{a}}\left(z_{v_{a, t}}-z_{s_{a, t}}+m_{h s t e e r_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+c_{z_{a}}\left(\dot{z}_{v_{a, t}}-\dot{z}_{s_{a, t}}\right)+F_{z h s t o p_{a, t}}\right)
$$

The suspension forces and moments applied to the vehicle are equal to the suspension forces and moments applied to the wheel.

$$
\begin{aligned}
& F_{v x_{a, t}}=F_{w x_{a, t}} \\
& F_{v y_{a, t}}=F_{w y_{a, t}} \\
& F_{v z_{a, t}}=-F_{w z_{a, t}} \\
& M_{v x_{a, t}}=M_{w x_{a, t}}+F_{w y_{a, t}}\left(R e_{w y_{a, t}}+H_{a, t}\right) \\
& M_{v y_{a, t}}=M_{w y_{a, t}}+F_{w x_{a, t}}\left(R e_{w x_{a, t}}+H_{a, t}\right) \\
& M_{v x_{a, t}}=M_{w z_{a, t}}
\end{aligned}
$$

To calculate the vertical force applied to the suspension at the wheel location, the block implements a stiff spring-damper, shown here.


The block uses this equation.

$$
F_{w z_{a, t}}=-F w a_{z 0}-k w a_{z}\left(z_{w_{a, t}}-z_{s_{a, t}}\right)-c w a_{z}\left(\dot{z}_{w_{a, t}}-\dot{z}_{s_{a, t}}\right)
$$

The equations use these variables.
$F_{w z_{a, t}} M_{w z_{a, t}} \quad$ Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed $z$-axis
$F_{w x_{a, t}} M_{w x_{a t t}} \quad$ Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed $x$-axis

$F_{w y_{u, t}} M_{w_{y_{a}, t}}$	Suspension force and moment applied to the wheel on axle a, wheel $t$ along wheel-fixed $y$-axis
$F_{v z_{a},} M_{v z_{a, t}}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed $z$-axis
$F_{v \chi_{a, t}} M_{v \chi^{\prime}, t}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed $x$-axis
$F_{v y_{a, t}} M_{v y_{a, t}}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed $y$-axis
$F_{z 0_{a}}$	Vertical suspension spring preload force applied to the wheels on axle a
$k_{\chi_{a}}$	Vertical spring constant applied to wheels on axle a
kwa ${ }_{z}$	Wheel and axle interface compliance constant
$m_{\text {hsteer }}$	Steering angle to vertical force slope applied at wheel carrier for wheels on axle a
$\delta_{\text {steer }{ }_{\text {at }}}$	Steering angle input for axle a, wheel t
$C_{z_{a}}$	Vertical damping constant applied to wheels on axle a
cway	Wheel and axle interface damping constant
$R e_{w_{a, t}}$	Effective wheel radius for axle a , wheel t
$F_{z h s t o p_{a, t}}$	Vertical hardstop force at axle a , wheel t , along the vehicle-fixed $z$-axis
$F_{\text {zaswy }}^{\text {a }}$,	Vertical anti-sway force at axle a, wheel t , along the vehicle-fixed $z$-axis
$F w a_{z 0}$	Wheel and axle interface compliance constant
$z_{v_{a, t}}, \dot{z}_{v_{a, t}}$	Vehicle displacement and velocity at axle $a$, wheel $t$, along the vehiclefixed $z$-axis
$z_{w_{a, t}} \dot{z}_{w_{a}, t}$	Wheel displacement and velocity at axle a , wheel t , along the vehicle-fixed $z$-axis
$\chi_{v_{a, t},} \dot{\chi}_{v_{a, t}}$	Vehicle displacement and velocity at axle $a$, wheel $t$, along the vehiclefixed $z$-axis
$\chi_{w_{a, t},} \dot{x}_{w_{a, t}}$	Wheel displacement and velocity at axle $a$, wheel $t$, along the vehicle-fixed $z$-axis
$y_{v_{a, t}} \dot{y}_{v_{a, t}}$	Vehicle displacement and velocity at axle a , wheel t , along the vehiclefixed $y$-axis
$y_{w_{a, t}} \dot{y}_{w_{a, t}}$	Wheel displacement and velocity at axle a , wheel t , along the vehicle-fixed $y$-axis
$H_{a, t}$	Suspension height at axle a, wheel t
$R e_{w_{a, t}}$	Effective wheel radius at axle a, wheel t

## Hardstop Forces

The hardstop feedback force, $F_{\text {zhstopat, }^{\prime}}$ that the block applies depends on whether the suspension is compressing or extending. The block applies the force:

- In compression, when the suspension is compressed more than the maximum distance specified by the Suspension maximum height, Hmax parameter.
- In extension, when the suspension extension is greater than maximum extension specified by the Suspension maximum height, Hmax parameter.

To calculate the force, the block uses a stiffness based on a hyperbolic tangent and exponential scaling.

## Camber, Caster, and Toe Angles

To calculate the camber, caster, and toe angles, block uses linear functions of the suspension height and steering angle.

$$
\begin{aligned}
& \xi_{a, t}=\xi_{0 a}+m_{\text {hcamber }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+m_{\text {cambersteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right| \\
& \eta_{a, t}=\eta_{0 a}+m_{\text {hcaster }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+m_{\text {castersteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right| \\
& \zeta_{a, t}=\zeta_{0 a}+m_{\text {htoe }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+m_{\text {toesteer }_{a}}\left|\delta_{\text {steer }_{a}, t}\right|
\end{aligned}
$$

The equations use these variables.

$\xi_{a, t}$	Camber angle of wheel on axle $a$, wheel $t$
$\eta_{a, t}$	Caster angle of wheel on axle a, wheel t
$\zeta_{a, t}$	Toe angle of wheel on axle a, wheel t
$\xi_{0 a}, \eta_{0 a}, \zeta_{0 a}$	Nominal suspension axle a camber, caster, and toe angles, respectively, at zero steering angle
$\begin{aligned} & m_{\text {hcamber }_{a^{\prime}}} m_{\text {hcaster }_{a^{\prime}}} \\ & m_{\text {htoe }^{\prime}} \end{aligned}$	Camber, caster, and toe angles, respectively, versus suspension height slope for axle a
$m_{\text {cambersteer }_{a^{\prime}}} m_{\text {castersteer }_{a^{\prime}}}$ $m_{\text {toesteer }}$	Camber, caster, and toe angles, respectively, versus steering angle slope for axle a
$m_{\text {hsteer }}^{\text {a }}$	Steering angle versus vertical force slope for axle a
$\delta_{\text {stee }}^{\text {at, }}$	Steering angle input for axle a, wheel t
$z_{v_{a t,}}$	Vehicle displacement at axle a , wheel t , along the vehicle-fixed $z$-axis
$z_{w_{\text {at }}}$	Wheel displacement at axle a , wheel t , along the vehicle-fixed $z$-axis

## Steering Angles

Optionally, use the Steered axle enable by axle, StrgEnByAxl parameter to input steering angles for the wheels. To calculate the steering angles for the wheels, the block offsets the input steering angles with a linear function of the suspension height.

$$
\delta_{\text {whlsteer }_{a, t}}=\delta_{\text {steer }_{a, t}}+m_{\text {htoe }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+m_{\text {toesteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|
$$

The equation uses these variables.

$m_{\text {toesteer }_{a}}$	Axle a toe angle versus steering angle slope
$m_{\text {hsteer }_{a}}$	Axle a steering angle versus vertical force slope
$m_{\text {htoe }_{a}}$	Axle a toe angle versus suspension height slope
$\delta_{\text {whlster }_{a, t}}$	Wheel steering angle for axle a, wheel t
$\delta_{\text {steer }_{a, t}}$	Steering angle input for axle a, wheel t
$z_{v_{a, t}}$	Vehicle displacement at axle a, wheel t , along the vehicle-fixed $z$-axis

$z_{w_{a, t}} \quad$ Wheel displacement at axle $a$, wheel $t$, along the vehicle-fixed $z$-axis

## Power and Energy

The block calculates these suspension characteristics for each axle, $a$, wheel, $t$.

Calculation	Equation
Dissipated power, $P_{\text {suspot }}$	$P_{\text {susp }_{a, t}}=F_{w_{z l o o k u p a l ~}}\left(\dot{v}_{v_{a, t}}-\dot{w}_{w_{a, t},} \dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t}} \delta_{\text {steer }_{a, t}}\right)$
Absorbed energy, $E_{\text {susp }}^{\text {at }}$	$E_{\text {susp }_{a, t}}=F_{w_{z l o o k u p a l}}\left(\dot{v}_{v_{a, t}}-\dot{w}_{w_{a, t}} \dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t}} \delta_{\text {steer }_{a, t}}\right)$
Suspension height, $H_{a, t}$	$H_{a, t}=-\left(z_{v_{a, t}}-z_{w_{a, t}}+\frac{F_{z 0_{a}}}{k_{z_{a}}}+m_{\text {hsteer }_{a}}\left\|\delta_{\text {steer }_{a, t}}\right\|\right)$
Distance from wheel carrier center to tire/road interface	$z_{w t t_{a, t}}=R e_{w_{a, t}}+H_{a, t}$

The equations use these variables.
$m_{h_{s t e e r}^{a}} \quad$ Steering angle to vertical force slope applied at wheel carrier for wheels on axle a
$\delta_{\text {steer }_{a, t}} \quad$ Steering angle input for axle a, wheel t
$R e_{w_{a, t}} \quad$ Axle a, wheel $t$ effective wheel radius from wheel carrier center to tire/road interface
$F_{z 0_{a}} \quad$ Vertical suspension spring preload force applied to the wheels on axle a
$z_{w t r_{a, t}} \quad$ Distance from wheel carrier center to tire/road interface, along the vehicle-fixed $z$ axis
$z_{v_{a, t}}, \dot{z}_{v_{a, t}} \quad$ Vehicle displacement and velocity at axle $a$, wheel $t$, along the vehicle-fixed $z$-axis
$z_{w_{a, t}} \dot{z}_{w_{a, t}} \quad$ Wheel displacement and velocity at axle $a$, wheel $t$, along the vehicle-fixed $z$-axis

## Ports

## Input

WhIPz - Wheel z-axis displacement
array
Wheel displacement, $z_{w}$, along wheel-fixed $z$-axis, in $m$. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlPz:

- Signal array dimensions are [1x4].

$$
\mathrm{WhlPz}=z_{w}=\left[\begin{array}{llll}
z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlPz $(1,1)$	1	1
Front right	WhlPz $(1,2)$	1	2


Wheel	Array Element	Axle	Wheel Number
Rear left	WhlPz $(1,3)$	2	1
Rear right	WhlPz $(1,4)$	2	2

WhIRe - Wheel effective radius
array
Effective wheel radius, $R e_{w}$, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlRe:

- Signal array dimensions are [1×4].

$$
\text { WhlRe }=R e_{w}=\left[\begin{array}{ll}
R e_{w_{1,1}} & R e_{w_{1,2}}
\end{array} R e_{w_{2,1}} R e_{w_{2,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlRe $(1,1)$	1	1
Front right	WhlRe $(1,2)$	1	2
Rear left	WhlRe $(1,3)$	2	1
Rear right	WhlRe $(1,4)$	2	2

WhIVz - Wheel z-axis velocity array

Wheel velocity, $\dot{z}_{w}$, along wheel-fixed $z$-axis, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlVz:

- Signal array dimensions are [1×4].

$$
\text { WhlVz }=\dot{z}_{w}=\left[\begin{array}{lll}
\dot{z}_{1,1} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} \\
\dot{z}_{w_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlVz $(1,1)$	1	1
Front right	WhlVz $(1,2)$	1	2
Rear left	WhlVz $(1,3)$	2	1
Rear right	WhlVz $(1,4)$	2	2

WhIFx - Longitudinal wheel force on vehicle
array
Longitudinal wheel force applied to vehicle, $F_{w \chi}$, along the vehicle-fixed $x$-axis. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlFx:

- Signal array dimensions are [1×4].

WhlFx $=F_{w x}=\left[F_{w x_{1,1}} F_{w x_{1,2}} F_{w x_{2,1}} F_{w x_{2,2}}\right]$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlFx $(1,1)$	1	1
Front right	WhlFx $(1,2)$	1	2
Rear left	WhlFx $(1,3)$	2	1
Rear right	WhlFx $(1,4)$	2	2

WhIFy - Lateral wheel force on vehicle
array
Lateral wheel force applied to vehicle, $F_{w y}$, along the vehicle-fixed $y$-axis. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlFy:

- Signal array dimensions are [1×4].

WhlFy $=F_{w y}=\left[F_{w y 1,1} F_{w y 1,2} F_{w y 2,1} F_{w y_{2,2}}\right]$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlFy $(1,1)$	1	1
Front right	WhlFy $(1,2)$	1	2
Rear left	WhlFy $(1.3)$	2	1
Rear right	WhlFy $(1,4)$	2	2

WhIM - Suspension moment on wheel
array
Longitudinal, lateral, and vertical suspension moments at axle a, wheel $t$, applied to the wheel at the axle wheel carrier reference coordinate, in $\mathrm{N} \cdot \mathrm{m}$. Input array dimensions are 3 by the number of wheels on the vehicle.

- WhlM (1, . . ) - Suspension moment applied to the wheel about the vehicle-fixed $x$-axis (longitudinal)
- WhlM $(2, \ldots)$ - Suspension moment applied to the wheel about the vehicle-fixed $y$-axis (lateral)
- WhlM $(3, \ldots)$ - Suspension moment applied to the wheel about the vehicle-fixed $z$-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlM:

- Signal dimensions are [3×4].
- Signal contains suspension moments applied to four wheels according to their axle and wheel locations.

$$
\text { WhlM }=M_{w}=\left[\begin{array}{llll}
M_{w x_{1,1}} & M_{w x_{1,2}} & M_{w x_{2,1}} & M_{w x_{2,2}} \\
M_{w y_{1,1}} & M_{w y 1,2} & M_{w y_{2,1}} & M_{w y 2,2} \\
M_{w z_{1,1}} & M_{w z_{1,2}} & M_{w z_{2,1}} & M_{w z 2,2}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel   Numbe   r	Moment Axis
Front   left	WhlM(1,1)	1	1	Vehicle-fixed $x$-axis (longitudinal)
Front   right	WhlM(1,2)	1	2	
Rear   left	WhlM(1,3)	2	1	
Rear   right	WhlM(1,4)	2	2	
Front   left	WhlM(2,1)	1	1	Vehicle-fixed $y$-axis (lateral)
Front   right	WhlM(2,2)	1	2	
Rear   left	WhlM(2,3)	2	1	
Rear   right	WhlM(2,4)	2	2	
Front   left	WhlM(3,1)	1	1	Vehicle-fixed $z$-axis (vertical)
Front   right	WhlM(3,2)	1	2	
Rear   left	WhlM(3,3)	2	1	
Rear   right	WhlM(3,4)	2	2	

VehP - Vehicle displacement
array
Vehicle displacement from axle a, wheel $t$ along vehicle-fixed coordinate system, in m. Input array dimensions are 3 the number of wheels on the vehicle.

- VehP $(1, \ldots)$ - Vehicle displacement from wheel, $\chi_{v}$, along the vehicle-fixed $x$-axis
- $\operatorname{VehP}(2, \ldots)$ - Vehicle displacement from wheel, $y_{v}$, along the vehicle-fixed $y$-axis
- $\operatorname{VehP}(3, \ldots)-$ Vehicle displacement from wheel, $z_{v}$, along the vehicle-fixed $z$-axis

For example, for a two-axle vehicle with two wheels per axle, the VehP:

- Signal dimensions are [3×4].
- Signal contains four displacements according to their axle and wheel locations.

$$
\text { VehP }=\left[\begin{array}{l}
x_{v} \\
y_{v} \\
z_{v}
\end{array}\right]=\left[\begin{array}{llll}
x_{v_{1,1}} & x_{v_{1,2}} & x_{v_{2,1}} & x_{v_{2,2}} \\
y_{v_{1,1}} & y_{v_{1,2}} & y_{v_{2,1}} & v_{v_{2,2}} \\
z_{v_{1,1}} & z_{v_{1,2}} & z_{v_{2,1}} & z_{v_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Front left	$\operatorname{VehP}(1,1)$	1	1	Vehicle-fixed $x$-axis
Front right	$\operatorname{VehP}(1,2)$	1	2	
Rear left	$\operatorname{VehP}(1,3)$	2	1	
Rear right	$\operatorname{VehP}(1,4)$	2	2	
Front left	$\operatorname{VehP}(2,1)$	1	1	Vehicle-fixed $y$-axis
Front right	$\operatorname{VehP}(2,2)$	1	2	
$\begin{array}{\|l} \text { Rear } \\ \text { left } \end{array}$	$\operatorname{VehP}(2,3)$	2	1	
Rear right	$\operatorname{VehP}(2,4)$	2	2	
Front left	$\operatorname{VehP}(3,1)$	1	1	Vehicle-fixed $z$-axis
Front right	$\operatorname{VehP}(3,2)$	1	2	
Rear left	$\operatorname{VehP}(3,3)$	2	1	
Rear right	$\operatorname{VehP}(3,4)$	2	2	

VehV - Vehicle velocity
array
Vehicle velocity at axle a, wheel t along vehicle-fixed coordinate system, in m . Input array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{VehV}(1, \ldots)$ - Vehicle velocity at wheel, $x_{v}$, along the vehicle-fixed $x$-axis
- VehV $(2, \ldots)$ - Vehicle velocity at wheel, $y_{v}$, along the vehicle-fixed $y$-axis
- $\operatorname{VehV}(3, \ldots)$ - Vehicle velocity at wheel, $z_{v}$, along the vehicle-fixed $z$-axis

For example, for a two-axle vehicle with two wheels per axle, the VehV:

- Signal dimensions are [3×4].
- Signal contains 4 velocities according to their axle and wheel locations.

$$
\text { VehV }=\left[\begin{array}{l}
\dot{x}_{v} \\
\dot{y}_{v} \\
\dot{z}_{v}
\end{array}\right]=\left[\begin{array}{llll}
\dot{x}_{v_{1,1}} & \dot{x}_{v_{1,2}} & \dot{x}_{v_{2,1}} & \dot{x}_{v_{2,2}} \\
\dot{y}_{v_{1,1}} & \dot{y}_{v_{1,2}} & \dot{y}_{v_{2,1}} & \dot{y}_{v_{2,2}} \\
\dot{z}_{v_{1,1}} & \dot{z}_{v_{1,2}} & \dot{z}_{v_{2,1}} & \dot{z}_{v_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel   Numbe   r	Axis
Front   left	VehV $(1,1)$	1	1	Vehicle-fixed $x$-axis
Front   right	VehV $(1,2)$	1	2	
Rear   left	VehV $(1,3)$	2	1	
Rear   right	VehV $(1,4)$	2	2	
Front   left	VehV $(2,1)$	1	1	Vehicle-fixed $y$-axis
Front   right	VehV(2,2)	1	2	
Rear   left	VehV(2,3)	2	1	
Rear   right	VehV(2,4)	2	2	
Front   left	VehV(3,1)	1	1	Vehicle-fixed $z$-axis
Front   right	VehV(3,2)	1	2	
Rear   left	VehV(3,3)	2	1	
Rear   right	VehV(3,4)	2	2	

StrgAng - Steering angle, optional
array
Optional steering angle for each wheel, $\delta$. Input array dimensions are 1 by the number of steered wheels.

For example, for a two-axle vehicle with two wheels per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set Steered axle enable by axle, StrgEnByAxl to [1 0]. The input signal array dimensions are [1×2].
- The StrgAng signal contains two steering angles according to their axle and wheel locations.

$$
\text { StrgAng }=\delta_{\text {steer }}=\left[\delta_{\text {steer }_{1,1}} \delta_{\text {steer }_{1,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	StrgAng $(1,1)$	1	1
Front right	StrgAng $(1,2)$	1	2

## Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

## Output

Info - Bus signal
bus
Bus signal containing block values. The signals are arrays that depend on the wheel location.
For example, here are the indices for a two-axle, two-wheel vehicle. The total number of wheels is four.

- 1D array signal (1-by-4)

Array Element	Axle	Wheel Number
$(1,1)$	1	1
$(1,2)$	1	2
$(1,3)$	2	1
$(1,4)$	2	2

- 3D array signal (3-by-4)

Array Element	Axle	Wheel Number
$(1,1)$	1	1
$(1,2)$	1	2
$(1,3)$	2	1
$(1,4)$	2	2
$(2,1)$	1	1
$(2,2)$	1	2
$(2,3)$	2	1
$(2,4)$	2	2
$(3,1)$	1	1
$(3,2)$	1	2
$(3,3)$	2	1
$(3,4)$	2	2


Signal	Description	Array Signal	Variable	Units
Camber	Wheel angles according to the axle.	1D	WhlAng $[1, \ldots]=\xi=\left[\xi_{a, t}\right]$	rad
Caster			WhlAng $[2, \ldots]=\eta=\left[\eta_{a, t}\right]$	
Toe			WhlAng $[3, \ldots]=\zeta=\left[\zeta_{a, t}\right]$	
Height	Suspension height	1D	H	m


Signal	Description	Array Signal	Variable U	Units
Power	Suspension power dissipation	1D		W
Energy	Suspension absorbed energy	1D	$E_{\text {susp }}$	J
VehF	Suspension forces applied to the vehicle	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { VehF }=F_{v}= \\ & {\left[\begin{array}{llll} F_{v x_{1,1}} & F_{v x_{1,2}} & F_{v x_{2,1}} & F_{v x_{2,2}} \\ F_{v v_{1,1}} & F_{v y_{1,2}} & F_{v v_{2,1}} & F_{v y_{2,2}} \\ F_{v v_{1,1}} & F_{v z_{1,2}} & F_{v z_{2,1}} & F_{v z_{2,2}} \end{array}\right.} \end{aligned}$	N
VehM	Suspension moments applied to vehicle	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { VehM }=M_{v}= \\ & {\left[\begin{array}{llll} M_{v x_{1}, 1} & M_{v x_{1}, 2} & M_{v x_{2,1}} & M_{v \chi_{2},}, \\ M_{v y_{1,1}} & M_{v y_{1,2}} & M_{v y_{2,1}} & M_{v y y_{2},} \\ M_{v \chi_{1,1}} & M_{v z_{1,2}} & M_{v z_{2,1}} & M_{v z_{2},} \end{array}\right.} \end{aligned}$	$\mathrm{N} \cdot \mathrm{m}$   2,2   2,2   2,2


Signal	Description	Array Signal	Variable	Units
WhlF	Suspension force applied to wheel	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlF }=F_{w}= \\ & {\left[\begin{array}{llll} F_{w x_{1}, 1} & F_{w x_{1,2}} & F_{w x_{2,1}} & F_{w x_{2}} \\ F_{w y 1,1} & F_{w y_{1,2}} & F_{w y 2,1} & F_{w y 2} \\ F_{w z_{1,1}} & F_{w z_{1,2}} & F_{w z 2,1} & F_{w z_{2}} \end{array}\right.} \end{aligned}$	
WhlP	Wheel displacement	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlP }=\left[\begin{array}{l} x_{w} \\ y_{w} \\ z_{w} \end{array}\right]= \\ & {\left[\begin{array}{cccc} x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_{w_{2}} \\ y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_{w y} \\ z_{w t r_{1,1}} & z_{w t r_{1,2}} & z_{w t r_{2,1}} & z_{w t r} \end{array}\right.} \end{aligned}$	
WhlV	Wheel velocity	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlV }=\left[\begin{array}{l} \dot{x}_{w} \\ \dot{y}_{w} \\ \dot{z}_{w} \end{array}\right] \\ & = \\ & {\left[\begin{array}{lll} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} \\ \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} \\ \dot{z}_{w_{2,2}} \end{array}\right]} \end{aligned}$	m/s


Signal	Description	Array Signal	Variable	Units
WhlAng	Wheel camber, caster, toe angles	3D	For a two-axle, two wheels per axle vehicle: $\left.\begin{array}{l} \text { WhlAng }=\left[\begin{array}{l} \xi \\ \eta \\ \zeta \end{array}\right] \\ =\left[\begin{array}{lll} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} \\ \xi_{2,2} \\ \eta_{1,1} & \eta_{1,2} & \eta_{2,1} \\ \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} \end{array} \zeta_{2,2}\right. \end{array}\right] . \begin{aligned} & \eta_{2} \end{aligned}$	rad

VehF - Suspension force on vehicle
array
Longitudinal, lateral, and vertical suspension force at axle a, wheel $t$, applied to the vehicle at the suspension connection point, in N. Array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{VehF}(1, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed $x$-axis (longitudinal)
- $\operatorname{VehF}(2, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed $y$-axis (lateral)
- $\operatorname{VehF}(3, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed $z$-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the VehF:

- Signal dimensions are [3×4].
- Signal contains suspension forces applied to the vehicle according to the axle and wheel locations.

VehF $=F_{v}=\left[\begin{array}{llll}F_{v x_{1,1}} & F_{v x_{1,2}} & F_{v x_{2,1}} & F_{v x_{2,2}} \\ F_{v v_{1,1}} & F_{v y_{1,2}} & F_{v y_{2,1}} & F_{v y_{2,2}} \\ F_{v z_{1,1}} & F_{v z_{1,2}} & F_{v z_{2,1}} & F_{v z_{2,2}}\end{array}\right]$

Wheel	Array Element	Axle	Wheel   Numbe   r	Force Axis
Front   left	$\operatorname{VehF}(1,1)$	1	1	Vehicle-fixed $x$-axis (longitudinal)
Front   right	$\operatorname{VehF}(1,2)$	1	2	
Rear   left	$\operatorname{VehF}(1,3)$	2	1	
Rear   right	$\operatorname{VehF}(1,4)$	2	2	
Front   left	$\operatorname{VehF}(2,1)$	1	1	Vehicle-fixed $y$-axis (lateral)
Front   right	$\operatorname{VehF}(2,2)$	1	2	


Wheel	Array Element	Axle	Wheel   Numbe   r	Force Axis
Rear   left	VehF $(2,3)$	2	1	
Rear   right	VehF $(2,4)$	2	2	
Front   left	$\operatorname{VehF}(3,1)$	1	1	Vehicle-fixed $z$-axis (vertical)
Front   right	$\operatorname{VehF}(3,2)$	1	2	
Rear   left	$\operatorname{VehF}(3,3)$	2	1	
Rear   right	$\operatorname{VehF}(3,4)$	2	2	

VehM - Suspension moment on vehicle array

Longitudinal, lateral, and vertical suspension moment at axle a, wheel $t$, applied to the vehicle at the suspension connection point, in $\mathrm{N} \cdot \mathrm{m}$. Array dimensions are 3 by the number of wheels on the vehicle.

- VehM(1, ...) - Suspension moment applied to the vehicle about the vehicle-fixed $x$-axis (longitudinal)
- VehM ( $2, \ldots$ ) - Suspension moment applied to the vehicle about the vehicle-fixed $y$-axis (lateral)
- Vehm ( $3, \ldots$ ) - Suspension moment applied to the vehicle about the vehicle-fixed $z$-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the VehM:

- Signal dimensions are [3×4].
- Signal contains suspension moments applied to vehicle according to the axle and wheel locations.

VehM $=M_{v}=\left[\begin{array}{llll}M_{v x_{1,1}} & M_{v x_{1,2}} & M_{v x_{2,1}} & M_{v x_{2,2}} \\ M_{v y 1,1} & M_{v y_{1,2}} & M_{v y_{2,1}} & M_{v y_{2,2}} \\ M_{v z_{1,1}} & M_{v z_{1,2}} & M_{v z_{2,1}} & M_{v z_{2,2}}\end{array}\right]$

Array Element	Axle	Wheel   Number	Moment Axis
$\operatorname{VehM}(1,1)$	1	1	Vehicle-fixed $x$-axis (longitudinal)
$\operatorname{VehM}(1,2)$	1	2	
$\operatorname{VehM}(1,3)$	2	1	
$\operatorname{VehM}(1,4)$	2	2	
$\operatorname{VehM}(2,1)$	1	1	Vehicle-fixed $y$-axis (lateral)
$\operatorname{VehM}(2,2)$	1	2	


Array Element	Axle	Wheel   Number	Moment Axis
$\operatorname{VehM}(2,3)$	2	1	
$\operatorname{VehM}(2,4)$	2	2	
$\operatorname{VehM}(3,1)$	1	1	Vehicle-fixed $z$-axis (vertical)
$\operatorname{VehM}(3,2)$	1	2	
$\operatorname{VehM}(3,3)$	2	1	
$\operatorname{VehM}(3,4)$	2	2	

WhIF - Suspension force on wheel
array
Longitudinal, lateral, and vertical suspension forces at axle a, wheel $t$, applied to the wheel at the axle wheel carrier reference coordinate, in N . Array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{WhlF}(1, \ldots)-$ Suspension force on wheel along the vehicle-fixed $x$-axis (longitudinal)
- $\operatorname{WhlF}(2, \ldots)$ - Suspension force on wheel along the vehicle-fixed $y$-axis (lateral)
- WhlF $(3, \ldots)$ - Suspension force on wheel along the vehicle-fixed $z$-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlF:

- Signal dimensions are [3×4].
- Signal contains wheel forces applied to the vehicle according to the axle and wheel locations.

WhlF $=F_{w}=\left[\begin{array}{llll}F_{w x_{1,1}} & F_{w x_{1,2}} & F_{w x_{2,1}} & F_{w x_{2,2}} \\ F_{w y_{1,1}} & F_{w y_{1,2}} & F_{w y_{2,1}} & F_{w y_{2,2}} \\ F_{w z_{1,1}} & F_{w z_{1,2}} & F_{w z_{2,1}} & F_{w z_{2,2}}\end{array}\right]$

Wheel	Array Element	Axle	Wheel   Numbe   r	Force Axis
Front   left	WhlF $(1,1)$	1	1	Vehicle-fixed $x$-axis (longitudinal)
Front   right	WhlF $(1,2)$	1	2	
Rear   left	WhlF $(1,3)$	2	1	
Rear   right	WhlF $(1,4)$	2	2	
Front   left	WhlF $(2,1)$	1	1	Vehicle-fixed $y$-axis (lateral)
Front   right	WhlF $(2,2)$	1	2	


Wheel	Array Element	Axle	Wheel   Numbe   r	Force Axis
Rear   left	WhlF $(2,3)$	2	1	
Rear   right	WhlF $(2,4)$	2	2	
Front   left	WhlF $(3,1)$	1	1	Vehicle-fixed $z$-axis (vertical)
Front   right	WhlF(3,2)	1	2	
Rear   left	WhlF(3,3)	2	1	
Rear   right	WhlF(3,4)	2	2	

Whiv - Wheel velocity
array
Longitudinal, lateral, and vertical wheel velocity at axle a, wheel t , in $\mathrm{m} / \mathrm{s}$. Array dimensions are 3 by the number of wheels on the vehicle.

- WhlV (1, ...) - Wheel velocity along the vehicle-fixed $x$-axis (longitudinal)
- WhlV $(2, \ldots)-$ Wheel velocity along the vehicle-fixed $y$-axis (lateral)
- WhlV $(3, \ldots)-$ Wheel velocity along the vehicle-fixed $z$-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlV:

- Signal dimensions are [3×4].
- Signal contains wheel forces applied to the vehicle according to the axle and wheel locations.

$$
\text { WhlV }=\left[\begin{array}{c}
\dot{x}_{w} \\
\dot{y}_{w} \\
\dot{z}_{w}
\end{array}\right]=\left[\begin{array}{llll}
\dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\
\dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\
\dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel   Numbe   r	Force Axis
Front   left	WhlV $(1,1)$	1	1	Vehicle-fixed $x$-axis (longitudinal)
Front   right	WhlV $(1,2)$	1	2	
Rear   left	WhlV $(1,3)$	2	1	
Rear   right	WhlV $(1,4)$	2	2	


Wheel	Array Element	Axie	Wheel Numbe r	Force Axis
Front left	WhlV $(2,1)$	1	1	Vehicle-fixed $y$-axis (lateral)
Front right	WhlV (2,2)	1	2	
Rear left	WhlV (2,3)	2	1	
Rear right	WhlV $(2,4)$	2	2	
Front left	WhlV (3,1)	1	1	Vehicle-fixed $z$-axis (vertical)
Front right	WhlV (3,2)	1	2	
Rear left	WhlV (3,3)	2	1	
Rear right	WhlV (3,4)	2	2	

WhIAng - Wheel camber, caster, toe angles
array
Camber, caster, and toe angles at axle $a$, wheel $t$, in rad. Array dimensions are 3 by the number of wheels on the vehicle.

- WhlAng(1,...) - Camber angle
- WhlAng ( $2, \ldots$ ) - Caster angle
- Whlang $(3, \ldots)$ - Toe angle

For example, for a two-axle vehicle with two wheels per axle, the WhlAng:

- Signal dimensions are [3×4].
- Signal contains angles according to the axle and wheel locations.

$$
\text { WhlAng }=\left[\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right]=\left[\begin{array}{llll}
\xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\
\eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\
\zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel   Numbe   r	Angle
Front   left	WhlAng $(1,1)$	1	1	Camber
Front   right	WhlAng (1,2)	1	2	


Wheel	Array Element	Axle	Wheel   Numbe   r	Angle
Rear   left	WhlAng (1,3)	2	1	
Rear   right	WhlAng (1,4)	2	2	
Front   left	WhlAng (2,1)	1	1	Caster
Front   right	WhlAng (2,2)	1	2	
Rear   left	WhlAng (2,3)	2	1	
Rear   right	WhlAng(2,4)	2	2	
Front   left	WhlAng (3,1)	1	1	Toe
Front   right	WhlF(3,2)	1	2	
Rear   left	WhlF(3,3)	2	1	
Rear   right	WhlF(3,4)	2	2	

## Parameters

## Axles

## Number of axles, NumAxI - Number of axles

2 (default) | scalar
Number of axles, $N_{a}$, dimensionless.
Number of wheels by axle, NumWhlsByAxI - Number of wheels per axle
[2 2] (default)|vector
Number of wheels per axle, $N t_{a}$, dimensionless. Vector is 1 by the number of vehicle axles, $N_{a}$. For example, [1,2] represents one wheel on axle one and two wheels on axle two.

Steered axle enable by axle, StrgEnByAxI - Boolean vector to enable axle steering
[1 0] (default) |vector
Boolean vector that enables axle steering, $E n_{\text {steer }}$, dimensionless. Vector is 1 by the number of vehicle axles, $N_{a}$. For example:

- [llll-For a two-axle vehicle, enables axle one steering and disables axle two steering
- [1 1]-For a two-axle vehicle, enables axle one and axle two steering


## Dependencies

Setting an element of the Steered axle enable by axle, StrgEnByAxl vector to 1:

- Creates input port StrgAng.
- Creates these parameters
- Toe angle vs steering angle slope, ToeStrgSlp
- Caster angle vs steering angle slope, CasterStrgSlp
- Camber angle vs steering angle slope, CamberStrgSlp
- Suspension height vs steering angle slope, StrgHgtSlp

For example, for a two-axle vehicle with two wheels per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set Steered axle enable by axle, StrgEnByAxl to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and wheel locations.

$$
\text { StrgAng }=\delta_{\text {steer }}=\left[\delta_{\text {steer }_{1,1}} \delta_{\text {steer }_{1}, 2}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	StrgAng (1, 1)	1	1
Front right	StrgAng (1,2)	1	2

Axle and wheels lumped principal moments of inertia about longitudinal axis, Axllxx Inertia
300 (default) | vector
Axle and wheels lumped principal moments of inertia about longitudinal axis, AxleIxx $a$, in $\mathrm{kg}^{*} \mathrm{~m} \wedge 2$.
Vector is 1 by the number of vehicle axles, $N_{a}$. If you provide a scalar value, the block uses that value for all axles.

## Axle and wheels lumped mass, AxIM - Mass

[2 2] (default)|vector
Axle and wheels lumped mass, $a$, in kg.
Vector is 1 by the number of vehicle axles, $N_{a}$. If you provide a scalar value, the block uses that value for all axles.

## Track hardpoint coordinates relative to axle center, TrackCoords - Point

[0 0 0 0;-1 1 -1 1;0 0 0 0] (default)|array
Track hardpoint coordinates, $T c_{t}$, along the solid axle $x, y$, and $z$-axes, in m .
For example, for a two-axle vehicle with two wheels per axle, the TrackCoords array:

- Dimensions are [3x4].
- Contains four track hardpoint coordinates according to their axle and wheel locations.

$$
T c_{t}=\left[\begin{array}{llll}
x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_{w_{2,2}} \\
y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_{w_{2,2}} \\
z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}}
\end{array}\right]
$$

Array Element	Axle	Wheel Number	Axis
TrackCoords(1, 1)	1	1	Solid axle $x$-axis
TrackCoords(1, 2)	1	2	
```TrackCoords(1, 3)```	2	1	
TrackCoords(1, 4)	2	2	
TrackCoords(2, 1)	1	1	Solid axle y-axis
TrackCoords(2, 2)	1	2	
TrackCoords(2, 3)	2	1	
TrackCoords(2, 4)	2	2	
TrackCoords(3, 1)	1	1	Solid axle z-axis
TrackCoords(3, 2)	1	2	
TrackCoords(3, 3)	2	1	
TrackCoords(3, 4)	2	2	

Suspension hardpoint coordinates relative to axle center, SuspCoords - Point

[0 0 0 0;-1 1-1 1;0 0 0 0] (default)|array

Suspension hardpoint coordinates, $S c_{t}$, along the solid axle x-, y-, and z-axes, in m.
For example, for a two-axle vehicle with two wheels per axle, the SuspCoords array:

- Dimensions are [3×4].
- Contains four track hardpoint coordinates according to their axle and track locations.

$$
S c_{t}=\left[\begin{array}{llll}
x_{s_{1,1}} & x_{s_{1,2}} & x_{s_{2,1}} & x_{s_{2,2}} \\
y_{s_{1,1}} & y_{s_{1,2}} & y_{s_{2,1}} & y_{s_{2,2}} \\
z_{s_{1,1}} & z_{s_{1,2}} & z_{s_{2,1}} & z_{s_{2,2}}
\end{array}\right]
$$

Array Element	Axle	Track	Axis
SuspCoords(1,1)	1	1	Solid axle x-axis
SuspCoords(1,2)	1	2	
$\begin{aligned} & \text { SuspCoords(1,3 } \\ & \text {) } \end{aligned}$	2	1	
SuspCoords(1,4	2	2	
$\begin{aligned} & \text { SuspCoords }(2,1 \\ &) \end{aligned}$	1	1	Solid axle y-axis
SuspCoords(2,2	1	2	
SuspCoords(2,3)	2	1	
$\begin{aligned} & \begin{array}{l} \text { SuspCoords }(2,4 \\) \\ \hline \end{array} \\ & \hline \end{aligned}$	2	2	
SuspCoords (3,1)	1	1	Solid axle z-axis
SuspCoords (3,2)	1	2	
$\begin{aligned} & \text { SuspCoords }(3,3 \\ &) \end{aligned}$	2	1	
SuspCoords (3,4)	2	2	

Wheel and axle interface compliance constant, KzWhIAxI - Spring rate 6437000 (default) | scalar

Wheel and axle interface compliance constant, $k w a_{z}$, in N / m.
Wheel and axle interface compliance preload, FOzWhIAxI - Spring rate 9810 (default) | scalar

Wheel and axle interface compliance preload, $F w a_{z 0}$, in N .

Wheel and axle interface damping constant, CzWhIAxI - Damping

10000 (default) | scalar
Wheel and axle interface damping constant, $c w a_{z}$, in m.

Suspension

Compliance and Damping - Passive

Suspension spring constant, Kz - Suspension spring constant
64370 (default) | scalar | vector
Linear vertical spring constant for independent suspension wheels on axle a, $k_{z_{d}}$, in N / m.

Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Suspension spring preload, $\mathbf{F O z}$ - Suspension spring preload

9810 (default) | scalar | vector
Vertical preload spring force applied to the wheels on the axle at wheel carrier reference coordinates, $F_{z 0_{a^{\prime}}}$ in N. Positive preload forces:

- Cause the vehicle to lift.
- Point along the negative vehicle-fixed z-axis.

Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Suspension shock damping constant, Cz - Suspension shock damping constant 10000 (default) | scalar | vector

Linear vertical damping constant for independent suspension wheels on axle a, $c_{z_{a^{\prime}}}$ in Ns / m.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create this parameter, clear Enable active damping.
Suspension maximum height, Hmax - Height
0.5 (default) | scalar | vector

Maximum suspension extension or minimum suspension compression height, $H_{\text {max }}$, for axle a before the suspension reaches a hardstop, in m .

Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Geometry

Toe angle at steering center, Toe - Toe angle
0.0349 (default) | scalar

Nominal suspension toe angle at zero steering angle, $\zeta_{0 a}$, in rad.
Roll steer vs suspension height slope, RollStrgSIp - Steer angle suspension slope -0. 2269 (default) | scalar | vector

Roll steer angle versus suspension height, $m_{\text {htoe }}^{a_{a}}$, in $\mathrm{rad} / \mathrm{m}$.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Toe angle vs steering angle slope, ToeStrgSIp - Toe angle steering slope
0.01 (default) | scalar | vector

Toe angle versus steering angle slope, $m_{\text {toesteer }_{d^{\prime}}}$ dimensionless.

Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Caster angle at steering center, Caster - Caster angle at steering center 0.0698 (default) | scalar

Nominal suspension caster angle at zero steering angle, $\eta_{0 a}$, in rad.
Caster angle vs suspension height slope, CasterHslp - Caster angle versus suspension height slope
-0. 2269 (default) | scalar | vector
Caster angle versus suspension height, $m_{\text {hcaster }_{a^{\prime}}}$ in rad $/ \mathrm{m}$.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Caster angle vs steering angle slope, CasterStrgSIp - Caster angle versus steering angle slope 0.01 (default) | scalar | vector

Caster angle versus steering angle slope, $m_{\text {castersteer }_{d^{\prime}}}$ dimensionless.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Camber angle at steering center, Camber - Camber angle at steering center 0.0698 (default) | scalar

Nominal suspension camber angle at zero steering angle, $\xi_{0 a}$, in rad.
Camber angle vs suspension height slope, CamberHslp - Camber angle versus suspension height slope
-0.2269 (default) | scalar | vector
Camber angle versus suspension height, $m_{\text {hcamber }}$, in rad $/ \mathrm{m}$.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Camber angle vs steering angle slope, CamberStrgSIp - Camber angle versus steering angle slope
0.01 (default) | scalar | vector

Camber angle versus steering angle slope, $m_{\text {cambersteer }{ }_{a}}{ }^{\text {d }}$ dimensionless.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Suspension height vs steering angle slope, StrgHgtSIp - Suspension height versus steering angle slope
0.1432 (default) | scalar | vector

Steering angle to vertical force slope applied at suspension wheel carrier reference point, $m_{\text {hsteer }}$, in $\mathrm{m} / \mathrm{rad}$.

Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Version History
 Introduced in R2018a

R2022b: Parameter name change from NumTracksByAxl to NumWhlsByAxl

Behavior changed in R2022b
The Number of tracks by axle, NumTracksByAxl parameter is renamed to Number of wheels by axle, NumWhlsByAxl.

The block uses the number of wheels per axle to index the input and output block signals.

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
[2] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
[3] Technical Committee. Road vehicles - Vehicle dynamics and road-holding ability - Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® Coder ${ }^{\mathrm{TM}}$.

See Also

Solid Axle Suspension - Coil Spring | Solid Axle Suspension - Leaf Spring | Solid Axle Suspension Mapped

Solid Axle Suspension - Coil Spring

Solid axle suspension with coil spring

Libraries:

Vehicle Dynamics Blockset / Suspension

Description

The Solid Axle Suspension - Coil Spring block implements a solid axle suspension with a coil spring for multiple axles with multiple wheels per axle.

The block models the suspension compliance, damping, and geometric effects as functions of the wheel positions and velocities, with axle-specific compliance and damping parameters. Using the wheel position and velocity, the block calculates the vertical wheel position and suspension forces on the vehicle and wheel. The block uses the Z-down (defined in SAE J670) and a solid axle coordinate system. The solid axle coordinate system, shown here, is aligned with the Z-down vehicle coordinate system, with the x-axis in the direction of forward vehicle motion.

For Each	You Can Specify
Axle	$\bullet \quad$ Multiple wheels
	$\bullet \quad$ Suspension parameters
Wheel	\bullet Steering angles

The block contains energy-storing spring elements and energy-dissipating damper elements. The block also stores energy via the axle roll angular acceleration and axle center of mass vertical and lateral acceleration.

This table summarizes the block parameter settings for a vehicle with:

- Two axles
- Two wheels per axle
- Steering angle input for both wheels on the front axle

Parameter	Setting
Number of axles, NumAxl	2
Number of wheels by axle, NumWhlsByAxl	$\left[\begin{array}{ll}2 & 2\end{array}\right]$
Steered axle enable by axle, StrgEnByAxl	$\left[\begin{array}{ll}1 & 0\end{array}\right]$

The block uses the wheel number, t, to index the input and output signals. This table summarizes the wheel, axle, and corresponding wheel number for a vehicle with:

- Two axles
- Two wheels per axle

Wheel	Axle	Wheel Number
Front left	Front	1
Front right	Front	2
Rear left	Rear	1
Rear right	Rear	2

Suspension Compliance and Damping

The block uses a linear spring and damper to model the vertical dynamic effects of the suspension system on the vehicle and wheel. Specifically, the block:

Uses	To Calculate
-Longitudinal and lateral displacement and velocity of the vehicle.	-Suspension forces applied to the axle center. - Lortical displacements and velocities of the velocity of the wheel. - Vertical wheel forces applied to the vehicle.
	-vehicle and wheel. Longitudinal, lateral and vertical suspension forces and moments applied to the vehicle. Longitudinal, lateral and vertical suspension forces and moments applied to the wheel.

To calculate the dynamics of the axle, the block implements these equations. The block neglects the effects of:

- Lateral and longitudinal translational velocity.
- Angular velocity about the vertical and lateral axes.

$$
\begin{aligned}
& {\left[\begin{array}{l}
\ddot{x}_{a} \\
\ddot{y}_{a} \\
\ddot{z}_{a}
\end{array}\right]=\frac{1}{M_{a}}\left[\begin{array}{l}
F_{x a} \\
F_{y a} \\
F_{z a}
\end{array}\right]+\left[\begin{array}{l}
\dot{x}_{a} \\
\dot{y}_{a} \\
\dot{z}_{a}
\end{array}\right] \times\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\frac{1}{M_{a}}\left[\begin{array}{c}
0 \\
0 \\
F_{z a}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\dot{z}_{a}
\end{array}\right] \times\left[\begin{array}{l}
p \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
g
\end{array}\right]=\left[\begin{array}{c}
0 \\
p \dot{z}_{a} \\
\frac{F_{z a}}{M_{a}}+g
\end{array}\right]} \\
& {\left[\begin{array}{c}
\dot{p} \\
\dot{q} \\
\dot{r}
\end{array}\right]=\left[\left[\begin{array}{l}
M_{x} \\
M_{y} \\
M_{z}
\end{array}\right]-\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right] \times\left[\begin{array}{ccc}
I_{x x} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right]\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right]\left[\begin{array}{ccc}
I_{x x} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right]-1\right.} \\
& =\left[\left[\begin{array}{c}
M_{x} \\
0 \\
0
\end{array}\right]-\left[\begin{array}{c}
p \\
q \\
0
\end{array}\right] \times\left[\begin{array}{ccc}
I_{x x} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right]\left[\begin{array}{l}
p \\
0 \\
0
\end{array}\right]\left[\begin{array}{ccc}
I_{x x} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right]^{-1}=\left[\begin{array}{c}
M_{x} \\
\frac{I_{x x}}{} \\
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

The net vertical force on the axle center of mass is the sum of the wheel and suspension forces acting on the axle.

$$
F_{z a}=\sum_{t=1}^{N t a}\left(F_{w z_{a, t}}+F_{z 0_{a}}+k_{z_{a}}\left(z_{v_{a, t}}-z_{s_{a, t}}+m_{\text {hsteera }}\left|\delta_{s t e e r_{a, t}}\right|\right)+c_{z_{a}}\left(\dot{z}_{v_{a, t}}-\dot{z}_{s_{a, t}}\right)\right)
$$

The net moment about the roll axis of the solid axle suspension accounts for the hardpoint coordinates of the suspension and wheels.

$$
\begin{aligned}
& M_{x}=\sum_{t=1}^{N t a}\left(F_{w z_{a, t}} y_{w_{t}}+\left(F_{z 0_{a}}+k_{z_{a}}\left(z_{v_{a, t}}-z_{s_{a, t}}+m_{h s t e e r_{a}} \mid \delta_{\text {steer }}^{a, t}\right.\right.\right. \\
& \left.\left.+M_{w x_{a, t}} \frac{I_{x x}}{I_{x x}+M_{a} y_{w_{t}}}\right)+c_{z_{a}}\left(\dot{z}_{v_{a, t}}-\dot{z}_{s_{a, t}}\right)\right) y_{s_{t}} \\
&
\end{aligned}
$$

Block parameters provide the track and suspension hardpoints coordinates.

$$
\begin{gathered}
T c_{t}=\left[\begin{array}{lll}
x_{w_{1}} & x_{w_{2}} & \cdots \\
y_{w_{1}} & y_{w_{2}} & \cdots \\
z_{w_{1}} & z_{w_{2}} & \cdots
\end{array}\right] \\
S c_{t}=\left[\begin{array}{lll}
x_{s_{1}} & x_{s_{2}} & \cdots \\
y_{s_{1}} & y_{s_{2}} & \cdots \\
z_{s_{1}} & z_{s_{2}} & \cdots
\end{array}\right]
\end{gathered}
$$

The block uses Euler angles to transform the track and suspension displacements, velocities, and accelerations to the vehicle coordinate system.

To calculate the suspension forces applied to the vehicle, the block implements this equation.

$$
F_{v z_{a, t}}=-\left(F_{z 0_{a}}+k_{z_{a}}\left(z_{v_{a, t}}-z_{s_{a, t}}+m_{h s t e e r_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+c_{z_{a}}\left(\dot{z}_{v_{a, t}}-\dot{z}_{s_{a, t}}\right)+F_{z h s t o p_{a, t}}\right)
$$

The suspension forces and moments applied to the vehicle are equal to the suspension forces and moments applied to the wheel.

$$
\begin{aligned}
& F_{v x_{a, t}}=F_{w x_{a, t}} \\
& F_{v y_{a, t}}=F_{w y_{a, t}} \\
& F_{v x_{a, t}}=-F_{w z_{a, t}} \\
& M_{v x_{a, t}}=M_{w x_{a, t}}+F_{w y_{a, t}}\left(R e_{w y_{a, t}}+H_{a, t}\right) \\
& M_{v y_{a, t}}=M_{w y_{a, t}}+F_{w x_{a, t}}\left(R e_{w x_{a, t}}+H_{a, t}\right) \\
& M_{v x_{a, t}}=M_{w x_{a, t}}
\end{aligned}
$$

To calculate the vertical force applied to the suspension at the wheel location, the block implements a stiff spring-damper, shown here.

The block uses this equation.

$$
F_{w z_{a, t}}=-F w a_{z 0}-k w a_{z}\left(z_{w_{a, t}}-z_{s_{a, t}}\right)-c w a_{z}\left(\dot{z}_{w_{a, t}}-\dot{z}_{s_{a, t}}\right)
$$

The equations use these variables.
$F_{w z_{a}, t} M_{w z_{a, t}} \quad$ Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed z-axis
$F_{w x_{a, t}} M_{w x_{a t}}$
Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed x-axis

$F_{w y_{y_{a},}} M_{w y_{a, t}}$	Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed y-axis
$F_{v z_{a, t}} M_{v z_{\text {a }}, t}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed z-axis
$F_{v x_{a, t}} M_{v x^{\prime}, t}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed x-axis
$F_{v y_{a, t}} M_{v y^{\prime}, t}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed y-axis
$F_{z 0_{a}}$	Vertical suspension spring preload force applied to the wheels on axle a
$k_{z_{a}}$	Vertical spring constant applied to wheels on axle a
kwa ${ }_{z}$	Wheel and axle interface compliance constant
$m_{\text {hsteer }}$	Steering angle to vertical force slope applied at wheel carrier for wheels on axle a
$\delta_{\text {steer }}^{\text {a }}$ ${ }_{\text {a }}$	Steering angle input for axle a, wheel t
$C_{z_{a}}$	Vertical damping constant applied to wheels on axle a
cwa ${ }_{z}$	Wheel and axle interface damping constant
$R e_{w_{a, t}}$	Effective wheel radius for axle a, wheel t
$F_{z h s t o p a t}$	Vertical hardstop force at axle a , wheel t , along the vehicle-fixed z-axis
$F_{\text {zaswy }}^{\text {a }}$,	Vertical anti-sway force at axle a, wheel t , along the vehicle-fixed z-axis
$F w a_{z 0}$	Wheel and axle interface compliance constant
$z_{v_{a, t}}, \dot{z}_{v_{a, t}}$	Vehicle displacement and velocity at axle a, wheel t, along the vehiclefixed z-axis
$z_{w_{a, t}} \dot{z}_{w_{a}, t}$	Wheel displacement and velocity at axle a, wheel t, along the vehicle-fixed z-axis
$\chi_{v_{a, t}} \dot{\chi}_{v_{a, t}}$	Vehicle displacement and velocity at axle a, wheel t, along the vehiclefixed z-axis
$\chi_{w_{a, t}} \dot{\chi}_{w_{a, t}}$	Wheel displacement and velocity at axle a, wheel t , along the vehicle-fixed z-axis
$y_{v_{a, t}} \dot{y}_{v_{a, t}}$	Vehicle displacement and velocity at axle a, wheel t, along the vehiclefixed y-axis
$y_{w_{a, t}} \dot{y}_{w_{a, t}}$	Wheel displacement and velocity at axle a, wheel t, along the vehicle-fixed y-axis
$H_{a, t}$	Suspension height at axle a, wheel t
$R e_{w_{a, t}}$	Effective wheel radius at axle a, wheel t

Hardstop Forces

The hardstop feedback force, $F_{\text {zhstop }_{a},}$, that the block applies depends on whether the suspension is compressing or extending. The block applies the force:

- In compression, when the suspension is compressed more than the maximum distance specified by the Suspension maximum height, Hmax parameter.
- In extension, when the suspension extension is greater than maximum extension specified by the Suspension maximum height, Hmax parameter.

To calculate the force, the block uses a stiffness based on a hyperbolic tangent and exponential scaling.

Camber, Caster, and Toe Angles

To calculate the camber, caster, and toe angles, block uses linear functions of the suspension height and steering angle.

$$
\begin{aligned}
& \xi_{a, t}=\xi_{0 a}+m_{\text {hcamber }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+m_{\text {cambersteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right| \\
& \eta_{a, t}=\eta_{0 a}+m_{\text {hcaster }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+m_{\text {castersteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right| \\
& \zeta_{a, t}=\zeta_{0 a}+m_{\text {htee }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+m_{\text {toesteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|
\end{aligned}
$$

The equations use these variables.

$\xi_{a, t}$	Camber angle of wheel on axle a, wheel t
$\eta_{a, t}$	Caster angle of wheel on axle a, wheel t
$\zeta_{a, t}$	Toe angle of wheel on axle a, wheel t
$\xi_{0 a}, \eta_{0 a}, \zeta_{0 a}$	Nominal suspension axle a camber, caster, and toe angles, respectively, at zero steering angle
$m_{\text {hcamber }_{a^{\prime}}} m_{\text {hcaster }_{a^{\prime}}}$ $m_{\text {htoe }_{a}}$	Camber, caster, and toe angles, respectively, versus suspension height slope for axle a
$m_{\text {camberster }_{a^{\prime}}} m_{\text {castersteer }_{a^{\prime}}}$ $m_{\text {toesteer }}$	Camber, caster, and toe angles, respectively, versus steering angle slope for axle a
$m_{\text {hsteer }}$	Steering angle versus vertical force slope for axle a
$\delta_{\text {stee }}^{\text {at, }}$	Steering angle input for axle a, wheel t
$z_{v_{a t}}$	Vehicle displacement at axle a , wheel t , along the vehicle-fixed z-axis
$z_{w_{a, t}}$	Wheel displacement at axle a , wheel t , along the vehicle-fixed z-axis

Steering Angles

Optionally, use the Steered axle enable by axle, StrgEnByAxl parameter to input steering angles for the wheels. To calculate the steering angles for the wheels, the block offsets the input steering angles with a linear function of the suspension height.

$$
\delta_{\text {whlsteer }_{a, t}}=\delta_{\text {steer }_{a, t}}+m_{\text {htoe }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+m_{\text {toesteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|
$$

The equation uses these variables.

$m_{\text {toesteer }_{a}}$	Axle a toe angle versus steering angle slope
$m_{\text {hsteer }_{a}}$	Axle a steering angle versus vertical force slope
$m_{\text {htoe }_{a}}$	Axle a toe angle versus suspension height slope
$\delta_{\text {whlster }_{a, t}}$	Wheel steering angle for axle a, wheel t
$\delta_{\text {steer }_{a, t}}$	Steering angle input for axle a, wheel t
$z_{v_{a, t}}$	Vehicle displacement at axle a, wheel t, along the vehicle-fixed z-axis

$z_{w_{a, t}} \quad$ Wheel displacement at axle a , wheel t , along the vehicle-fixed z-axis

Power and Energy

The block calculates these suspension characteristics for each axle, a, wheel, t.

Calculation	Equation
Dissipated power, $P_{\text {susp }_{a, t}}$	$P_{\text {susp }_{a, t}}=F_{\text {wzlookup }}\left(\dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t} t^{\prime}} \dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t^{\prime}}} \delta_{\text {steer }_{a, t}}\right)$
Absorbed energy, $E_{\text {susp }_{\text {a,t }}}$	$E_{\text {susp }_{a, t}}=F_{\text {wzlookup }}\left(\dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t}} \dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t^{\prime}}} \delta_{\text {steer }}^{a, t}\right.$ $)$
Suspension height, $H_{a, t}$	$H_{a, t}=-\left(z_{v_{a, t}}-z_{w_{a, t}}+\frac{F_{z 0_{a}}}{k_{z_{a}}}+m_{\text {hsteer }_{a}}\left\|\delta_{\text {steer }_{a, t}}\right\|\right)$
Distance from wheel carrier center to tire/road interface	$z_{w t r_{a, t}}=R e_{w_{a, t}}+H_{a, t}$

The equations use these variables.

$m_{h s t e e r_{a}}$	Steering angle to vertical force slope applied at wheel carrier for wheels on axle a
$\delta_{s t e e r_{a, t}}$	Steering angle input for axle a, wheel t
$R e_{w_{a, t}}$	Axle a, wheel t effective wheel radius from wheel carrier center to tire/road interface
$F_{z 0_{a}}$	Vertical suspension spring preload force applied to the wheels on axle a
$z_{w t r_{a, t}}$	Distance from wheel carrier center to tire/road interface, along the vehicle-fixed z - axis
$z_{v_{a, t}}, \dot{z}_{v_{a, t}}$	Vehicle displacement and velocity at axle a, wheel t, along the vehicle-fixed z-axis $z_{w_{a, t}}$
$\dot{z}_{w_{a, t}}$	Wheel displacement and velocity at axle a, wheel t, along the vehicle-fixed z-axis

Ports

Input

WhIPz - Wheel z-axis displacement
array
Wheel displacement, z_{w}, along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlPz:

- Signal array dimensions are [1x4].

$$
\mathrm{WhlPz}=z_{w}=\left[\begin{array}{llll}
z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlPz $(1,1)$	1	1
Front right	WhlPz $(1,2)$	1	2

Wheel	Array Element	Axle	Wheel Number
Rear left	WhlPz $(1,3)$	2	1
Rear right	WhlPz $(1,4)$	2	2

WhIRe - Wheel effective radius
array
Effective wheel radius, $R e_{w}$, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlRe:

- Signal array dimensions are [1×4].

$$
\text { WhlRe }=R e_{w}=\left[\begin{array}{ll}
R e_{w_{1,1}} & R e_{w_{1,2}}
\end{array} R e_{w_{2,1}} R e_{w_{2,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlRe $(1,1)$	1	1
Front right	WhlRe $(1,2)$	1	2
Rear left	WhlRe $(1,3)$	2	1
Rear right	WhlRe $(1,4)$	2	2

WhIVz - Wheel z-axis velocity array

Wheel velocity, \dot{z}_{w}, along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlVz:

- Signal array dimensions are [1×4].

$$
\text { WhlVz }=\dot{z}_{w}=\left[\begin{array}{lll}
\dot{z}_{1,1} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} \\
\dot{z}_{w_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlVz $(1,1)$	1	1
Front right	WhlVz $(1,2)$	1	2
Rear left	WhlVz $(1,3)$	2	1
Rear right	WhlVz $(1,4)$	2	2

WhIFx - Longitudinal wheel force on vehicle
array
Longitudinal wheel force applied to vehicle, $F_{w x}$, along the vehicle-fixed x-axis. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlFx:

- Signal array dimensions are [1×4].

WhlFx $=F_{w x}=\left[F_{w x_{1,1}} F_{w x_{1,2}} F_{w x_{2,1}} F_{w x_{2,2}}\right]$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlFx $(1,1)$	1	1
Front right	WhlFx $(1,2)$	1	2
Rear left	WhlFx $(1,3)$	2	1
Rear right	WhlFx $(1,4)$	2	2

WhIFy - Lateral wheel force on vehicle
array
Lateral wheel force applied to vehicle, $F_{w y}$, along the vehicle-fixed y-axis. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlFy:

- Signal array dimensions are [1×4].

WhlFy $=F_{w y}=\left[F_{w y 1,1} F_{w y 1,2} F_{w y 2,1} F_{w y_{2,2}}\right]$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlFy $(1,1)$	1	1
Front right	WhlFy $(1,2)$	1	2
Rear left	WhlFy (1.3)	2	1
Rear right	WhlFy $(1,4)$	2	2

WhIM - Suspension moment on wheel
array
Longitudinal, lateral, and vertical suspension moments at axle a, wheel t, applied to the wheel at the axle wheel carrier reference coordinate, in $\mathrm{N} \cdot \mathrm{m}$. Input array dimensions are 3 by the number of wheels on the vehicle.

- WhlM (1, . .) - Suspension moment applied to the wheel about the vehicle-fixed x-axis (longitudinal)
- WhlM ($2, \ldots$) - Suspension moment applied to the wheel about the vehicle-fixed y-axis (lateral)
- WhlM $(3, \ldots)$ - Suspension moment applied to the wheel about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlM:

- Signal dimensions are [3×4].
- Signal contains suspension moments applied to four wheels according to their axle and wheel locations.

$$
\text { WhlM }=M_{w}=\left[\begin{array}{lllll}
M_{w x_{1,1}} & M_{w x_{1}, 2} & M_{w x_{2}, 1} & M_{w x_{2,2}} \\
M_{w y_{1,1}} & M_{w y_{1,2}} & M_{w y 2,1} & M_{w y 2,2} \\
M_{w z_{1,1}} & M_{w z_{1,2}} & M_{w z_{2,1}} & M_{w z_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Moment Axis
Front left	WhlM(1,1)	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	WhlM(1,2)	1	2	
Rear left	WhlM(1,3)	2	1	
Rear right	WhlM(1,4)	2	2	
Front left	WhlM(2,1)	1	1	Vehicle-fixed y-axis (lateral)
Front right	WhlM(2,2)	1	2	
Rear left	WhlM(2,3)	2	1	
Rear right	WhlM(2,4)	2	2	
Front left	WhlM(3,1)	1	1	Vehicle-fixed z-axis (vertical)
Front right	WhlM(3,2)	1	2	
Rear left	WhlM(3,3)	2	1	
Rear right	WhlM(3,4)	2	2	

VehP - Vehicle displacement
array
Vehicle displacement from axle a, wheel t along vehicle-fixed coordinate system, in m. Input array dimensions are 3 the number of wheels on the vehicle.

- $\operatorname{VehP}(1, \ldots)$ - Vehicle displacement from wheel, x_{v}, along the vehicle-fixed x-axis
- $\operatorname{VehP}(2, \ldots)$ - Vehicle displacement from wheel, y_{v}, along the vehicle-fixed y-axis
- $\operatorname{VehP}(3, \ldots)-$ Vehicle displacement from wheel, z_{v}, along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two wheels per axle, the VehP:

- Signal dimensions are [3×4].
- Signal contains four displacements according to their axle and wheel locations.

$$
\text { VehP }=\left[\begin{array}{l}
x_{v} \\
y_{v} \\
z_{v}
\end{array}\right]=\left[\begin{array}{llll}
x_{v_{1,1}} & x_{v_{1,2}} & x_{v_{2,1}} & x_{v_{2,2}} \\
y_{v_{1,1}} & y_{v_{1,2}} & v_{v_{2,1}} & v_{v_{2,2}} \\
z_{v_{1,1}} & z_{v_{1,2}} & z_{v_{2,1}} & z_{v_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Front left	VehP $(1,1)$	1	1	Vehicle-fixed x-axis
Front right	VehP $(1,2)$	1	2	
Rear left	VehP $(1,3)$	2	1	
Rear right	VehP(1,4)	2	2	
Front left	VehP $(2,1)$	1	1	Vehicle-fixed y-axis
Front right	VehP $(2,2)$	1	2	
Rear left	VehP $(2,3)$	2	1	
Rear right	$\operatorname{VehP}(2,4)$	2	2	
Front left	$\operatorname{VehP}(3,1)$	1	1	Vehicle-fixed z-axis
Front right	$\operatorname{VehP}(3,2)$	1	2	
Rear left	$\operatorname{VehP}(3,3)$	2	1	
Rear right	$\operatorname{VehP}(3,4)$	2	2	

VehV - Vehicle velocity
array
Vehicle velocity at axle a, wheel t along vehicle-fixed coordinate system, in m. Input array dimensions are 3 by the number of wheels on the vehicle.

- VehV $(1, \ldots)$ - Vehicle velocity at wheel, x_{v}, along the vehicle-fixed x-axis
- VehV $(2, \ldots)$ - Vehicle velocity at wheel, y_{v}, along the vehicle-fixed y-axis
- $\operatorname{VehV}(3, \ldots)-$ Vehicle velocity at wheel, z_{v}, along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two wheels per axle, the VehV:

- Signal dimensions are [3×4].
- Signal contains 4 velocities according to their axle and wheel locations.

$$
\text { VehV }=\left[\begin{array}{l}
\dot{x}_{v} \\
\dot{y}_{v} \\
\dot{z}_{v}
\end{array}\right]=\left[\begin{array}{llll}
\dot{x}_{v_{1,1}} & \dot{x}_{v_{1,2}} & \dot{x}_{v_{2,1}} & \dot{x}_{v_{2,2}} \\
\dot{y}_{v_{1,1}} & \dot{y}_{v_{1,2}} & \dot{y}_{v_{2,1}} & \dot{y}_{v_{2,2}} \\
\dot{z}_{v_{1,1}} & \dot{z}_{v_{1,2}} & \dot{z}_{v_{2,1}} & \dot{z}_{v_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Front left	$\operatorname{VehV}(1,1)$	1	1	Vehicle-fixed x-axis
Front right	$\operatorname{VehV}(1,2)$	1	2	
Rear left	$\operatorname{VehV}(1,3)$	2	1	
Rear right	$\operatorname{VehV}(1,4)$	2	2	
Front left	$\operatorname{VehV}(2,1)$	1	1	Vehicle-fixed y-axis
Front right	$\operatorname{VehV}(2,2)$	1	2	
$\begin{array}{\|l} \begin{array}{l} \text { Rear } \\ \text { left } \end{array} \\ \hline \end{array}$	$\operatorname{VehV}(2,3)$	2	1	
Rear right	$\operatorname{VehV}(2,4)$	2	2	
Front left	$\operatorname{VehV}(3,1)$	1	1	Vehicle-fixed z-axis
Front right	$\operatorname{VehV}(3,2)$	1	2	
Rear left	$\operatorname{VehV}(3,3)$	2	1	
Rear right	$\operatorname{VehV}(3,4)$	2	2	

StrgAng - Steering angle, optional
array
Optional steering angle for each wheel, δ. Input array dimensions are 1 by the number of steered wheels.

For example, for a two-axle vehicle with two wheels per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set Steered axle enable by axle, StrgEnByAxl to [1 0]. The input signal array dimensions are [1×2].
- The StrgAng signal contains two steering angles according to their axle and wheel locations.

$$
\text { StrgAng }=\delta_{\text {steer }}=\left[\delta_{\text {steer }_{1,1}} \delta_{\text {steer }_{1,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	StrgAng $(1,1)$	1	1
Front right	StrgAng $(1,2)$	1	2

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Output

Info - Bus signal
bus
Bus signal containing block values. The signals are arrays that depend on the wheel location.
For example, here are the indices for a two-axle, two-wheel vehicle. The total number of wheels is four.

- 1D array signal (1-by-4)

Array Element	Axle	Wheel Number
$(1,1)$	1	1
$(1,2)$	1	2
$(1,3)$	2	1
$(1,4)$	2	2

- 3D array signal (3-by-4)

Array Element	Axle	Wheel Number
$(1,1)$	1	1
$(1,2)$	1	2
$(1,3)$	2	1
$(1,4)$	2	2
$(2,1)$	1	1
$(2,2)$	1	2
$(2,3)$	2	1
$(2,4)$	2	2
$(3,1)$	1	1
$(3,2)$	1	2
$(3,3)$	2	1
$(3,4)$	2	2

Signal	Description	Array Signal	Variable	Units
Camber	Wheel angles according to the axle.	1D	WhlAng $[1, \ldots]=\xi=\left[\xi_{a, t}\right]$	rad
Caster			WhlAng $[2, \ldots]=\eta=\left[\eta_{a, t}\right]$	
Toe			WhlAng $[3, \ldots]=\zeta=\left[\zeta_{a, t}\right]$	
Height	Suspension height	1D	H	m

Signal	Description	Array Signal	Variable	Units
Power	Suspension power dissipation	1D	$P_{\text {susp }}$	W
Energy	Suspension absorbed energy	1D	$E_{\text {susp }} \mathrm{J}$	J
VehF	Suspension forces applied to the vehicle	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { VehF }=F_{v}= \\ & {\left[\begin{array}{llll} F_{v x_{1,1}} & F_{v x_{1,2}} & F_{v x_{2,1}} & F_{v x_{2}, 2} \\ F_{v v_{1,1}} & F_{v v_{1,2}} & F_{v v_{2,1}} & F_{v y_{2,2}} \\ F_{v z 1,1} & F_{v z_{1,2}} & F_{v z_{2,1}} & F_{v z_{2,2}} \end{array}\right.} \end{aligned}$	N
VehM	Suspension moments applied to vehicle	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { VehM }=M_{v}= \\ & {\left[\begin{array}{lllll} M_{v x_{1}, 1} & M_{v x_{1}, 2} & M_{v x_{2}, 1} & M_{v \times 2} \\ M_{v y_{1}, 1} & M_{v y_{1}, 2} & M_{v y 2,1} & M_{v y 2} \\ M_{v z_{1,1}} & M_{v z_{1,2}} & M_{v z_{2,1}} & M_{v z_{2}} \end{array}\right.} \end{aligned}$	$\mathrm{N} \cdot \mathrm{~m}$ 2,2 2,2 2,2

Signal	Description	Array Signal	Variable	Units
WhlF	Suspension force applied to wheel	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlF }=F_{w}= \\ & {\left[\begin{array}{llll} F_{w x_{1}, 1} & F_{w x_{1,2}} & F_{w x_{2,1}} & F_{w x_{2}} \\ F_{w y 1,1} & F_{w y_{1,2}} & F_{w y 2,1} & F_{w y 2} \\ F_{w z_{1,1}} & F_{w z_{1,2}} & F_{w z 2,1} & F_{w z_{2}} \end{array}\right.} \end{aligned}$	
WhlP	Wheel displacement	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlP }=\left[\begin{array}{l} x_{w} \\ y_{w} \\ z_{w} \end{array}\right]= \\ & {\left[\begin{array}{cccc} x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_{w_{2}} \\ y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_{w y} \\ z_{w t r_{1,1}} & z_{w t r_{1,2}} & z_{w t r_{2,1}} & z_{w t r} \end{array}\right.} \end{aligned}$	
WhlV	Wheel velocity	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlV }=\left[\begin{array}{l} \dot{x}_{w} \\ \dot{y}_{w} \\ \dot{z}_{w} \end{array}\right] \\ & = \\ & {\left[\begin{array}{lll} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} \\ \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} \\ \dot{z}_{w_{2,2}} \end{array}\right]} \end{aligned}$	m/s

Signal	Description	Array Signal	Variable	Units
WhlAng	Wheel camber, caster toe angles	3D	For a two-axle, two wheels per axle vehicle: $\left.\begin{array}{l} \text { WhlAng }=\left[\begin{array}{l} \xi \\ \eta \\ \zeta \end{array}\right] \\ =\left[\begin{array}{lll} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} \\ \xi_{2,2} \\ \eta_{1,1} & \eta_{1,2} & \eta_{2,1} \\ \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} \end{array} \zeta_{2,2}\right. \end{array}\right] . \begin{aligned} & \eta_{2} \end{aligned}$	rad

VehF - Suspension force on vehicle

array
Longitudinal, lateral, and vertical suspension force at axle a, wheel t, applied to the vehicle at the suspension connection point, in N . Array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{VehF}(1, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed x-axis (longitudinal)
- $\operatorname{VehF}(2, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed y-axis (lateral)
- $\operatorname{VehF}(3, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the VehF:

- Signal dimensions are [3×4].
- Signal contains suspension forces applied to the vehicle according to the axle and wheel locations.

$$
\text { VehF }=F_{v}=\left[\begin{array}{lllll}
F_{v x_{1,1}} & F_{v x_{1,2}} & F_{v x_{2,1}} & F_{v x_{2,2}} \\
F_{v y_{1,1}} & F_{v y_{1,2}} & F_{v y_{2,1}} & F_{v y_{2,2}} \\
F_{v z_{1,1}} & F_{v z_{1,2}} & F_{v z_{2,1}} & F_{v z_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	$\operatorname{VehF}(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	$\operatorname{VehF}(1,2)$	1	2	
Rear left	$\operatorname{VehF}(1,3)$	2	1	
Rear right	$\operatorname{VehF}(1,4)$	2	2	
Front left	$\operatorname{VehF}(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
Front right	$\operatorname{VehF}(2,2)$	1	2	

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Rear left	$\operatorname{VehF}(2,3)$	2	1	
Rear right	$\operatorname{VehF}(2,4)$	2	2	
Front left	$\operatorname{VehF}(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
Front right	$\operatorname{VehF}(3,2)$	1	2	
Rear left	$\operatorname{VehF}(3,3)$	2	1	
Rear right	$\operatorname{VehF}(3,4)$	2	2	

VehM - Suspension moment on vehicle array

Longitudinal, lateral, and vertical suspension moment at axle a, wheel t, applied to the vehicle at the suspension connection point, in $\mathrm{N} \cdot \mathrm{m}$. Array dimensions are 3 by the number of wheels on the vehicle.

- VehM (1, ...) - Suspension moment applied to the vehicle about the vehicle-fixed x-axis (longitudinal)
- VehM ($2, \ldots$) - Suspension moment applied to the vehicle about the vehicle-fixed y-axis (lateral)
- Vehm ($3, \ldots$) - Suspension moment applied to the vehicle about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the VehM:

- Signal dimensions are [3×4].
- Signal contains suspension moments applied to vehicle according to the axle and wheel locations.

VehM $=M_{v}=\left[\begin{array}{lllll}M_{v x_{1,1}} & M_{v x_{1,2}} & M_{v x_{2,1}} & M_{v x_{2,2}} \\ M_{v y_{1,1}} & M_{v y_{1,2}} & M_{v y_{2,1}} & M_{v y_{2,2}} \\ M_{v z_{1,1}} & M_{v z_{1,2}} & M_{v z_{2,1}} & M_{v z_{2,2}}\end{array}\right]$

Array Element	Axle	Wheel Number	Moment Axis
$\operatorname{VehM}(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
$\operatorname{VehM}(1,2)$	1	2	
$\operatorname{VehM}(1,3)$	2	1	
$\operatorname{VehM}(1,4)$	2	2	
$\operatorname{VehM}(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
$\operatorname{VehM}(2,2)$	1	2	

Array Element	Axle	Wheel Number	Moment Axis
$\operatorname{VehM}(2,3)$	2	1	
$\operatorname{VehM}(2,4)$	2	2	
$\operatorname{VehM}(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
$\operatorname{VehM}(3,2)$	1	2	
$\operatorname{VehM}(3,3)$	2	1	
$\operatorname{VehM}(3,4)$	2	2	

WhIF - Suspension force on wheel
array
Longitudinal, lateral, and vertical suspension forces at axle a, wheel t, applied to the wheel at the axle wheel carrier reference coordinate, in N . Array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{WhlF}(1, \ldots)$ - Suspension force on wheel along the vehicle-fixed x-axis (longitudinal)
- $\operatorname{WhlF}(2, \ldots)$ - Suspension force on wheel along the vehicle-fixed y-axis (lateral)
- WhlF $(3, \ldots)$ - Suspension force on wheel along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlF:

- Signal dimensions are [3×4].
- Signal contains wheel forces applied to the vehicle according to the axle and wheel locations.

WhlF $=F_{w}=\left[\begin{array}{lllll}F_{w x_{1,1}} & F_{w x_{1,2}} & F_{w x_{2,1}} & F_{w x_{2,2}} \\ F_{w y_{1,1}} & F_{w y_{1,2}} & F_{w y_{2,1}} & F_{w y_{2,2}} \\ F_{w z_{1,1}} & F_{w z_{1,2}} & F_{w z_{2,1}} & F_{w z_{2,2}}\end{array}\right]$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	WhlF $(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	WhlF $(1,2)$	1	2	
Rear left	WhlF $(1,3)$	2	1	
Rear right	WhlF $(1,4)$	2	2	
Front left	WhlF $(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
Front right	WhlF $(2,2)$	1	2	

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Rear left	WhlF $(2,3)$	2	1	
Rear right	WhlF $(2,4)$	2	2	
Front left	WhlF (3,1)	1	1	Vehicle-fixed z-axis (vertical)
Front right	WhlF (3,2)	1	2	
Rear left	WhlF $(3,3)$	2	1	
Rear right	WhlF (3,4)	2	2	

WhIV - Wheel velocity
array
Longitudinal, lateral, and vertical wheel velocity at axle a, wheel t , in m / s. Array dimensions are 3 by the number of wheels on the vehicle.

- WhlV $(1, \ldots)$ - Wheel velocity along the vehicle-fixed x-axis (longitudinal)
- WhlV $(2, \ldots)$ - Wheel velocity along the vehicle-fixed y-axis (lateral)
- WhlV $(3, \ldots)-$ Wheel velocity along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the Whlv:

- Signal dimensions are [3×4].
- Signal contains wheel forces applied to the vehicle according to the axle and wheel locations.

$$
\text { WhlV }=\left[\begin{array}{l}
\dot{x}_{w} \\
\dot{y}_{w} \\
\dot{z}_{w}
\end{array}\right]=\left[\begin{array}{llll}
\dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\
\dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\
\dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	WhlV $(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	WhlV $(1,2)$	1	2	
Rear left	WhlV $(1,3)$	2	1	
Rear right	WhlV $(1,4)$	2	2	

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	WhlV (2,1)	1	1	Vehicle-fixed y-axis (lateral)
Front right	WhlV (2,2)	1	2	
Rear left	WhlV (2,3)	2	1	
Rear right	WhlV (2,4)	2	2	
Front left	WhlV (3,1)	1	1	Vehicle-fixed z-axis (vertical)
Front right	WhlV (3,2)	1	2	
Rear left	WhlV (3, 3)	2	1	
Rear right	WhlV(3,4)	2	2	

WhIAng - Wheel camber, caster, toe angles
array
Camber, caster, and toe angles at axle a, wheel t, in rad. Array dimensions are 3 by the number of wheels on the vehicle.

- WhlAng (1,...) - Camber angle
- WhlAng ($2, \ldots$) - Caster angle
- Whlang $(3, \ldots)$ - Toe angle

For example, for a two-axle vehicle with two wheels per axle, the WhlAng:

- Signal dimensions are [3×4].
- Signal contains angles according to the axle and wheel locations.

$$
\text { WhlAng }=\left[\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right]=\left[\begin{array}{llll}
\xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\
\eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\
\zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Angle
Front left	WhlAng (1,1)	1	1	Camber
Front right	WhlAng (1,2)	1	2	

Wheel	Array Element	Axle	Wheel Numbe r	Angle
Rear left	WhlAng (1,3)	2	1	
Rear right	WhlAng (1,4)	2	2	
Front left	WhlAng (2,1)	1	1	Caster
Front right	WhlAng (2,2)	1	2	
Rear left	WhlAng (2,3)	2	1	
Rear right	WhlAng(2,4)	2	2	
Front left	WhlAng(3,1)	1	1	Toe
Front right	WhlF(3,2)	1	2	
Rear left	WhlF(3,3)	2	1	
Rear right	WhlF(3,4)	2	2	

Parameters

Axles

Number of axles, NumAxI - Number of axles
2 (default) | scalar
Number of axles, N_{a}, dimensionless.
Number of wheels by axle, NumWhlsByAxI - Number of wheels per axle
[2 2] (default)|vector
Number of wheels per axle, $N t_{a}$, dimensionless. Vector is 1 by the number of vehicle axles, N_{a}. For example, [1,2] represents one wheel on axle one and two wheels on axle two.

Steered axle enable by axle, StrgEnByAxI - Boolean vector to enable axle steering
[1 0] (default) | vector
Boolean vector that enables axle steering, $E n_{\text {steer }}$, dimensionless. Vector is 1 by the number of vehicle axles, N_{a}. For example:

- [llllle $\left.\begin{array}{l}1 \\ \hline\end{array}\right]$ For a two-axle vehicle, enables axle one steering and disables axle two steering
- [1 1]-For a two-axle vehicle, enables axle one and axle two steering

Dependencies

Setting an element of the Steered axle enable by axle, StrgEnByAxl vector to 1:

- Creates input port StrgAng.
- Creates these parameters
- Toe angle vs steering angle slope, ToeStrgSlp
- Caster angle vs steering angle slope, CasterStrgSlp
- Camber angle vs steering angle slope, CamberStrgSlp
- Suspension height vs steering angle slope, StrgHgtSlp

For example, for a two-axle vehicle with two wheels per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set Steered axle enable by axle, StrgEnByAxl to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and wheel locations.

$$
\text { StrgAng }=\delta_{\text {steer }}=\left[\delta_{\text {steer }_{1,1}} \delta_{\text {steer }_{1}, 2}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	StrgAng (1, 1)	1	1
Front right	StrgAng (1,2)	1	2

Axle and wheels lumped principal moments of inertia about longitudinal axis, AxIIxx Inertia
300 (default) | vector
Axle and wheels lumped principal moments of inertia about longitudinal axis, AxleIxx a, in $\mathrm{kg}^{*} \mathrm{~m} \wedge 2$.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Axle and wheels lumped mass, AxIM - Mass

[2 2] (default)|vector
Axle and wheels lumped mass, a, in kg.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Track hardpoint coordinates relative to axle center, TrackCoords - Point

[0 0 0 0;-1 1 -1 1;0 0 0 0] (default)|array
Track hardpoint coordinates, $T c_{t}$, along the solid axle x, y, and z-axes, in m .
For example, for a two-axle vehicle with two wheels per axle, the TrackCoords array:

- Dimensions are [3x4].
- Contains four track hardpoint coordinates according to their axle and wheel locations.

$$
T c_{t}=\left[\begin{array}{llll}
x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_{w_{2,2}} \\
y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_{w_{2,2}} \\
z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}}
\end{array}\right]
$$

Array Element	Axle	Wheel Number	Axis
TrackCoords(1, 1)	1	1	Solid axle x-axis
TrackCoords(1, 2)	1	2	
TrackCoords(1, 3)	2	1	
TrackCoords(1, 4)	2	2	
TrackCoords(2, 1)	1	1	Solid axle y-axis
TrackCoords(2, 2)	1	2	
TrackCoords(2, 3)	2	1	
TrackCoords(2, 4)	2	2	
TrackCoords(3, 1)	1	1	Solid axle z-axis
TrackCoords(3, 2)	1	2	
TrackCoords(3, 3)	2	1	
TrackCoords(3, 4)	2	2	

Suspension hardpoint coordinates relative to axle center, SuspCoords - Point

[0 0 0 0;-1 1-1 1;0 0 0 0] (default)|array

Suspension hardpoint coordinates, $S c_{t}$, along the solid axle x-, y-, and z-axes, in m.
For example, for a two-axle vehicle with two wheels per axle, the SuspCoords array:

- Dimensions are [3×4].
- Contains four track hardpoint coordinates according to their axle and track locations.

$$
S_{c_{t}}=\left[\begin{array}{llll}
x_{s_{1,1}} & x_{s_{1,2}} & x_{s_{2,1}} & x_{s_{2,2}} \\
y_{s_{1,1}} & y_{s_{1,2}} & y_{s_{2,1}} & y_{s_{2,2}} \\
z_{s_{1,1}} & z_{s_{1,2}} & z_{s_{2,1}} & z_{s_{2,2}}
\end{array}\right]
$$

Array Element	Axle	Track	Axis
SuspCoords(1,1)	1	1	Solid axle x-axis
SuspCoords(1,2	1	2	
SuspCoords(1,3	2	1	
$\begin{aligned} & \begin{array}{l} \text { SuspCoords (1,4 } \\) \end{array} \\ & \hline \end{aligned}$	2	2	
SuspCoords(2,1)	1	1	Solid axle y-axis
SuspCoords(2,2)	1	2	
SuspCoords(2,3)	2	1	
SuspCoords (2,4)	2	2	
SuspCoords(3,1)	1	1	Solid axle z-axis
SuspCoords(3,2)	1	2	
$\begin{aligned} & \begin{array}{l} \text { SuspCoords }(3,3 \\) \\ \hline \end{array} \\ & \hline \end{aligned}$	2	1	
SuspCoords (3,4)	2	2	

Wheel and axle interface compliance constant, KzWhIAxI - Spring rate 6437000 (default) | scalar

Wheel and axle interface compliance constant, $k w a_{z}$, in N / m.
Wheel and axle interface compliance preload, FOzWhIAxI - Spring rate 9810 (default) | scalar

Wheel and axle interface compliance preload, $F w a_{z 0}$, in N .

Wheel and axle interface damping constant, CzWhIAxI - Damping

10000 (default) | scalar
Wheel and axle interface damping constant, $c w a_{z}$, in m.

Suspension

Compliance and Damping - Passive

Suspension spring constant, Kz - Suspension spring constant
64370 (default) | scalar | vector
Linear vertical spring constant for independent suspension wheels on axle a, $k_{z_{d}}$, in N / m.

Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Suspension spring preload, $\mathbf{F O z}$ - Suspension spring preload

9810 (default) | scalar | vector
Vertical preload spring force applied to the wheels on the axle at wheel carrier reference coordinates, $F_{z 0_{a^{\prime}}}$ in N. Positive preload forces:

- Cause the vehicle to lift.
- Point along the negative vehicle-fixed z-axis.

Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Suspension shock damping constant, Cz - Suspension shock damping constant 10000 (default) | scalar | vector

Linear vertical damping constant for independent suspension wheels on axle a, $c_{z_{a^{\prime}}}$ in Ns / m.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create this parameter, clear Enable active damping.
Suspension maximum height, Hmax - Height
0.5 (default) | scalar | vector

Maximum suspension extension or minimum suspension compression height, $H_{\text {max }}$, for axle a before the suspension reaches a hardstop, in m .

Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Geometry

Toe angle at steering center, Toe - Toe angle
0.0349 (default) | scalar

Nominal suspension toe angle at zero steering angle, $\zeta_{0 a}$, in rad.
Roll steer vs suspension height slope, RollStrgSIp - Steer angle suspension slope -0. 2269 (default) | scalar | vector

Roll steer angle versus suspension height, $m_{\text {htoe }}^{a^{\prime}}$ in $\mathrm{rad} / \mathrm{m}$.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Toe angle vs steering angle slope, ToeStrgSIp - Toe angle steering slope
0.01 (default) | scalar | vector

Toe angle versus steering angle slope, $m_{\text {toesteer }_{d^{\prime}}}$ dimensionless.

Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Caster angle at steering center, Caster - Caster angle at steering center 0.0698 (default) | scalar

Nominal suspension caster angle at zero steering angle, $\eta_{0 a}$, in rad.
Caster angle vs suspension height slope, CasterHslp - Caster angle versus suspension height slope
-0. 2269 (default) | scalar | vector
Caster angle versus suspension height, $m_{\text {hcaster }_{a^{\prime}}}$ in rad $/ \mathrm{m}$.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Caster angle vs steering angle slope, CasterStrgSIp - Caster angle versus steering angle slope 0.01 (default) | scalar | vector

Caster angle versus steering angle slope, $m_{\text {castersteer }_{a^{\prime}}}$ dimensionless.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Camber angle at steering center, Camber - Camber angle at steering center 0.0698 (default) | scalar

Nominal suspension camber angle at zero steering angle, $\xi_{0 a}$, in rad.
Camber angle vs suspension height slope, CamberHslp - Camber angle versus suspension height slope
-0.2269 (default) | scalar | vector
Camber angle versus suspension height, $m_{\text {hcamber }}{ }^{\prime}$ in rad $/ \mathrm{m}$.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Camber angle vs steering angle slope, CamberStrgSIp - Camber angle versus steering angle slope
0.01 (default) | scalar | vector

Camber angle versus steering angle slope, $m_{\text {cambersteer }{ }_{a}}{ }^{\text {d }}$ dimensionless.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1.

Suspension height vs steering angle slope, StrgHgtSIp - Suspension height versus steering angle slope
0.1432 (default) | scalar | vector

Steering angle to vertical force slope applied at suspension wheel carrier reference point, $m_{\text {hsteer }_{a^{\prime}} \text {, }}$ in m/rad.

Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1.

Version History

Introduced in R2018a

R2022b: Parameter name change from NumTracksByAxl to NumWhlsByAxl

Behavior changed in R2022b
The Number of tracks by axle, NumTracksByAxl parameter is renamed to Number of wheels by axle, NumWhlsByAxl.

The block uses the number of wheels per axle to index the input and output block signals.

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
[2] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
[3] Technical Committee. Road vehicles - Vehicle dynamics and road-holding ability - Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Solid Axle Suspension | Solid Axle Suspension - Leaf Spring | Solid Axle Suspension - Mapped

Solid Axle Suspension - Leaf Spring

Solid axle suspension with leaf spring

Libraries:

Vehicle Dynamics Blockset / Suspension

Description

The Solid Axle Suspension - Leaf Spring block implements a solid axle suspension with a leaf spring for multiple axles with multiple wheels per axle.

The block models the suspension compliance, damping, and geometric effects as functions of the wheel positions and velocities, with axle-specific compliance and damping parameters. Using the wheel position and velocity, the block calculates the vertical wheel position and suspension forces on the vehicle and wheel. The block uses the Z-down (defined in SAE J670) and a solid axle coordinate system. The solid axle coordinate system, shown here, is aligned with the Z-down vehicle coordinate system, with the x-axis in the direction of forward vehicle motion.

For Each	You Can Specify
Axle	• Multiple wheels
	- Suspension parameters
Wheel	• Steering angles

The block contains energy-storing spring elements and energy-dissipating damper elements. The block also stores energy via the axle roll angular acceleration and axle center of mass vertical and lateral acceleration.

This table summarizes the block parameter settings for a vehicle with:

- Two axles
- Two wheels per axle
- Steering angle input for both wheels on the front axle

Parameter	Setting
Number of axles, NumAxl	2
Number of wheels by axle, NumWhlsByAxl	$\left[\begin{array}{ll}2 & 2\end{array}\right]$
Steered axle enable by axle, StrgEnByAxl	$\left[\begin{array}{ll}1 & 0\end{array}\right]$

The block uses the wheel number, t, to index the input and output signals. This table summarizes the wheel, axle, and corresponding wheel number for a vehicle with:

- Two axles
- Two wheels per axle

Wheel	Axle	Wheel Number
Front left	Front	1
Front right	Front	2
Rear left	Rear	1
Rear right	Rear	2

Suspension Compliance and Damping

The block uses a linear spring and damper to model the vertical dynamic effects of the suspension system on the vehicle and wheel. Specifically, the block:

Uses	To Calculate
-Longitudinal and lateral displacement and velocity of the vehicle.	-Suspension forces applied to the axle center. - Lortical displacements and velocities of the velocity of the wheel. - Vertical wheel forces applied to the vehicle.
	-vehicle and wheel. Longitudinal, lateral and vertical suspension forces and moments applied to the vehicle. Longitudinal, lateral and vertical suspension forces and moments applied to the wheel.

To calculate the dynamics of the axle, the block implements these equations. The block neglects the effects of:

- Lateral and longitudinal translational velocity.
- Angular velocity about the vertical and lateral axes.

$$
\begin{aligned}
& {\left[\begin{array}{l}
\ddot{x}_{a} \\
\ddot{y}_{a} \\
\ddot{z}_{a}
\end{array}\right]=\frac{1}{M_{a}}\left[\begin{array}{l}
F_{x a} \\
F_{y a} \\
F_{z a}
\end{array}\right]+\left[\begin{array}{l}
\dot{x}_{a} \\
\dot{y}_{a} \\
\dot{z}_{a}
\end{array}\right] \times\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\frac{1}{M_{a}}\left[\begin{array}{c}
0 \\
0 \\
F_{z a}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\dot{z}_{a}
\end{array}\right] \times\left[\begin{array}{l}
p \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
g
\end{array}\right]=\left[\begin{array}{c}
0 \\
p \dot{z}_{a} \\
\frac{F_{z a}}{M_{a}}+g
\end{array}\right]} \\
& {\left[\begin{array}{l}
\dot{p} \\
\dot{q} \\
\dot{r}
\end{array}\right]=\left[\left[\begin{array}{l}
M_{x} \\
M_{y} \\
M_{z}
\end{array}\right]-\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right] \times\left[\begin{array}{ccc}
I_{x x} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right]\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right]\left[\begin{array}{ccc}
I_{x x} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right]-1\right.} \\
& =\left[\left[\begin{array}{c}
M_{x} \\
0 \\
0
\end{array}\right]-\left[\begin{array}{l}
p \\
q \\
0
\end{array}\right] \times\left[\begin{array}{ccc}
I_{x x} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right]\left[\begin{array}{c}
p \\
0 \\
0
\end{array}\right]\left[\begin{array}{ccc}
I_{x x} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right]^{-1}=\left[\begin{array}{c}
\frac{M_{x}}{I_{x x}} \\
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

The net vertical force on the axle center of mass is the sum of the wheel and suspension forces acting on the axle.

$$
F_{z a}=\sum_{t=1}^{N t a}\left(F_{w z_{a, t}}+F_{z 0_{a}}+k_{z_{a}}\left(z_{v_{a, t}}-z_{s_{a, t}}+m_{h s t e e r_{a}}\left|\delta_{s t e e r_{a, t}}\right|\right)+c_{z_{a}}\left(\dot{z}_{v_{a, t}}-\dot{z}_{s_{a, t}}\right)\right)
$$

The net moment about the roll axis of the solid axle suspension accounts for the hardpoint coordinates of the suspension and wheels.

$$
\begin{aligned}
& M_{x}=\sum_{t=1}^{N t a}\left(F_{w z_{a, t}} y_{w_{t}}+\left(F_{z 0_{a}}+k_{z_{a}}\left(z_{v_{a, t}}-z_{s_{a, t}}+m_{\text {hsteera }} \mid \delta_{\text {steer }}^{a, t}\right.\right.\right. \\
& \\
& \left.\left.+M_{w x_{a, t}} \frac{I_{x x}}{I_{x x}+M_{a} y_{w_{t}}}\right)+c_{z_{a}}\left(\dot{z}_{v_{a, t}}-\dot{z}_{s_{a, t}}\right)\right) y_{s_{t}}
\end{aligned}
$$

Block parameters provide the track and suspension hardpoints coordinates.

$$
\begin{gathered}
T c_{t}=\left[\begin{array}{lll}
x_{w_{1}} & x_{w_{2}} & \cdots \\
y_{w_{1}} & y_{w_{2}} & \cdots \\
z_{w_{1}} & z_{w_{2}} & \cdots
\end{array}\right] \\
S c_{t}=\left[\begin{array}{lll}
x_{s_{1}} & x_{s_{2}} & \cdots \\
y_{s_{1}} & y_{s_{2}} & \cdots \\
z_{s_{1}} & z_{s_{2}} & \cdots
\end{array}\right]
\end{gathered}
$$

The block uses Euler angles to transform the track and suspension displacements, velocities, and accelerations to the vehicle coordinate system.

To calculate the suspension forces applied to the vehicle, the block implements this equation.

$$
F_{v z_{a, t}}=-\left(F_{z 0_{a}}+k_{z_{a}}\left(z_{v_{a, t}}-z_{s_{a, t}}+m_{h s t e e r_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+c_{z_{a}}\left(\dot{z}_{v_{a, t}}-\dot{z}_{s_{a, t}}\right)+F_{z h s t o p_{a, t}}\right)
$$

The suspension forces and moments applied to the vehicle are equal to the suspension forces and moments applied to the wheel.

$$
\begin{aligned}
& F_{v x_{a, t}}=F_{w x_{a, t}} \\
& F_{v y_{a, t}}=F_{w y_{a, t}} \\
& F_{v x_{a, t}}=-F_{w z_{a, t}} \\
& M_{v x_{a, t}}=M_{w x_{a, t}}+F_{w y_{a, t}}\left(R e_{w y_{a, t}}+H_{a, t}\right) \\
& M_{v y_{a, t}}=M_{w y_{a, t}}+F_{w x_{a, t}}\left(R e_{w x_{a, t}}+H_{a, t}\right) \\
& M_{v x_{a, t}}=M_{w z_{a, t}}
\end{aligned}
$$

To calculate the vertical force applied to the suspension at the wheel location, the block implements a stiff spring-damper, shown here.

The block uses this equation.

$$
F_{w z_{a, t}}=-F w a_{z 0}-k w a_{z}\left(z_{w_{a, t}}-z_{s_{a, t}}\right)-c w a_{z}\left(\dot{z}_{w_{a, t}}-\dot{z}_{s_{a, t}}\right)
$$

The equations use these variables.
$F_{w z_{a}, t} M_{w z_{a, t}} \quad$ Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed z-axis
$F_{w x_{a, t}} M_{w x_{a t t}} \quad$ Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed x-axis

$F_{w y_{0, t}} M_{w y_{a, t}}$	Suspension force and moment applied to the wheel on axle a, wheel t along wheel-fixed y-axis
$F_{v z_{a, t}} M_{v z_{a}, t}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed z-axis
$F_{v x_{a, t}} M_{V x^{\prime}, t}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed x-axis
$F_{v y_{a, t}} M_{v y_{a, t}}$	Suspension force and moment applied to the vehicle on axle a, wheel t along wheel-fixed y-axis
$F_{z 0_{a}}$	Vertical suspension spring preload force applied to the wheels on axle a
$k_{\chi_{a}}$	Vertical spring constant applied to wheels on axle a
kwa ${ }_{z}$	Wheel and axle interface compliance constant
$m_{\text {hsteer }}$	Steering angle to vertical force slope applied at wheel carrier for wheels on axle a
$\delta_{\text {steer }}^{\text {a }}$	Steering angle input for axle a, wheel t
$C_{z_{a}}$	Vertical damping constant applied to wheels on axle a
cwa ${ }_{z}$	Wheel and axle interface damping constant
$R e_{w_{a t t}}$	Effective wheel radius for axle a, wheel t
$F_{\text {zhstop }{ }_{\text {at }}}$	Vertical hardstop force at axle a , wheel t , along the vehicle-fixed z-axis
$F_{\text {zaswy }}{ }_{\text {a }}$	Vertical anti-sway force at axle a, wheel t , along the vehicle-fixed z-axis
$\mathrm{Fwa}_{z 0}$	Wheel and axle interface compliance constant
$z_{v_{a, t}}, \dot{z}_{v_{a, t}}$	Vehicle displacement and velocity at axle a , wheel t , along the vehiclefixed z-axis
$z_{w_{a, t}} \dot{z}_{w_{a, t}}$	Wheel displacement and velocity at axle a, wheel t, along the vehicle-fixed z-axis
$\chi_{v_{a, t}} \dot{\chi}_{v_{a, t}}$	Vehicle displacement and velocity at axle a, wheel t, along the vehiclefixed z-axis
$\chi_{w_{a, t},} \dot{\chi}_{w_{a, t}}$	Wheel displacement and velocity at axle a, wheel t, along the vehicle-fixed z-axis
$y_{v_{a, t}} \dot{y}_{v_{a, t}}$	Vehicle displacement and velocity at axle a , wheel t , along the vehiclefixed y-axis
$y_{w_{a, t}} \dot{y}_{w_{a, t}}$	Wheel displacement and velocity at axle a , wheel t , along the vehicle-fixed y-axis
$H_{a, t}$	Suspension height at axle a, wheel t
$R e_{w_{a, t}}$	Effective wheel radius at axle a, wheel t

Hardstop Forces

The hardstop feedback force, $F_{\text {zhstopat, }^{\prime}}$ that the block applies depends on whether the suspension is compressing or extending. The block applies the force:

- In compression, when the suspension is compressed more than the maximum distance specified by the Suspension maximum height, Hmax parameter.
- In extension, when the suspension extension is greater than maximum extension specified by the Suspension maximum height, Hmax parameter.

To calculate the force, the block uses a stiffness based on a hyperbolic tangent and exponential scaling.

Camber, Caster, and Toe Angles

To calculate the camber, caster, and toe angles, block uses linear functions of the suspension height and steering angle.

$$
\begin{aligned}
& \xi_{a, t}=\xi_{0 a}+m_{\text {hcamber }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+m_{\text {cambersteer }_{a}}\left|\delta_{\text {steer }_{a}, t}\right| \\
& \eta_{a, t}=\eta_{0 a}+m_{\text {hcaster }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+m_{\text {castersteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right| \\
& \zeta_{a, t}=\zeta_{0 a}+m_{\text {htoe }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+m_{\text {toesteer }_{a}}\left|\delta_{\text {steer }_{a} t}\right|
\end{aligned}
$$

The equations use these variables.

$\xi_{a, t}$	Camber angle of wheel on axle a, wheel t
$\eta_{a, t}$	Caster angle of wheel on axle a, wheel t
$\zeta_{a, t}$	Toe angle of wheel on axle a, wheel t
$\xi_{0 a}, \eta_{0 a}, \zeta_{0 a}$	Nominal suspension axle a camber, caster, and toe angles, respectively, at zero steering angle
$\begin{aligned} & m_{\text {hcamber }_{a^{\prime}}} m_{\text {hcaster }_{a^{\prime}}} \\ & m_{\text {htoe }_{a}} \end{aligned}$	Camber, caster, and toe angles, respectively, versus suspension height slope for axle a
$m_{\text {cambersteer }_{\alpha^{\prime}}} m_{\text {castersteer }_{a^{\prime}}}$ $m_{\text {toesteer }_{a}}$	Camber, caster, and toe angles, respectively, versus steering angle slope for axle a
$m_{\text {hsteer }}$	Steering angle versus vertical force slope for axle a
$\delta_{\text {stee }}^{\text {at, }}$	Steering angle input for axle a, wheel t
$z_{v_{a t, t}}$	Vehicle displacement at axle a , wheel t , along the vehicle-fixed z-axis
$z_{w_{\text {a }}, t}$	Wheel displacement at axle a , wheel t , along the vehicle-fixed z-axis

Steering Angles

Optionally, use the Steered axle enable by axle, StrgEnByAxl parameter to input steering angles for the wheels. To calculate the steering angles for the wheels, the block offsets the input steering angles with a linear function of the suspension height.

$$
\delta_{\text {whlsteer }_{a, t}}=\delta_{\text {steer }_{a, t}}+m_{\text {htoe }_{a}}\left(z_{w_{a, t}}-z_{v_{a, t}}-m_{\text {hsteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|\right)+m_{\text {toesteer }_{a}}\left|\delta_{\text {steer }_{a, t}}\right|
$$

The equation uses these variables.

$m_{\text {toester }_{a}}$	Axle a toe angle versus steering angle slope
$m_{\text {hsteer }_{a}}$	Axle a steering angle versus vertical force slope
$m_{\text {htoe }}^{a}$	Axle a toe angle versus suspension height slope
$\delta_{\text {whlsteer }_{a, t}}$	Wheel steering angle for axle a, wheel t
$\delta_{\text {stee }_{a, t}}$	Steering angle input for axle a, wheel t
$z_{v_{a, t}}$	Vehicle displacement at axle a, wheel t, along the vehicle-fixed z-axis

$z_{w_{a, t}} \quad$ Wheel displacement at axle a, wheel t, along the vehicle-fixed z-axis

Power and Energy

The block calculates these suspension characteristics for each axle, a, wheel, t.

Calculation	Equation
Dissipated power, $P_{\text {suspot }}$	$P_{\text {susp }_{a, t}}=F_{w_{z l o o k u p a l ~}}\left(\dot{v}_{v_{a, t}}-\dot{w}_{w_{a, t},} \dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t}} \delta_{\text {steer }_{a, t}}\right)$
Absorbed energy, $E_{\text {susp }}^{\text {at }}$	$E_{\text {susp }_{a, t}}=F_{w_{z l o o k u p a l}}\left(\dot{v}_{v_{a, t}}-\dot{w}_{w_{a, t}} \dot{z}_{v_{a, t}}-\dot{z}_{w_{a, t}} \delta_{\text {steer }_{a, t}}\right)$
Suspension height, $H_{a, t}$	$H_{a, t}=-\left(z_{v_{a, t}}-z_{w_{a, t}}+\frac{F_{z 0_{a}}}{k_{z_{a}}}+m_{\text {hsteer }_{a}}\left\|\delta_{\text {steer }_{a, t}}\right\|\right)$
Distance from wheel carrier center to tire/road interface	$z_{w t t_{a, t}}=R e_{w_{a, t}}+H_{a, t}$

The equations use these variables.
$m_{\text {hsteer }_{a}} \quad$ Steering angle to vertical force slope applied at wheel carrier for wheels on axle a
$\delta_{\text {steer }_{a, t}} \quad$ Steering angle input for axle a, wheel t
$R e_{w_{a, t}} \quad$ Axle a, wheel t effective wheel radius from wheel carrier center to tire/road interface
$F_{z 0_{a}} \quad$ Vertical suspension spring preload force applied to the wheels on axle a
$z_{w t r_{a, t}} \quad$ Distance from wheel carrier center to tire/road interface, along the vehicle-fixed z axis
$z_{v_{a, t}}, \dot{z}_{v_{a, t}} \quad$ Vehicle displacement and velocity at axle a, wheel t, along the vehicle-fixed z-axis
$z_{w_{a, t}} \dot{z}_{w_{a, t}} \quad$ Wheel displacement and velocity at axle a, wheel t, along the vehicle-fixed z-axis

Ports

Input

WhIPz - Wheel z-axis displacement
array
Wheel displacement, z_{w}, along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlPz:

- Signal array dimensions are [1x4].

$$
\mathrm{WhlPz}=z_{w}=\left[\begin{array}{llll}
z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlPz $(1,1)$	1	1
Front right	WhlPz $(1,2)$	1	2

Wheel	Array Element	Axle	Wheel Number
Rear left	WhlPz $(1,3)$	2	1
Rear right	WhlPz $(1,4)$	2	2

WhIRe - Wheel effective radius
array
Effective wheel radius, $R e_{w}$, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlRe:

- Signal array dimensions are [1×4].

$$
\text { WhlRe }=R e_{w}=\left[\begin{array}{ll}
R e_{w_{1,1}} & R e_{w_{1,2}}
\end{array} R e_{w_{2,1}} R e_{w_{2,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlRe $(1,1)$	1	1
Front right	WhlRe $(1,2)$	1	2
Rear left	WhlRe $(1,3)$	2	1
Rear right	WhlRe $(1,4)$	2	2

WhIVz - Wheel z-axis velocity array

Wheel velocity, \dot{z}_{w}, along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlVz:

- Signal array dimensions are [1×4].

$$
\text { WhlVz }=\dot{z}_{w}=\left[\begin{array}{lll}
\dot{z}_{1,1} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} \\
\dot{z}_{w_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlVz $(1,1)$	1	1
Front right	WhlVz $(1,2)$	1	2
Rear left	WhlVz $(1,3)$	2	1
Rear right	WhlVz $(1,4)$	2	2

WhIFx - Longitudinal wheel force on vehicle
array
Longitudinal wheel force applied to vehicle, $F_{w x}$, along the vehicle-fixed x-axis. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlFx:

- Signal array dimensions are [1×4].

WhlFx $=F_{w x}=\left[F_{w x_{1,1}} F_{w x_{1,2}} F_{w x_{2,1}} F_{w x_{2,2}}\right]$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlFx $(1,1)$	1	1
Front right	WhlFx $(1,2)$	1	2
Rear left	WhlFx $(1,3)$	2	1
Rear right	WhlFx $(1,4)$	2	2

WhIFy - Lateral wheel force on vehicle
array
Lateral wheel force applied to vehicle, $F_{w y}$, along the vehicle-fixed y-axis. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlFy:

- Signal array dimensions are [1×4].

WhlFy $=F_{w y}=\left[F_{w y 1,1} F_{w y 1,2} F_{w y 2,1} F_{w y_{2,2}}\right]$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlFy $(1,1)$	1	1
Front right	WhlFy $(1,2)$	1	2
Rear left	WhlFy (1.3)	2	1
Rear right	WhlFy $(1,4)$	2	2

WhIM - Suspension moment on wheel
array
Longitudinal, lateral, and vertical suspension moments at axle a, wheel t, applied to the wheel at the axle wheel carrier reference coordinate, in $\mathrm{N} \cdot \mathrm{m}$. Input array dimensions are 3 by the number of wheels on the vehicle.

- WhlM (1, . .) - Suspension moment applied to the wheel about the vehicle-fixed x-axis (longitudinal)
- WhlM $(2, \ldots)$ - Suspension moment applied to the wheel about the vehicle-fixed y-axis (lateral)
- WhlM $(3, \ldots)$ - Suspension moment applied to the wheel about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlM:

- Signal dimensions are [3×4].
- Signal contains suspension moments applied to four wheels according to their axle and wheel locations.

$$
\text { WhlM }=M_{w}=\left[\begin{array}{llll}
M_{w x_{1,1}} & M_{w x_{1,2}} & M_{w x_{2,1}} & M_{w x_{2,2}} \\
M_{w y_{1,1}} & M_{w y 1,2} & M_{w y_{2,1}} & M_{w y 2,2} \\
M_{w z_{1,1}} & M_{w z_{1,2}} & M_{w z_{2,1}} & M_{w z 2,2}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Moment Axis
Front left	WhlM $(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	WhlM(1,2)	1	2	
Rear left	WhlM(1,3)	2	1	
Rear right	WhlM(1,4)	2	2	
Front left	WhlM(2,1)	1	1	Vehicle-fixed y-axis (lateral)
Front right	WhlM(2,2)	1	2	
Rear left	WhlM(2,3)	2	1	
Rear right	WhlM(2,4)	2	2	
Front left	WhlM(3,1)	1	1	Vehicle-fixed z-axis (vertical)
Front right	WhlM(3,2)	1	2	
Rear left	WhlM(3,3)	2	1	
Rear right	WhlM(3,4)	2	2	

VehP - Vehicle displacement
array
Vehicle displacement from axle a, wheel t along vehicle-fixed coordinate system, in m. Input array dimensions are 3 the number of wheels on the vehicle.

- VehP (1, ...) - Vehicle displacement from wheel, χ_{v}, along the vehicle-fixed x-axis
- $\operatorname{VehP}(2, \ldots)$ - Vehicle displacement from wheel, y_{v}, along the vehicle-fixed y-axis
- $\operatorname{VehP}(3, \ldots)-$ Vehicle displacement from wheel, z_{v}, along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two wheels per axle, the VehP:

- Signal dimensions are [3x4].
- Signal contains four displacements according to their axle and wheel locations.

$$
\text { VehP }=\left[\begin{array}{l}
x_{v} \\
y_{v} \\
z_{v}
\end{array}\right]=\left[\begin{array}{llll}
x_{v_{1,1}} & x_{v_{1,2}} & x_{v_{2,1}} & x_{v_{2,2}} \\
y_{v_{1,1}} & y_{v_{1,2}} & y_{v_{2,1}} & y_{v_{2,2}} \\
z_{v_{1,1}} & z_{v_{1,2}} & z_{v_{2,1}} & z_{v_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Front left	$\operatorname{VehP}(1,1)$	1	1	Vehicle-fixed x-axis
Front right	$\operatorname{VehP}(1,2)$	1	2	
Rear left	$\operatorname{VehP}(1,3)$	2	1	
Rear right	$\operatorname{VehP}(1,4)$	2	2	
Front left	$\operatorname{VehP}(2,1)$	1	1	Vehicle-fixed y-axis
Front right	$\operatorname{VehP}(2,2)$	1	2	
$\begin{array}{\|l} \text { Rear } \\ \text { left } \end{array}$	$\operatorname{VehP}(2,3)$	2	1	
Rear right	$\operatorname{VehP}(2,4)$	2	2	
Front left	$\operatorname{VehP}(3,1)$	1	1	Vehicle-fixed z-axis
Front right	$\operatorname{VehP}(3,2)$	1	2	
Rear left	$\operatorname{VehP}(3,3)$	2	1	
Rear right	$\operatorname{VehP}(3,4)$	2	2	

VehV - Vehicle velocity
array
Vehicle velocity at axle a, wheel t along vehicle-fixed coordinate system, in m. Input array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{VehV}(1, \ldots)$ - Vehicle velocity at wheel, x_{v}, along the vehicle-fixed x-axis
- VehV $(2, \ldots)$ - Vehicle velocity at wheel, y_{v}, along the vehicle-fixed y-axis
- $\operatorname{VehV}(3, \ldots)-$ Vehicle velocity at wheel, z_{v}, along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two wheels per axle, the VehV:

- Signal dimensions are [3×4].
- Signal contains 4 velocities according to their axle and wheel locations.

$$
\text { VehV }=\left[\begin{array}{l}
\dot{x}_{v} \\
\dot{y}_{v} \\
\dot{z}_{v}
\end{array}\right]=\left[\begin{array}{lllll}
\dot{x}_{v_{1,1}} & \dot{x}_{v_{1,2}} & \dot{x}_{v_{2,1}} & \dot{x}_{v_{2,2}} \\
\dot{y}_{v_{1,1}} & \dot{y}_{v_{1,2}} & \dot{y}_{v_{2,1}} & \dot{y}_{v_{2,2}} \\
\dot{z}_{v_{1,1}} & \dot{z}_{v_{1,2}} & \dot{z}_{v_{2,1}} & \dot{z}_{v_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Front left	$\operatorname{VehV}(1,1)$	1	1	Vehicle-fixed x-axis
Front right	$\operatorname{VehV}(1,2)$	1	2	
Rear left	$\operatorname{VehV}(1,3)$	2	1	
Rear right	$\operatorname{VehV}(1,4)$	2	2	
Front left	$\operatorname{VehV}(2,1)$	1	1	Vehicle-fixed y-axis
Front right	$\operatorname{VehV}(2,2)$	1	2	
$\begin{array}{\|l} \text { Rear } \\ \text { left } \end{array}$	$\operatorname{VehV}(2,3)$	2	1	
Rear right	$\operatorname{VehV}(2,4)$	2	2	
Front left	$\operatorname{VehV}(3,1)$	1	1	Vehicle-fixed z-axis
Front right	$\operatorname{VehV}(3,2)$	1	2	
$\begin{aligned} & \text { Rear } \\ & \text { left } \end{aligned}$	$\operatorname{VehV}(3,3)$	2	1	
Rear right	$\operatorname{VehV}(3,4)$	2	2	

StrgAng - Steering angle, optional
array
Optional steering angle for each wheel, δ. Input array dimensions are 1 by the number of steered wheels.

For example, for a two-axle vehicle with two wheels per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set Steered axle enable by axle, StrgEnByAxl to [1 0]. The input signal array dimensions are [1×2].
- The StrgAng signal contains two steering angles according to their axle and wheel locations.

$$
\operatorname{StrgAng}=\delta_{\text {steer }}=\left[\delta_{\text {steer }_{1,1}} \delta_{\text {steer }_{1,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	StrgAng $(1,1)$	1	1
Front right	StrgAng $(1,2)$	1	2

Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Output

Info - Bus signal
bus
Bus signal containing block values. The signals are arrays that depend on the wheel location.
For example, here are the indices for a two-axle, two-wheel vehicle. The total number of wheels is four.

- 1D array signal (1-by-4)

Array Element	Axle	Wheel Number
$(1,1)$	1	1
$(1,2)$	1	2
$(1,3)$	2	1
$(1,4)$	2	2

- 3D array signal (3-by-4)

Array Element	Axle	Wheel Number
$(1,1)$	1	1
$(1,2)$	1	2
$(1,3)$	2	1
$(1,4)$	2	2
$(2,1)$	1	1
$(2,2)$	1	2
$(2,3)$	2	1
$(2,4)$	2	2
$(3,1)$	1	1
$(3,2)$	1	2
$(3,3)$	2	1
$(3,4)$	2	2

Signal	Description	Array Signal	Variable	Units
Camber	Wheel angles according to the axle.	1D	WhlAng $[1, \ldots]=\xi=\left[\xi_{a, t}\right]$	rad
Caster			WhlAng $[2, \ldots]=\eta=\left[\eta_{a, t}\right]$	
Toe			WhlAng $[3, \ldots]=\zeta=\left[\zeta_{a, t}\right]$	
Height	Suspension height	1D	H	m

Signal	Description	Array Signal	Variable U	Units
Power	Suspension power dissipation	1D		W
Energy	Suspension absorbed energy	1D	$E_{\text {susp }}$	J
VehF	Suspension forces applied to the vehicle	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { VehF }=F_{v}= \\ & {\left[\begin{array}{llll} F_{v x_{1,1}} & F_{v x_{1,2}} & F_{v x_{2,1}} & F_{v x_{2,2}} \\ F_{v v_{1,1}} & F_{v y_{1,2}} & F_{v v_{2,1}} & F_{v y_{2,2}} \\ F_{v v_{1,1}} & F_{v z_{1,2}} & F_{v z_{2,1}} & F_{v z_{2,2}} \end{array}\right.} \end{aligned}$	N
VehM	Suspension moments applied to vehicle	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { VehM }=M_{v}= \\ & {\left[\begin{array}{llll} M_{v x_{1}, 1} & M_{v x_{1}, 2} & M_{v x_{2,1}} & M_{v \chi_{2},}, \\ M_{v y_{1,1}} & M_{v y_{1,2}} & M_{v y_{2,1}} & M_{v y y_{2},} \\ M_{v \chi_{1,1}} & M_{v z_{1,2}} & M_{v z_{2,1}} & M_{v z_{2},} \end{array}\right.} \end{aligned}$	$\mathrm{N} \cdot \mathrm{m}$ 2,2 2,2 2,2

Signal	Description	Array Signal	Variable	Units
WhlF	Suspension force applied to wheel	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlF }=F_{w}= \\ & {\left[\begin{array}{llll} F_{w x_{1}, 1} & F_{w x_{1,2}} & F_{w x_{2}, 1} & F_{w x_{2}} \\ F_{w y 1,1} & F_{w y_{1,2}} & F_{w y 2,1} & F_{w y_{2}} \\ F_{w z_{1,1}} & F_{w z_{1,2}} & F_{w z_{2,1}} & F_{w z_{2}} \end{array}\right.} \end{aligned}$	
WhlP	Wheel displacement	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlP }=\left[\begin{array}{l} x_{w} \\ y_{w} \\ z_{w} \end{array}\right]= \\ & {\left[\begin{array}{llll} x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_{w_{2}} \\ y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_{w y_{2}} \\ z_{w t r_{1,1}} & z_{w t r_{1,2}} & z_{w t r_{2,1}} & z_{w t{ }_{2}} \end{array}\right.} \end{aligned}$	
Whlv	Wheel velocity	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlV }=\left[\begin{array}{l} \dot{x}_{w} \\ \dot{y}_{w} \\ \dot{z}_{w} \end{array}\right] \\ & = \\ & {\left[\begin{array}{llll} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}} \end{array}\right]} \end{aligned}$	m/s

Signal	Description	Array Signal	Variable	Units
WhlAng	Wheel camber, caster, toe angles	3D	For a two-axle, two wheels per axle vehicle:	rad

VehF - Suspension force on vehicle
array
Longitudinal, lateral, and vertical suspension force at axle a, wheel t, applied to the vehicle at the suspension connection point, in N. Array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{VehF}(1, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed x-axis (longitudinal)
- $\operatorname{VehF}(2, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed y-axis (lateral)
- $\operatorname{VehF}(3, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the VehF:

- Signal dimensions are [3×4].
- Signal contains suspension forces applied to the vehicle according to the axle and wheel locations.

VehF $=F_{v}=\left[\begin{array}{llll}F_{v x_{1,1}} & F_{v x_{1,2}} & F_{v x_{2,1}} & F_{v x_{2,2}} \\ F_{v v_{1,1}} & F_{v y_{1,2}} & F_{v y_{2,1}} & F_{v y_{2,2}} \\ F_{v z_{1,1}} & F_{v z_{1,2}} & F_{v z_{2,1}} & F_{v z_{2,2}}\end{array}\right]$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	$\operatorname{VehF}(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	$\operatorname{VehF}(1,2)$	1	2	
Rear left	$\operatorname{VehF}(1,3)$	2	1	
Rear right	$\operatorname{VehF}(1,4)$	2	2	
Front left	$\operatorname{VehF}(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
Front right	$\operatorname{VehF}(2,2)$	1	2	

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Rear left	VehF $(2,3)$	2	1	
Rear right	VehF $(2,4)$	2	2	
Front left	$\operatorname{VehF}(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
Front right	$\operatorname{VehF}(3,2)$	1	2	
Rear left	$\operatorname{VehF}(3,3)$	2	1	
Rear right	$\operatorname{VehF}(3,4)$	2	2	

VehM - Suspension moment on vehicle array

Longitudinal, lateral, and vertical suspension moment at axle a, wheel t, applied to the vehicle at the suspension connection point, in $\mathrm{N} \cdot \mathrm{m}$. Array dimensions are 3 by the number of wheels on the vehicle.

- VehM (1, ...) - Suspension moment applied to the vehicle about the vehicle-fixed x-axis (longitudinal)
- VehM ($2, \ldots$) - Suspension moment applied to the vehicle about the vehicle-fixed y-axis (lateral)
- Vehm ($3, \ldots$) - Suspension moment applied to the vehicle about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the VehM:

- Signal dimensions are [3×4].
- Signal contains suspension moments applied to vehicle according to the axle and wheel locations.

VehM $=M_{v}=\left[\begin{array}{llll}M_{v x_{1,1}} & M_{v x_{1,2}} & M_{v x_{2,1}} & M_{v x_{2,2}} \\ M_{v y 1,1} & M_{v y_{1,2}} & M_{v y_{2,1}} & M_{v y_{2,2}} \\ M_{v z_{1,1}} & M_{v z_{1,2}} & M_{v z_{2,1}} & M_{v z_{2,2}}\end{array}\right]$

Array Element	Axle	Wheel Number	Moment Axis
$\operatorname{VehM}(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
$\operatorname{VehM}(1,2)$	1	2	
$\operatorname{VehM}(1,3)$	2	1	
$\operatorname{VehM}(1,4)$	2	2	
$\operatorname{VehM}(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
$\operatorname{VehM}(2,2)$	1	2	

Array Element	Axle	Wheel Number	Moment Axis
$\operatorname{VehM}(2,3)$	2	1	
$\operatorname{VehM}(2,4)$	2	2	
$\operatorname{VehM}(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
$\operatorname{VehM}(3,2)$	1	2	
$\operatorname{VehM}(3,3)$	2	1	
$\operatorname{VehM}(3,4)$	2	2	

WhIF - Suspension force on wheel
array
Longitudinal, lateral, and vertical suspension forces at axle a, wheel t, applied to the wheel at the axle wheel carrier reference coordinate, in N . Array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{WhlF}(1, \ldots)-$ Suspension force on wheel along the vehicle-fixed x-axis (longitudinal)
- $\operatorname{WhlF}(2, \ldots)$ - Suspension force on wheel along the vehicle-fixed y-axis (lateral)
- WhlF $(3, \ldots)$ - Suspension force on wheel along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlF:

- Signal dimensions are [3×4].
- Signal contains wheel forces applied to the vehicle according to the axle and wheel locations.

WhlF $=F_{w}=\left[\begin{array}{llll}F_{w x_{1,1}} & F_{w x_{1,2}} & F_{w x_{2,1}} & F_{w x_{2,2}} \\ F_{w y_{1,1}} & F_{w y_{1,2}} & F_{w y_{2,1}} & F_{w y_{2,2}} \\ F_{w z_{1,1}} & F_{w z_{1,2}} & F_{w z_{2,1}} & F_{w z_{2,2}}\end{array}\right]$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	WhlF $(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	WhlF $(1,2)$	1	2	
Rear left	WhlF $(1,3)$	2	1	
Rear right	WhlF $(1,4)$	2	2	
Front left	WhlF $(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
Front right	WhlF $(2,2)$	1	2	

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Rear left	WhlF $(2,3)$	2	1	
Rear right	WhlF $(2,4)$	2	2	
Front left	WhlF $(3,1)$	1	1	Vehicle-fixed z-axis (vertical)
Front right	WhlF(3,2)	1	2	
Rear left	WhlF $(3,3)$	2	1	
Rear right	WhlF(3,4)	2	2	

WhIV - Wheel velocity
array
Longitudinal, lateral, and vertical wheel velocity at axle a, wheel t , in m / s. Array dimensions are 3 by the number of wheels on the vehicle.

- WhlV (1, ...) - Wheel velocity along the vehicle-fixed x-axis (longitudinal)
- WhlV $(2, \ldots)$ - Wheel velocity along the vehicle-fixed y-axis (lateral)
- WhlV $(3, \ldots)-$ Wheel velocity along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the Whlv:

- Signal dimensions are [3×4].
- Signal contains wheel forces applied to the vehicle according to the axle and wheel locations.

$$
\text { WhlV }=\left[\begin{array}{c}
\dot{x}_{w} \\
\dot{y}_{w} \\
\dot{z}_{w}
\end{array}\right]=\left[\begin{array}{llll}
\dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\
\dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\
\dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	WhlV $(1,1)$	1	1	Vehicle-fixed x-axis (longitudinal)
Front right	WhlV $(1,2)$	1	2	
Rear left	WhlV $(1,3)$	2	1	
Rear right	WhlV $(1,4)$	2	2	

Wheel	Array Element	Axie	Wheel Numbe r	Force Axis
Front left	WhlV $(2,1)$	1	1	Vehicle-fixed y-axis (lateral)
Front right	WhlV (2,2)	1	2	
Rear left	WhlV (2,3)	2	1	
Rear right	WhlV $(2,4)$	2	2	
Front left	WhlV (3,1)	1	1	Vehicle-fixed z-axis (vertical)
Front right	WhlV (3,2)	1	2	
Rear left	WhlV (3,3)	2	1	
Rear right	WhlV (3,4)	2	2	

WhIAng - Wheel camber, caster, toe angles
array
Camber, caster, and toe angles at axle a, wheel t, in rad. Array dimensions are 3 by the number of wheels on the vehicle.

- WhlAng(1,...) - Camber angle
- WhlAng $(2, \ldots)$ - Caster angle
- Whlang $(3, \ldots)$ - Toe angle

For example, for a two-axle vehicle with two wheels per axle, the WhlAng:

- Signal dimensions are [3×4].
- Signal contains angles according to the axle and wheel locations.

$$
\text { WhlAng }=\left[\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right]=\left[\begin{array}{llll}
\xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\
\eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\
\zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe \mathbf{r}	Angle
Front left	WhlAng (1,1)	1	1	Camber
Front right	WhlAng (1,2)	1	2	

Wheel	Array Element	Axle	Wheel Numbe r	Angle
Rear left	WhlAng (1,3)	2	1	
Rear right	WhlAng (1,4)	2	2	
Front left	WhlAng (2,1)	1	1	Caster
Front right	WhlAng (2,2)	1	2	
Rear left	WhlAng (2,3)	2	1	
Rear right	WhlAng(2,4)	2	2	
Front left	WhlAng (3,1)	1	1	Toe
Front right	WhlF(3,2)	1	2	
Rear left	WhlF(3,3)	2	1	
Rear right	WhlF(3,4)	2	2	

Parameters

Axles

Number of axles, NumAxI - Number of axles

2 (default) | scalar
Number of axles, N_{a}, dimensionless.
Number of wheels by axle, NumWhlsByAxI - Number of wheels per axle
[2 2] (default)|vector
Number of wheels per axle, $N t_{a}$, dimensionless. Vector is 1 by the number of vehicle axles, N_{a}. For example, [1,2] represents one wheel on axle one and two wheels on axle two.

Steered axle enable by axle, StrgEnByAxI - Boolean vector to enable axle steering
[1 0] (default) |vector
Boolean vector that enables axle steering, $E n_{\text {steer }}$, dimensionless. Vector is 1 by the number of vehicle axles, N_{a}. For example:

- [llll-For a two-axle vehicle, enables axle one steering and disables axle two steering
- [11 1]-For a two-axle vehicle, enables axle one and axle two steering

Dependencies

Setting an element of the Steered axle enable by axle, StrgEnByAxl vector to 1:

- Creates input port StrgAng.
- Creates these parameters
- Toe angle vs steering angle slope, ToeStrgSlp
- Caster angle vs steering angle slope, CasterStrgSlp
- Camber angle vs steering angle slope, CamberStrgSlp
- Suspension height vs steering angle slope, StrgHgtSlp

For example, for a two-axle vehicle with two wheels per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set Steered axle enable by axle, StrgEnByAxl to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and wheel locations.

$$
\text { StrgAng }=\delta_{\text {steer }}=\left[\delta_{\text {steer }_{1,1}} \delta_{\text {steer }_{1}, 2}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	StrgAng (1, 1)	1	1
Front right	StrgAng (1,2)	1	2

Axle and wheels lumped principal moments of inertia about longitudinal axis, Axllxx Inertia
300 (default) | vector
Axle and wheels lumped principal moments of inertia about longitudinal axis, AxleIxx a, in $\mathrm{kg}^{*} \mathrm{~m} \wedge 2$.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Axle and wheels lumped mass, AxIM - Mass

[2 2] (default)|vector
Axle and wheels lumped mass, a, in kg.
Vector is 1 by the number of vehicle axles, N_{a}. If you provide a scalar value, the block uses that value for all axles.

Track hardpoint coordinates relative to axle center, TrackCoords - Point
[0 0 0 0;-1 1 -1 1;0 0 0 0] (default)|array
Track hardpoint coordinates, $T c_{t}$, along the solid axle x, y, and z-axes, in m .
For example, for a two-axle vehicle with two wheels per axle, the TrackCoords array:

- Dimensions are [3x4].
- Contains four track hardpoint coordinates according to their axle and wheel locations.

$$
T c_{t}=\left[\begin{array}{llll}
x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_{w_{2,2}} \\
y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_{w_{2,2}} \\
z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}}
\end{array}\right]
$$

Array Element	Axle	Wheel Number	Axis
TrackCoords(1, 1)	1	1	Solid axle x-axis
TrackCoords(1, 2)	1	2	
```TrackCoords(1, 3)```	2	1	
TrackCoords(1, 4)	2	2	
TrackCoords(2, 1)	1	1	Solid axle $y$-axis
TrackCoords(2, 2)	1	2	
TrackCoords(2, 3)	2	1	
TrackCoords(2, 4)	2	2	
TrackCoords(3, 1)	1	1	Solid axle $z$-axis
TrackCoords(3, 2)	1	2	
TrackCoords(3, 3)	2	1	
TrackCoords(3,   4)	2	2	

## Suspension hardpoint coordinates relative to axle center, SuspCoords - Point

## [0 0 0 0;-1 1-1 1;0 0 0 0] (default)|array

Suspension hardpoint coordinates, $S c_{t}$, along the solid axle $x$-, $y$-, and $z$-axes, in m .
For example, for a two-axle vehicle with two wheels per axle, the SuspCoords array:

- Dimensions are [3×4].
- Contains four track hardpoint coordinates according to their axle and track locations.

$$
S_{c_{t}}=\left[\begin{array}{llll}
x_{s_{1,1}} & x_{s_{1,2}} & x_{s_{2,1}} & x_{s_{2,2}} \\
y_{s_{1,1}} & y_{s_{1,2}} & y_{s_{2,1}} & y_{s_{2,2}} \\
z_{s_{1,1}} & z_{s_{1,2}} & z_{s_{2,1}} & z_{s_{2,2}}
\end{array}\right]
$$

Array Element	Axle	Track	Axis
SuspCoords(1,1 )	1	1	Solid axle $x$-axis
SuspCoords(1,2 )	1	2	
$\begin{aligned} & \text { SuspCoords(1,3 } \\ & \text { ) } \end{aligned}$	2	1	
SuspCoords(1,4	2	2	
$\begin{aligned} & \text { SuspCoords }(2,1 \\ & ) \end{aligned}$	1	1	Solid axle $y$-axis
SuspCoords(2,2	1	2	
SuspCoords(2,3 )	2	1	
$\begin{aligned} & \begin{array}{l} \text { SuspCoords }(2,4 \\ ) \\ \hline \end{array} \\ & \hline \end{aligned}$	2	2	
SuspCoords (3,1 )	1	1	Solid axle $z$-axis
SuspCoords (3,2 )	1	2	
$\begin{aligned} & \text { SuspCoords }(3,3 \\ & ) \end{aligned}$	2	1	
SuspCoords (3,4 )	2	2	

Wheel and axle interface compliance constant, KzWhIAxI - Spring rate 6437000 (default) | scalar

Wheel and axle interface compliance constant, $k w a_{z}$, in $\mathrm{N} / \mathrm{m}$.
Wheel and axle interface compliance preload, FOzWhIAxI - Spring rate 9810 (default) | scalar

Wheel and axle interface compliance preload, $F w a_{z 0}$, in N .

## Wheel and axle interface damping constant, CzWhIAxI - Damping

10000 (default) | scalar
Wheel and axle interface damping constant, $c w a_{z}$, in $m$.

## Suspension

## Compliance and Damping - Passive

Suspension spring constant, Kz - Suspension spring constant
64370 (default) | scalar | vector
Linear vertical spring constant for independent suspension wheels on axle a, $k_{z_{d}}$, in $\mathrm{N} / \mathrm{m}$.

Vector is 1 by the number of vehicle axles, $N_{a}$. If you provide a scalar value, the block uses that value for all axles.

## Suspension spring preload, $\mathbf{F O z}$ - Suspension spring preload

9810 (default) | scalar | vector
Vertical preload spring force applied to the wheels on the axle at wheel carrier reference coordinates, $F_{z 0_{a^{\prime}}}$ in N. Positive preload forces:

- Cause the vehicle to lift.
- Point along the negative vehicle-fixed $z$-axis.

Vector is 1 by the number of vehicle axles, $N_{a}$. If you provide a scalar value, the block uses that value for all axles.

Suspension shock damping constant, Cz - Suspension shock damping constant 10000 (default) | scalar | vector

Linear vertical damping constant for independent suspension wheels on axle a, $c_{z_{a^{\prime}}}$ in $\mathrm{Ns} / \mathrm{m}$.
Vector is 1 by the number of vehicle axles, $N_{a}$. If you provide a scalar value, the block uses that value for all axles.

## Dependencies

To create this parameter, clear Enable active damping.
Suspension maximum height, Hmax - Height
0.5 (default) | scalar | vector

Maximum suspension extension or minimum suspension compression height, $H_{\text {max }}$, for axle a before the suspension reaches a hardstop, in m .

Vector is 1 by the number of vehicle axles, $N_{a}$. If you provide a scalar value, the block uses that value for all axles.

## Geometry

Toe angle at steering center, Toe - Toe angle
0.0349 (default) | scalar

Nominal suspension toe angle at zero steering angle, $\zeta_{0 a}$, in rad.
Roll steer vs suspension height slope, RollStrgSIp - Steer angle suspension slope -0. 2269 (default) | scalar | vector

Roll steer angle versus suspension height, $m_{\text {htoe }}^{a_{a}}$, in $\mathrm{rad} / \mathrm{m}$.
Vector is 1 by the number of vehicle axles, $N_{a}$. If you provide a scalar value, the block uses that value for all axles.

Toe angle vs steering angle slope, ToeStrgSIp - Toe angle steering slope
0.01 (default) | scalar | vector

Toe angle versus steering angle slope, $m_{\text {toesteer }_{d^{\prime}}}$ dimensionless.

Vector is 1 by the number of vehicle axles, $N_{a}$. If you provide a scalar value, the block uses that value for all axles.

## Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1.

Caster angle at steering center, Caster - Caster angle at steering center 0.0698 (default) | scalar

Nominal suspension caster angle at zero steering angle, $\eta_{0 a}$, in rad.
Caster angle vs suspension height slope, CasterHslp - Caster angle versus suspension height slope
-0. 2269 (default) | scalar | vector
Caster angle versus suspension height, $m_{\text {hcaster }_{a^{\prime}}}$ in $\mathrm{rad} / \mathrm{m}$.
Vector is 1 by the number of vehicle axles, $N_{a}$. If you provide a scalar value, the block uses that value for all axles.

Caster angle vs steering angle slope, CasterStrgSIp - Caster angle versus steering angle slope 0.01 (default) | scalar | vector

Caster angle versus steering angle slope, $m_{\text {castersteer }_{a^{\prime}}}$ dimensionless.
Vector is 1 by the number of vehicle axles, $N_{a}$. If you provide a scalar value, the block uses that value for all axles.

## Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1.

Camber angle at steering center, Camber - Camber angle at steering center 0.0698 (default) | scalar

Nominal suspension camber angle at zero steering angle, $\xi_{0 a}$, in rad.
Camber angle vs suspension height slope, CamberHslp - Camber angle versus suspension height slope
-0. 2269 (default) | scalar | vector
Camber angle versus suspension height, $m_{\text {hcamber }_{a}}$, in $\mathrm{rad} / \mathrm{m}$.
Vector is 1 by the number of vehicle axles, $N_{a}$. If you provide a scalar value, the block uses that value for all axles.

Camber angle vs steering angle slope, CamberStrgSIp - Camber angle versus steering angle slope
0.01 (default) | scalar | vector

Camber angle versus steering angle slope, $m_{\text {cambersteer }_{a^{\prime}}}$ dimensionless.
Vector is 1 by the number of vehicle axles, $N_{a}$. If you provide a scalar value, the block uses that value for all axles.

## Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Suspension height vs steering angle slope, StrgHgtSIp - Suspension height versus steering angle slope
0.1432 (default) | scalar | vector

Steering angle to vertical force slope applied at suspension wheel carrier reference point, $m_{\text {hsteer }}$, in $\mathrm{m} / \mathrm{rad}$.

Vector is 1 by the number of vehicle axles, $N_{a}$. If you provide a scalar value, the block uses that value for all axles.

## Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

## Version History

## Introduced in R2018a

## R2022b: Parameter name change from NumTracksByAxl to NumWhlsByAxl

Behavior changed in R2022b
The Number of tracks by axle, NumTracksByAxl parameter is renamed to Number of wheels by axle, NumWhlsByAxl.

The block uses the number of wheels per axle to index the input and output block signals.

## References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
[2] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
[3] Technical Committee. Road vehicles - Vehicle dynamics and road-holding ability - Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

## See Also

Solid Axle Suspension | Solid Axle Suspension - Coil Spring | Solid Axle Suspension - Mapped

## Independent Suspension - K and C

Independent kinematics and compliance test suspension


## Libraries:

Vehicle Dynamics Blockset / Suspension

## Description

In the Vehicle Dynamics Blockset ${ }^{\text {TM }}$ library, there are two types of suspension blocks that implement the kinematics and compliance ( K and C ) test suspension characteristics measured from simulated or actual laboratory suspension tests.



## $K$ and C Effects on Suspension

To determine the overall suspension forces and geometric effects on the vehicle and wheels, the block adds the individual effects from kinematic (bounce, roll, steering) and compliance (longitudinal and lateral forces, aligning moments) inputs. Specifically, the block multiplies the suspension geometry states by either gradient or table values to determine the K and C effects on wheel orientation and suspension forces.

## Wheel orientation:

- Camber, caster, and steer angles
- Lateral wheel center displacement
- Longitudinal wheel center displacement

Vertical suspension forces:

- Anti-sway bar
- Shock force
- Wheel rate
- Contact patch swing arm (CPSA) force
- Longitudinal side view swing arm (SVSA) anti-effects


## Camber, Caster, and Steer Angles

The block uses these parameters to account for the K and C effects on the camber, caster, and steer angles.

- Bounce test- Independent suspension
- Roll test- Independent suspension
- Steer test
- Longitudinal compliance test
- Lateral compliance-opposed test
- Aligning torque compliance-opposed test

Use the Static alignment settings parameters to set the initial state of the suspension.

## Lateral Wheel Center Displacement

The block uses these parameters to account for the K and C effects the lateral wheel center displacement.

- Bounce test
- Longitudinal compliance test
- Lateral compliance-opposed test


## Longitudinal Wheel Center Displacement

The block uses these parameters to account for the K and C effects on the longitudinal wheel center displacement.

- Bounce test
- Longitudinal compliance test


## Shock Force

The block uses the Shock force parameters to calculate the shock force effect on the vertical suspension force. You can specify table-based or constant parameter values.

## Wheel Rate

The block uses the Bounce test parameters to calculate the wheel rate effect on the vertical suspension force.

## Contact Patch Swing Arm

The block uses these equations to calculate the effect of the contact patch swing arm (CPSA) forces on vertical suspension force.

$$
\begin{aligned}
& \tan \left(\theta_{C P S A}\right)=f\left(Z_{w}\right) \\
& F_{z C P S A}=F_{y} \tan \left(\theta_{C P S A}\right)
\end{aligned}
$$

The block also uses the Static loaded radius of wheels parameter in the CPSA force calculation.
The equations use these variables.
$\theta_{\text {CPSA }} \quad$ Contact patch swing arm angle
$F_{y} \quad$ Lateral suspension force
$F_{z C P S A} \quad$ CPSA effect on vertical suspension force
$z_{w} \quad$ Wheel displacement

## Longitudinal Side View Swing Arm Anti-Effects

The block uses these equations to calculate the effect of the side view swing arm (SVSA) forces on vertical suspension force during acceleration and braking.

$$
\begin{aligned}
& \tan \left(\theta_{S V S A}\right)=f\left(Z_{w}\right) \\
& F_{z S V S A}=F_{\chi} \tan \left(\theta_{S V S A}\right)
\end{aligned}
$$

Use the Drivetrain type parameter to ensure that the block applies the acceleration anti-effects to the correct wheels.

The equations use these variables.

$\theta_{S V S A}$	Contact patch swing arm angle
$F_{x}$	Longitudinal wheel force
$F_{z S V S A}$	SVSA effect on vertical suspension force
$z_{w}$	Wheel displacement

## Anti-Sway Bar

Optionally, use the Anti-sway axle enable by axle, AntiSwayEnByAxl parameter to implement antisway bar reaction forces by axle.

If you enable an anti-sway bar on the axle, the anti-sway bar stiffness is the difference between the anti-sway bar torque parameter, Suspension roll stiffness with anti-roll bar, RollStiffArb, and the roll stiffness parameter measured with no anti-sway bar present Suspension roll stiffness without anti-roll bar, RollStiffNoArb.

If you do not enable an anti-sway bar, the roll stiffness is 0 .

## Ports

The block uses the wheel number, $t$, to index the input and output signals. This table summarizes the wheel, axle, and corresponding wheel number for a vehicle with:

- Two axles
- Two wheels per axle

Wheel	Axle	Wheel Number
Front left	Front	1
Front right	Front	2
Rear left	Rear	1
Rear right	Rear	2

## Input

WhIPz - Wheel z-axis displacement
array
Wheel displacement, $z_{w}$, along wheel-fixed $z$-axis, in $m$. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlPz:

- Signal array dimensions are [1×4].

$$
\text { WhlPz }=z_{w}=\left[\begin{array}{llll}
z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlPz $(1,1)$	1	1
Front right	WhlPz $(1,2)$	1	2
Rear left	WhlPz $(1,3)$	2	1
Rear right	WhlPz $(1,4)$	2	2

WhIRe - Wheel effective radius
array
Effective wheel radius, $R e_{w}$, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlRe:

- Signal array dimensions are [1×4].

$$
\text { WhlRe }=R e_{w}=\left[\begin{array}{lll}
R e_{w_{1,1}} & R e_{w_{1,2}} & R e_{w_{2,1}}
\end{array} R e_{w_{2,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlRe $(1,1)$	1	1
Front right	WhlRe $(1,2)$	1	2
Rear left	WhlRe $(1,3)$	2	1
Rear right	WhlRe $(1,4)$	2	2

WhIVz - Wheel z-axis velocity array

Wheel velocity, $\dot{z}_{w}$, along wheel-fixed $z$-axis, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlVz:

- Signal array dimensions are [1×4].

WhlVz $=\dot{z}_{w}=\left[\begin{array}{lll}\dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}}\end{array} \dot{z}_{w_{2,2}}\right]$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlVz $(1,1)$	1	1
Front right	WhlVz $(1,2)$	1	2
Rear left	WhlVz $(1,3)$	2	1
Rear right	WhlVz $(1,4)$	2	2

WhIFx - Longitudinal wheel force on vehicle
array

Longitudinal wheel force applied to vehicle, $F_{w x}$, along the vehicle-fixed $x$-axis. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlFx:

- Signal array dimensions are [1×4].

$$
\mathrm{WhlFx}=F_{w x}=\left[\begin{array}{ll}
F_{w x_{1,1}} & F_{w x_{1,2}} \\
F_{w x_{2,1}} & F_{w x_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlFx $(1,1)$	1	1
Front right	WhlFx $(1,2)$	1	2
Rear left	WhlFx $(1,3)$	2	1
Rear right	WhlFx $(1,4)$	2	2

WhIFy - Lateral wheel force on vehicle
array
Lateral wheel force applied to vehicle, $F_{w y}$, along the vehicle-fixed $y$-axis. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlFy:

- Signal array dimensions are [1x4].

$$
\text { WhlFy }=F_{w y}=\left[F_{w y_{1,1}} F_{w y_{1,2}} F_{w y_{2,1}} F_{w y_{2,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlFy $(1,1)$	1	1
Front right	WhlFy $(1,2)$	1	2
Rear left	WhlFy $(1.3)$	2	1
Rear right	WhlFy $(1,4)$	2	2

WhIM - Suspension moment on wheel
array
Longitudinal, lateral, and vertical suspension moments at axle a, wheel $t$, applied to the wheel at the axle wheel carrier reference coordinate, in $N \cdot m$. Input array dimensions are 3 by the number of wheels on the vehicle.

- WhlM (1, ...) - Suspension moment applied to the wheel about the vehicle-fixed $x$-axis (longitudinal)
- WhlM ( $2, \ldots$ ) - Suspension moment applied to the wheel about the vehicle-fixed $y$-axis (lateral)
- WhlM ( $3, \ldots$ ) - Suspension moment applied to the wheel about the vehicle-fixed $z$-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlM:

- Signal dimensions are [3×4].
- Signal contains suspension moments applied to four wheels according to their axle and wheel locations.

$$
\text { WhlM }=M_{w}=\left[\begin{array}{llll}
M_{w x_{1,1}} & M_{w x_{1,2}} & M_{w x_{2,1}} & M_{w x_{2,2}} \\
M_{w y_{1,1}} & M_{w y_{1,2}} & M_{w y_{2,1}} & M_{w y 2,2} \\
M_{w z_{1,1}} & M_{w z_{1,2}} & M_{w z_{2,1}} & M_{w z_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel   Numbe   r	Moment Axis
Front   left	WhlM(1,1)	1	1	Vehicle-fixed $x$-axis (longitudinal)
Front   right	WhlM(1,2)	1	2	
Rear   left	WhlM(1,3)	2	1	
Rear   right	WhlM(1,4)	2	2	
Front   left	WhlM(2,1)	1	1	Vehicle-fixed $y$-axis (lateral)
Front   right	WhlM(2,2)	1	2	
Rear   left	WhlM(2,3)	2	1	
Rear   right	WhlM(2,4)	2	2	
Front   left	WhlM(3,1)	1	1	Vehicle-fixed $z$-axis (vertical)
Front   right	WhlM(3,2)	1	2	
Rear   left	WhlM(3,3)	2	1	
Rear   right	WhlM(3,4)	2	2	

VehP - Vehicle displacement
array
Vehicle displacement from axle a, wheel $t$ along vehicle-fixed coordinate system, in m. Input array dimensions are 3 the number of wheels on the vehicle.

- VehP $(1, \ldots)$ - Vehicle displacement from wheel, $\chi_{v}$, along the vehicle-fixed $x$-axis
- $\operatorname{VehP}(2, \ldots)$ - Vehicle displacement from wheel, $y_{v}$, along the vehicle-fixed $y$-axis
- $\operatorname{VehP}(3, \ldots)-$ Vehicle displacement from wheel, $z_{v}$, along the vehicle-fixed $z$-axis

For example, for a two-axle vehicle with two wheels per axle, the VehP:

- Signal dimensions are [3x4].
- Signal contains four displacements according to their axle and wheel locations.

$$
\text { VehP }=\left[\begin{array}{l}
x_{v} \\
y_{v} \\
z_{v}
\end{array}\right]=\left[\begin{array}{llll}
x_{v_{1,1}} & x_{v_{1,2}} & x_{v_{2,1}} & x_{v_{2,2}} \\
y_{v_{1,1}} & y_{v_{1,2}} & y_{v_{2,1}} & y_{v_{2,2}} \\
z_{v_{1,1}} & z_{v_{1,2}} & z_{v_{2,1}} & z_{v_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Front left	$\operatorname{VehP}(1,1)$	1	1	Vehicle-fixed $x$-axis
Front right	$\operatorname{VehP}(1,2)$	1	2	
$\begin{array}{\|l} \hline \begin{array}{l} \text { Rear } \\ \text { left } \end{array} \\ \hline \end{array}$	$\operatorname{VehP}(1,3)$	2	1	
Rear right	$\operatorname{VehP}(1,4)$	2	2	
Front left	$\operatorname{VehP}(2,1)$	1	1	Vehicle-fixed $y$-axis
Front right	$\operatorname{VehP}(2,2)$	1	2	
$\begin{array}{\|l} \text { Rear } \\ \text { left } \end{array}$	$\operatorname{VehP}(2,3)$	2	1	
Rear right	$\operatorname{VehP}(2,4)$	2	2	
Front left	$\operatorname{VehP}(3,1)$	1	1	Vehicle-fixed $z$-axis
Front right	$\operatorname{VehP}(3,2)$	1	2	
$\begin{array}{\|l} \begin{array}{l} \text { Rear } \\ \text { left } \end{array} \\ \hline \end{array}$	$\operatorname{VehP}(3,3)$	2	1	
Rear right	$\operatorname{VehP}(3,4)$	2	2	

VehV - Vehicle velocity
array
Vehicle velocity at axle a, wheel t along vehicle-fixed coordinate system, in m . Input array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{VehV}(1, \ldots)-$ Vehicle velocity at wheel, $x_{v}$, along the vehicle-fixed $x$-axis
- $\operatorname{VehV}(2, \ldots)$ - Vehicle velocity at wheel, $y_{v}$, along the vehicle-fixed $y$-axis
- $\operatorname{VehV}(3, \ldots)-$ Vehicle velocity at wheel, $z_{v}$, along the vehicle-fixed $z$-axis

For example, for a two-axle vehicle with two wheels per axle, the VehV:

- Signal dimensions are [3×4].
- Signal contains 4 velocities according to their axle and wheel locations.

$$
\text { VehV }=\left[\begin{array}{c}
\dot{x}_{v} \\
\dot{y}_{v} \\
\dot{z}_{v}
\end{array}\right]=\left[\begin{array}{llll}
\dot{x}_{v_{1,1}} & \dot{x}_{v_{1,2}} & \dot{x}_{v_{2,1}} & \dot{x}_{v_{2,2}} \\
\dot{y}_{v_{1,1}} & \dot{y}_{v_{1,2}} & \dot{y}_{v_{2,1}} & \dot{v}_{v_{2,2}} \\
\dot{z}_{v_{1,1}} & \dot{z}_{v_{1,2}} & \dot{z}_{v_{2,1}} & \dot{z}_{v_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Axis
Front left	$\operatorname{VehV}(1,1)$	1	1	Vehicle-fixed $x$-axis
Front right	$\operatorname{VehV}(1,2)$	1	2	
$\begin{array}{\|l} \hline \begin{array}{l} \text { Rear } \\ \text { left } \end{array} \\ \hline \end{array}$	$\operatorname{VehV}(1,3)$	2	1	
Rear right	$\operatorname{VehV}(1,4)$	2	2	
Front left	$\operatorname{VehV}(2,1)$	1	1	Vehicle-fixed $y$-axis
Front right	$\operatorname{VehV}(2,2)$	1	2	
Rear   left	$\operatorname{VehV}(2,3)$	2	1	
Rear right	$\operatorname{VehV}(2,4)$	2	2	
Front left	$\operatorname{VehV}(3,1)$	1	1	Vehicle-fixed $z$-axis
Front right	$\operatorname{VehV}(3,2)$	1	2	
Rear left	$\operatorname{VehV}(3,3)$	2	1	
Rear right	$\operatorname{VehV}(3,4)$	2	2	

StrgAng - Steering angle, optional
array
Optional steering angle for each wheel, $\delta$. Input array dimensions are 1 by the number of steered wheels.

For example, for a two-axle vehicle with two wheels per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set Steered axle enable by axle, StrgEnByAxl to [1 0]. The input signal array dimensions are [1×2].
- The StrgAng signal contains two steering angles according to their axle and wheel locations.

$$
\text { StrgAng }=\delta_{\text {steer }}=\left[\delta_{\text {steer }_{1,1}} \delta_{\text {steer }_{1,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	StrgAng $(1,1)$	1	1
Front right	StrgAng $(1,2)$	1	2

## Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Phi - Vehicle pitch angle
scalar
Vehicle pitch angle about earth-fixed $Y$-axis, in rad.
TrckWdth - Track width
array
Distance between wheels on each axle. Input array dimensions are 1-by-2.

Array Element	Description
TrckWdth $(1,1)$	Distance between wheels on front axle
TrckWdth $(1,2)$	Distance between wheels on rear axle

## Output

Info - Bus signal
bus
Bus signal containing block values. The signals are arrays that depend on the wheel location.
For example, here are the indices for a two-axle, two-wheel vehicle. The total number of wheels is four.

- 1D array signal (1-by-4)

Wheel	Array Element	Axle	Wheel Number
Front left	$(1,1)$	1	1
Front right	$(1,2)$	1	2
Rear left	$(1,3)$	2	1
Rear right	$(1,4)$	2	2

- 3D array signal (3-by-4)

Wheel	Array Element	Axle	Wheel Number
Front left	$(1,1)$	1	1
Front right	$(1,2)$	1	2
Rear left	$(1,3)$	2	1
Rear right	$(1,4)$	2	2
Front left	$(2,1)$	1	1


Wheel	Array Element	Axle	Wheel Number
Front right	$(2,2)$	1	2
Rear left	$(2,3)$	2	1
Rear right	$(2,4)$	2	2
Front left	$(3,1)$	1	1
Front right	$(3,2)$	1	2
Rear left	$(3,3)$	2	1
Rear right	$(3,4)$	2	2


Signal	Description	Array Signal	Variable	Units
Camber	Wheel angles according to the axle and wheel location.	1D	WhlAng $[1, \ldots]=\xi=\left[\xi_{a, t}\right]$	rad
Caster			WhlAng $[2, \ldots]=\eta=\left[\eta_{a, t}\right]$	
Toe			WhlAng $[3, \ldots]=\zeta=\left[\zeta_{a, t}\right]$	
Height	Suspension height	1D	H	m
Power	Suspension power dissipation	1D	$P_{\text {susp }}$	W
Energy	Suspension absorbed energy	1D	$E_{\text {susp }}$	J
VehF	Suspension forces applied to the vehicle	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { VehF }=F_{v}= \\ & {\left[\begin{array}{llll} F_{v x_{1,1}} & F_{v x_{1,2}} & F_{v x_{2,1}} & F_{v x_{2}, 2} \\ F_{v y 1,1} & F_{v x_{1,2}} & F_{v v_{2,1}} & F_{v y 2,2} \\ F_{v x_{1,1}} & F_{v x_{1,2}} & F_{v z_{2,1}} & F_{v z_{2,2}} \end{array}\right.} \end{aligned}$	N


Signal	Description	Array Signal	Variable Units
VehM	Suspension moments applied to vehicle	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { VehM }=M_{v}= \\ & {\left[\begin{array}{lllll} M_{v x_{1}, 1} & M_{v x_{1}, 2} & M_{v x_{2,1}} & M_{v \times 2,2} \\ M_{v y_{1,1}} & M_{v y_{1,2}} & M_{v y 2,1} & M_{v y 2,2} \\ M_{v z_{1,1}} & M_{v z_{1,2}} & M_{v z_{2,1}} & M_{v \chi_{2,2}} \end{array}\right.} \end{aligned}$
WhlF	Suspension force applied to wheel	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlF }=F_{w}= \\ & {\left[\begin{array}{llll} F_{w x_{1}, 1} & F_{w x_{1,2}} & F_{w x_{2,1}} & F_{w x_{2}, 2} \\ F_{w y_{1,1}} & F_{w y_{1,2}} & F_{w y 2,1} & F_{w y_{2,2}} \\ F_{w z_{1,1}} & F_{w z_{1,2}} & F_{w z_{2,1}} & F_{w z_{2,2}} \end{array}\right.} \end{aligned}$
WhlP	Wheel displacement	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlP }=\left[\begin{array}{l} x_{w} \\ y_{w} \\ z_{w} \end{array}\right]= \\ & {\left[\begin{array}{llll} x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_{w_{2,2}} \\ y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_{w \not{ }_{2,2}} \\ z_{w t r_{1,1}} & z_{w t r_{1,2}} & z_{w t r_{2,1}} & z_{w t t_{2,2}} \end{array}\right.} \end{aligned}$


Signal	Description	Array Signal	Variable	Units
WhlV	Wheel velocity	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlV }=\left[\begin{array}{l} \dot{x}_{w} \\ \dot{y}_{w} \\ \dot{z}_{w} \end{array}\right] \\ & = \\ & {\left[\begin{array}{llll} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}} \end{array}\right]} \end{aligned}$	$\mathrm{m} / \mathrm{s}$
WhlAng	Wheel camber, caster, toe angles	3D	For a two-axle, two wheels per axle vehicle: $\left.\begin{array}{l} \text { WhlAng }=\left[\begin{array}{l} \xi \\ \eta \\ \zeta \end{array}\right] \\ =\left[\begin{array}{lll} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} \\ \xi_{2,2} \\ \eta_{1,1} & \eta_{1,2} & \eta_{2,1} \\ \zeta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} \end{array} \zeta_{2,2}\right. \end{array}\right] .$	rad

## VehF - Suspension force on vehicle array

Longitudinal, lateral, and vertical suspension force at axle a, wheel $t$, applied to the vehicle at the suspension connection point, in N. Array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{VehF}(1, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed $x$-axis (longitudinal)
- $\operatorname{VehF}(2, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed $y$-axis (lateral)
- $\operatorname{VehF}(3, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed $z$-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the VehF:

- Signal dimensions are [3×4].
- Signal contains suspension forces applied to the vehicle according to the axle and wheel locations.

$$
\text { VehF }=F_{v}=\left[\begin{array}{lllll}
F_{v x_{1,1}} & F_{v x_{1,2}} & F_{v x_{2,1}} & F_{v x_{2,2}} \\
F_{v y 1,1} & F_{v y_{1,2}} & F_{v y_{2,1}} & F_{v y_{2,2}} \\
F_{v z_{1,1}} & F_{v z_{1,2}} & F_{v z_{2,1}} & F_{v z_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	$\operatorname{VehF}(1,1)$	1	1	Vehicle-fixed $x$-axis (longitudinal)
Front right	$\operatorname{VehF}(1,2)$	1	2	
Rear left	$\operatorname{VehF}(1,3)$	2	1	
Rear right	$\operatorname{VehF}(1,4)$	2	2	
Front left	$\operatorname{VehF}(2,1)$	1	1	Vehicle-fixed $y$-axis (lateral)
Front right	$\operatorname{VehF}(2,2)$	1	2	
Rear left	$\operatorname{VehF}(2,3)$	2	1	
Rear right	$\operatorname{VehF}(2,4)$	2	2	
Front left	$\operatorname{VehF}(3,1)$	1	1	Vehicle-fixed $z$-axis (vertical)
Front right	$\operatorname{VehF}(3,2)$	1	2	
Rear left	$\operatorname{VehF}(3,3)$	2	1	
Rear right	$\operatorname{VehF}(3,4)$	2	2	

VehM - Suspension moment on vehicle
array
Longitudinal, lateral, and vertical suspension moment at axle a, wheel $t$, applied to the vehicle at the suspension connection point, in $\mathrm{N} \cdot \mathrm{m}$. Array dimensions are 3 by the number of wheels on the vehicle.

- VehM ( $1, \ldots$ ) - Suspension moment applied to the vehicle about the vehicle-fixed $x$-axis (longitudinal)
- VehM ( $2, \ldots$ ) - Suspension moment applied to the vehicle about the vehicle-fixed $y$-axis (lateral)
- VehM ( $3, \ldots$ ) - Suspension moment applied to the vehicle about the vehicle-fixed $z$-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the VehM:

- Signal dimensions are [3×4].
- Signal contains suspension moments applied to vehicle according to the axle and wheel locations.

$$
\text { VehM }=M_{v}=\left[\begin{array}{llll}
M_{v x_{1,1}} & M_{v x_{1,2}} & M_{v x_{2,1}} & M_{v x_{2,2}} \\
M_{v y 1,1} & M_{v y_{1,2}} & M_{v y 2,1} & M_{v y_{2,2}} \\
M_{v z_{1,1}} & M_{v z_{1,2}} & M_{v z_{2,1}} & M_{v z_{2,2}}
\end{array}\right]
$$

Array Element	Axle	Wheel   Number	Moment Axis
VehM $(1,1)$	1	1	Vehicle-fixed $x$-axis (longitudinal)
$\operatorname{VehM}(1,2)$	1	2	
$\operatorname{VehM}(1,3)$	2	1	
$\operatorname{VehM}(1,4)$	2	2	
$\operatorname{VehM}(2,1)$	1	1	Vehicle-fixed $y$-axis (lateral)
$\operatorname{VehM}(2,2)$	1	2	
$\operatorname{VehM}(2,3)$	2	1	
$\operatorname{VehM}(2,4)$	2	2	
$\operatorname{VehM}(3,1)$	1	1	Vehicle-fixed $z$-axis (vertical)
$\operatorname{VehM}(3,2)$	1	2	
$\operatorname{VehM}(3,3)$	2	1	
$\operatorname{VehM}(3,4)$	2	2	

WhIF - Suspension force on wheel
array
Longitudinal, lateral, and vertical suspension forces at axle a, wheel $t$, applied to the wheel at the axle wheel carrier reference coordinate, in N. Array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{WhlF}(1, \ldots)$ - Suspension force on wheel along the vehicle-fixed $x$-axis (longitudinal)
- $\operatorname{WhlF}(2, \ldots)$ - Suspension force on wheel along the vehicle-fixed $y$-axis (lateral)
- $\operatorname{WhlF}(3, \ldots)$ - Suspension force on wheel along the vehicle-fixed $z$-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlF:

- Signal dimensions are [3×4].
- Signal contains wheel forces applied to the vehicle according to the axle and wheel locations.

$$
\text { WhlF }=F_{w}=\left[\begin{array}{lllll}
F_{w x_{1,1}} & F_{w x_{1,2}} & F_{w x_{2,1}} & F_{w x_{2,2}} \\
F_{w y 1,1} & F_{w y 1,2} & F_{w y 2,1} & F_{w y 2,2} \\
F_{w z_{1,1}} & F_{w z_{1,2}} & F_{w z_{2,1}} & F_{w z 2,2}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel   Numbe   $\mathbf{r}$	Force Axis
Front   left	WhlF $(1,1)$	1	1	Vehicle-fixed $x$-axis (longitudinal)


Wheel	Array Element	Axle	Wheel   Numbe   r	Force Axis
Front   right	WhlF (1,2)	1	2	
Rear   left	WhlF (1,3)	2	1	
Rear   right	WhlF (1,4)	2	2	
Front   left	WhlF (2,1)	1	1	Vehicle-fixed $y$-axis (lateral)
Front   right	WhlF (2,2)	1	2	
Rear   left	WhlF $(2,3)$	2	1	
Rear   right	WhlF (2,4)	2	2	
Front   left	WhlF (3,1)	1	1	Vehicle-fixed $z$-axis (vertical)
Front   right	WhlF (3,2)	1	2	
Rear   left	WhlF (3,3)	2	1	
Rear   right	WhlF (3,4)	2	2	

## WhIV - Wheel velocity

array
Longitudinal, lateral, and vertical wheel velocity at axle a, wheel t , in $\mathrm{m} / \mathrm{s}$. Array dimensions are 3 by the number of wheels on the vehicle.

- WhlV (1, ...) - Wheel velocity along the vehicle-fixed $x$-axis (longitudinal)
- $\operatorname{WhlV}(2, \ldots)-$ Wheel velocity along the vehicle-fixed $y$-axis (lateral)
- $\operatorname{WhlV}(3, \ldots)-$ Wheel velocity along the vehicle-fixed $z$-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlV:

- Signal dimensions are [3×4].
- Signal contains wheel forces applied to the vehicle according to the axle and wheel locations.

$$
\text { WhlV }=\left[\begin{array}{l}
\dot{x}_{w} \\
\dot{y}_{w} \\
\dot{z}_{w}
\end{array}\right]=\left[\begin{array}{llll}
\dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\
\dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\
\dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	WhlV (1,1)	1	1	Vehicle-fixed $x$-axis (longitudinal)
Front right	WhlV (1,2)	1	2	
Rear   left	WhlV (1,3)	2	1	
Rear right	WhlV $(1,4)$	2	2	
Front left	WhlV $(2,1)$	1	1	Vehicle-fixed $y$-axis (lateral)
Front right	WhlV $(2,2)$	1	2	
Rear left	WhlV $(2,3)$	2	1	
Rear right	WhlV $(2,4)$	2	2	
Front left	WhlV $(3,1)$	1	1	Vehicle-fixed $z$-axis (vertical)
Front right	WhlV (3,2)	1	2	
$\begin{aligned} & \text { Rear } \\ & \text { left } \end{aligned}$	Whlv (3, 3)	2	1	
Rear right	WhlV $(3,4)$	2	2	

WhIAng - Wheel camber, caster, toe angles
array
Camber, caster, and toe angles at axle a, wheel $t$, in rad. Array dimensions are 3 by the number of wheels on the vehicle.

- WhlAng(1,...) - Camber angle
- WhlAng $(2, \ldots)$ - Caster angle
- Whlang $(3, \ldots)$ - Toe angle

For example, for a two-axle vehicle with two wheels per axle, the WhlAng:

- Signal dimensions are [3×4].
- Signal contains angles according to the axle and wheel locations.

$$
\text { WhlAng }=\left[\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right]=\left[\begin{array}{llll}
\xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\
\eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\
\zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel   Numbe   r	Angle
Front   left	WhlAng (1,1)	1	1	Camber
Front   right	WhlAng (1,2)	1	2	
Rear   left	WhlAng (1,3)	2	1	
Rear   right	WhlAng (1,4)	2	2	
Front   left	WhlAng (2,1)	1	1	Caster
Front   right	WhlAng (2,2)	1	2	
Rear   left	WhlAng (2,3)	2	1	
Rear   right	WhlAng (2,4)	2	2	
Front   left	WhlAng (3,1)	1	1	Toe
Front   right	WhlF(3,2)	1	2	
Rear   left	WhlF(3,3)	2	1	
Rear   right	WhlF(3,4)	2	2	

## Parameters

Steered axle enable by axle, StrgEnByAxI - Boolean vector to enable axle steering
[1 0] (default)| vector
Boolean vector that enables axle steering, $E n_{\text {steer }}$, dimensionless. Vector is 1 by the number of vehicle axles, $N_{a}$. For example:

- [1 0] - For a two-axle vehicle, enables axle 1 steering and disables axle 2 steering
- [ll $\left.\begin{array}{ll}1 & 1\end{array}\right]$ - For a two-axle vehicle, enables axle 1 and axle 2 steering


## Dependencies

Setting any element of the Steered axle enable by axle, StrgEnByAxl vector to 1 creates Input port StrgAng.

Anti-sway axle enable by axle, AntiSwayEnByAxI - Boolean vector to enable axle anti-sway [0 0] (default)|vector

Boolean vector that enables axle anti-sway for axle $a$, dimensionless. For example, [ 1 0] enables axle 1 anti-sway and disables axle 2 anti-sway. Vector is 1 by the number of vehicle axles, $N_{a}$.

If you enable an anti-sway bar on the axle, the anti-sway bar stiffness is the difference between the anti-sway bar torque parameter, Suspension roll stiffness with anti-roll bar, RollStiffArb, and the roll stiffness parameter measured with no anti-sway bar present Suspension roll stiffness without anti-roll bar, RollStiffNoArb.

If you do not enable an anti-sway bar, the stiffness is 0 .

## Suspension Parameters

## Suspension type - Type of suspension

Independent front and rear|Independent front and twist beam rear

Select type of suspension.
Drivetrain type - Type of drivetrain
FWD (default) | RWD \| AWD
Select type of drivetrain.

- AWD - All-wheel drive
- FWD - Front-wheel drive
- RWD - Rear-wheel drive


## Directions

+ Steer angle - Positive steer angle
Right (default) | Left
Direction of positive steer angle during kinematics and compliance test.
+ Fx used in compliance tests - Positive longitudinal force
Front (default) | Rear
Direction of positive longitudinal force during kinematics and compliance test.
+ Fy used in compliance tests - Positive lateral force
Right (default) |Left
Direction of positive lateral force during kinematics and compliance test.
+ Suspension Jounce - Positive suspension jounce
Up (default) | Down
Direction of positive suspension jounce during kinematics and compliance test.
+ WhIMz used in compliance tests - Positive yaw moment
Counter-clockwise (default)|Clockwise
Direction of positive yaw moment during kinematics and compliance test.


## Shock force

Shock type - Type of shock force
Table-based (default)|Table-based individualConstant
Type of shock force.
If a table-based individual setting is chosen, table-based shock force is implemented together with constant motion ratios. If a table-based setting is chosen both shock force and motion ratios are calculated from lookup tables.

Setting	Implementation
Table-based	Table-based shock force and motion ratios.
Table-based individual	Table-based shock force and constant motion   ratios.
Constant	Constant shock force and motion ratios.

## Shock force vs shock compression rate, ShckFrceVsCompRate - Table

struct('FL',[-100. -5000;0 0;100. 5000],'FR',[-100. -5000;0 0;100.
5000],'RL',[-100. -5000;0 0;100. 5000],'RR',[-100. -5000;0 0;100. 5000]) (default)

Shock force versus shock compression rate, specified as a structure, in $\mathrm{N} / \mathrm{mm}$ per sec.

## Dependencies

To create this parameter, set Shock type to Table-based or Table-based individual.

## Data Types: struct

Motion ratios by axle, MotRatios - Table
struct('FL',[-0.1 -0.1;0 0;0.1 0.1],'FR',[-0.1 -0.1;0 0;0.1 0.1],'RL',[-0.1 -0.1;0 0;0.1 0.1],'RR',[-0.1 -0.1;0 0;0.1 0.1]) (default)

Motion ratios by axle, specified as a structure.
Data Types: struct

## Bounce test

Bump steer, BumpSteer - Table

```
struct('FL',[-0.1 1.1459;0 0;0.1 -1.1459],'FR',[-0.1 1.1459;0 0;0.1
```

-1.1459],'RL',[-0.1 0.;0 0;0.1 0.],'RR',[-0.1 0.;0 0;0.1 0.]) (default)

Bump steer, specified as a structure, in deg/m.
Data Types: struct
Bump camber, BumpCamber - Table
struct('FL',[-0.1 1.7189;0 0;0.1 -1.7189],'FR',[-0.1 1.7189;0 0;0.1
-1.7189],'RL',[-0.1 0.;0 0;0.1 0.],'RR',[-0.1 0.;0 0;0.1 0.]) (default)
Bump camber, specified as a structure, in deg/m.
Data Types: struct

## Bump caster, BumpCaster - Table

```
struct('FL',[-0.1 1.1459;0 0;0.1 -1.1459],'FR',[-0.1 1.1459;0 0;0.1
-1.1459],'RL',[-0.1 -11.4592;0 0;0.1 11.4592],'RR',[-0.1 -11.4592;0 0;0.1
11.4592]) (default)
```

Bump caster, specified as a structure, in deg/m.
Data Types: struct

## Lateral wheel center displacement, LatWhICtrDisp - Table

struct('FL',[-0.1 0.02;0 0;0.1 -0.02],'FR',[-0.1 0.02;0 0;0.1 -0.02],'RL', [-0.1 0.;0 0;0.1 0.],'RR',[-0.1 0.;0 0;0.1 0.]) (default)

Lateral wheel center displacement, specified as a structure, in $\mathrm{mm} / \mathrm{mm}$.
Data Types: struct

## Longitudinal wheel center displacement, LngWhICtrDisp - Table

struct('FL',[-0.1 -0.002;0 0;0.1 0.002],'FR',[-0.1 -0.002;0 0;0.1
0.002],'RL',[-0.1 0.;0 0;0.1 0.],'RR',[-0.1 0.02;0 0;0.1 0.01]) (default)

Longitudinal wheel center displacement, specified as a structure, in $\mathrm{mm} / \mathrm{mm}$.
Data Types: struct
Normal wheel rates, NrmIWhIRates - Table
struct('FL',[-100. -5000;0 0;100. 5000],'FR',[-100. -5000;0 0;100.
5000],'RL',[-100. -5000;0 0;100. 5000],'RR',[-100. -5000;0 0;100. 5000])
(default) | vector
Normal wheel rates, specified as a structure, in N/mm.
Data Types: struct
Normal wheel force offsets, NrmIWhIFrcOff - Force offset
[0 0 0 0] (default)
Normal wheel force offsets, specified as a vector, in N.

## Dependencies

To create this parameter, specify a Normal wheel rates, NrmlWhlRates vector.
Data Types: struct
Roll test
Suspension roll stiffness with anti-roll bar, RollStiffArb - Anti-sway bar enabled [800 700] (default) | 1-by-2 vector

Suspension roll stiffness with anti-roll bar, specified as a 1-by-2 vector, in Nm/deg. The first element is the front axle roll stiffness. The second element is the rear axle roll stiffness.

If you enable an anti-sway bar on the axle, the anti-sway bar stiffness is the difference between the anti-sway bar torque parameter, Suspension roll stiffness with anti-roll bar, RollStiffArb, and the roll stiffness parameter measured with no anti-sway bar present Suspension roll stiffness without anti-roll bar, RollStiffNoArb.

If you do not enable an anti-sway bar, the stiffness is 0 .

## Dependencies

To enable this parameter, set Suspension type to Independent front and rear.
Data Types: double
Suspension roll stiffness without anti-roll bar, RollStiffNoArb - Anti-sway bar not enabled
[0 0] (default) | 1-by-2 vector
Suspension roll stiffness without anti-roll bar, specified as a 1-by-2 vector, in Nm/deg. The first element is the front axle roll stiffness. The second element is the rear axle roll stiffness.

If you enable an anti-sway bar on the axle, the anti-sway bar stiffness is the difference between the anti-sway bar torque parameter, Suspension roll stiffness with anti-roll bar, RollStiffArb, and the roll stiffness parameter measured with no anti-sway bar present Suspension roll stiffness without anti-roll bar, RollStiffNoArb.

If you do not enable an anti-sway bar, the stiffness is 0 .

## Dependencies

To enable this parameter, set Suspension type to Independent front and rear.
Data Types: double

## Steer test

Camber vs steer angle, CambVsSteerAng - Table
struct('FL',[-10. -1.;0 0;10. 1.],'FR',[-10. 1.;0 0;10. -1.],'RL',[-10. -1.;0
0;10. 1.],'RR',[-10. 1.;0 0;10. -1.]) (default)
Camber vs steer angle, specified as a structure, in deg/deg.
Data Types: struct
Caster vs steer angle, CastVsSteerAng - Table
struct('FL',[-10. -1.;0 0;10. 1.],'FR',[-10. 1.;0 0;10. -1.],'RL',[-10. -1.;0 0;10. 1.],'RR',[-10. 1.;0 0;10. -1.]) (default)

Caster vs steer angle, specified as a structure, in deg/deg.

## Data Types: struct

## Longitudinal compliance test

Longitudinal steer compliance, LngSteerCompl - Table

```
struct('NegFx',struct('FL',[-2. -1.;0 0;2. 1.],'FR',[-2. 1.;0 0;2. -1.],'RL',
[-2. -1.;0 0;2. 1.],'RR',[-2. 1.;0 0;2. -1.]),'PosFx',struct('FL',[-2. -1.;0
0;2. 1.],'FR',[-2. 1.;0 0;2. -1.],'RL',[-2. -1.;0 0;2. 1.],'RR',[-2. 1.;0
0;2. -1.])) (default)
```

Longitudinal steer compliance, specified as a structure, in deg/kN.

## Data Types: struct

Longitudinal camber compliance, LngCambCompl - Table

```
struct('NegFx',struct('FL',[-2. -1.;0 0;2. 1.],'FR',[-2. 1.;0 0;2. -1.],'RL',
[-2. -1.;0 0;2. 1.],'RR',[-2. 1.;0 0;2. -1.]),'PosFX',struct('FL',[-2. -1.;0
```

```
0;2. 1.],'FR',[-2. 1.;0 0;2. -1.],'RL',[-2. -1.;0 0;2. 1.],'RR',[-2. 1.;0
0;2. -1.])) (default)
```

Longitudinal camber compliance, specified as a structure, in deg/kN.
Data Types: struct

## Longitudinal caster compliance, LngCastCompl - Table

```
struct('NegFx',struct('FL',[-2. -1.;0 0;2. 1.],'FR',[-2. 1.;0 0;2. -1.],'RL',
```

[-2. -1.;0 0;2. 1.],'RR',[-2. 1.;0 0;2. -1.]), 'PosFx',struct('FL', [-2. -1.;0
$0 ; 2.1.], ' F R^{\prime},[-2.1 . ; 00 ; 2 .-1],. R^{\prime},[-2 .-1 . ; 00 ; 2.1],. R^{\prime},[-2.1 . ; 0$
0;2. -1.])) (default)

Longitudinal caster compliance, specified as a structure, in deg/kN.

## Data Types: struct

## Longitudinal wheel center compliance, LngWhICtrCompl - Table

```
struct('NegFx',struct('FL',[-2. -10.;0 0;2. 10.],'FR',[-2. 10.;0 0;2.
```

-10.],'RL',[-2. -10.;0 0;2. 10.],'RR',[-2. 10.;0 0;2.
-10.]),'PosFx',struct('FL',[-2. -10.;0 0;2. 10.],'FR',[-2. 10.;0 0;2.
-10.],'RL',[-2. -10.;0 0;2. 10.],'RR',[-2. 10.;0 0;2. -10.])) (default)

Longitudinal wheel center compliance, specified as a structure, in $\mathrm{mm} / \mathrm{kN}$.

## Data Types: struct

## Lateral wheel center compliance from braking, LatWhICtrComplLngBrk - Table

struct('NegFx',struct('FL',[-2. -10.;0 0;2. 10.],'FR',[-2. 10.;0 0;2.
-10.],'RL',[-2. -10.;0 0;2. 10.],'RR',[-2. 10.;0 0;2.
-10.]), 'PosFx', struct('FL',[-2. -10.;0 0;2. 10.],'FR',[-2. 10.;0 0;2.
-10.],'RL', [-2. -10.;0 0;2. 10.],'RR',[-2. 10.;0 0;2. -10.])) (default)
Lateral wheel center compliance from braking, specified as a structure, in $\mathrm{mm} / \mathrm{kN}$.
Data Types: struct
Lateral compliance-opposed test
Lateral steer compliance, LatSteerCompl - Table
struct('FL', [-2. -1.;0 0;2. 1.],'FR',[-2. 1.;0 0;2. -1.],'RL',[-2. -1.;0 0;2.
1.],'RR',[-2. 1.;0 0;2. -1.]) (default)

Lateral steer compliance, specified as a structure, in deg/kN.
Data Types: struct
Lateral camber compliance, LatCambCompl - Table
struct('FL',[-2. -1.;0 0;2. 1.],'FR',[-2. 1.;0 0;2. -1.],'RL',[-2. -1.;0 0;2. 1.],'RR',[-2. 1.;0 0;2. -1.]) (default)

Lateral camber compliance, specified as a structure, in deg/kN.

## Data Types: struct

Lateral wheel center compliance from lateral sources, LatWhICtrComplLat - Table
struct('FL', [-2. -5.;0 0;2. 5.],'FR',[-2. 5.;0 0;2. -5.],'RL',[-2. -5.;0 0;2. 5.],'RR',[-2. 5.;0 0;2. -5.]) (default)

Lateral wheel center compliance from lateral sources, specified as a structure, in mm/kN.
Data Types: struct

## Aligning torque compliance-opposed test

Aligning torque steer compliance, AlgnTrqSteerCompl - Table

```
struct('FL',[-0.2 -1.;0 0;0.2 1.],'FR',[-0.2 1.;0 0;0.2 -1.],'RL',[-0.2 -1.;0
0;0.2 1.],'RR',[-0.2 1.;0 0;0.2 -1.]) (default)
```

Aligning torque steer compliance, specified as a structure, in deg/kNm.

## Data Types: struct

## Aligning torque camber compliance, AlgnTrqCambCompl - Table

```
struct('FL',[-0.2 -1.;0 0;0.2 1.],'FR',[-0.2 1.;0 0;0.2 -1.],'RL',[-0.2 -1.;0
```

0;0.2 1.],'RR',[-0.2 1.;0 0;0.2 -1.]) (default)

Aligning torque camber compliance, specified as a structure, in deg $/ \mathrm{kNm}$.

## Data Types: struct

## Static alignment settings

Toe, StatToe - Wheel toe angle
[0 0 0 0] (default) | 1-by-4 vector
Static toe angle for each wheel, specified as a 1-by-4 vector, in deg.

Wheel	Array Element	Axle	Wheel Location
Front left	$(1,1)$	1	1
Front right	$(1,2)$	1	2
Rear left	$(1,3)$	2	1
Rear left	$(1,4)$	2	2

## Data Types: double

Camber, StatCamber - Wheel camber angle
[0 0 0 0] (default) | 1-by-4 vector
Static camber angle for each wheel, specified as a 1-by-4 vector, in deg.

Wheel	Array Element	Axle
Front left	$(1,1)$	1
Front right	$(1,2)$	1
Rear left	$(1,3)$	2
Rear left	$(1,4)$	2

## Data Types: double

Caster, StatCaster - Wheel caster angle
[0 0 0 0] (default) | 1-by-4 vector
Static caster angle for each wheel, specified as a 1-by-4 vector, in deg.

Wheel	Array Element	Axle
Front left	$(1,1)$	1
Front right	$(1,2)$	1
Rear left	$(1,3)$	2
Rear left	$(1,4)$	2

Data Types: double

## Wheels

Static loaded radius of wheels, StatLdWhIR - Wheel radius
[0.3 0.3 0.3 0.3] (default)| 1-by-4 vector
Static loaded radius of wheels, specified as a 1-by-4 vector, in m.

Wheel	Array Element	Axle
Front left	$(1,1)$	1
Front right	$(1,2)$	1
Rear left	$(1,3)$	2
Rear left	$(1,4)$	2

Data Types: double

## Version History

## Introduced in R2022a

R2022b: Parameter name change from NumTracksByAxl to NumWhlsByAxl
Behavior changed in R2022b
The Number of tracks by axle, NumTracksByAxl parameter is renamed to Number of wheels by axle, NumWhlsByAxl.

The block uses the number of wheels per axle to index the input and output block signals.

## R2022b: New Suspension type and Drivetrain type Parameters

Behavior changed in R2022b
Starting from R2022b, the Independent Suspension - K and C block includes Suspension type and Drivetrain type parameters that allow you specify a suspension and drivetrain. Previously, the block was configured for front wheel drive with independent front and rear suspensions.

## References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

## See Also

Independent Suspension - Double Wishbone | Independent Suspension - Mapped | Independent Suspension - MacPherson

## Twist-Beam Suspension - K and C

Twist-beam kinematics and compliance test suspension


## Libraries:

Vehicle Dynamics Blockset / Suspension

## Description

In the Vehicle Dynamics Blockset library, there are two types of suspension blocks that implement the kinematics and compliance ( K and C ) test suspension characteristics measured from simulated or actual laboratory suspension tests.



## $K$ and C Effects on Suspension

To determine the overall suspension forces and geometric effects on the vehicle and wheels, the block adds the individual effects from kinematic (bounce, roll, steering) and compliance (longitudinal and lateral forces, aligning moments) inputs. Specifically, the block multiplies the suspension geometry states by either gradient or table values to determine the K and C effects on wheel orientation and suspension forces.

## Wheel orientation:

- Camber, caster, and steer angles
- Lateral wheel center displacement
- Longitudinal wheel center displacement

Vertical suspension forces:

- Anti-sway bar
- Shock force
- Wheel rate
- Contact patch swing arm (CPSA) force
- Longitudinal side view swing arm (SVSA) anti-effects


## Camber, Caster, and Steer Angles

The block uses these parameters to account for the K and C effects on the camber, caster, and steer angles.

- Bounce test- Independent suspension
- Roll test- Independent suspension
- Steer test
- Longitudinal compliance test
- Lateral compliance-opposed test
- Aligning torque compliance-opposed test

Use the Static alignment settings parameters to set the initial state of the suspension.

## Lateral Wheel Center Displacement

The block uses these parameters to account for the K and C effects the lateral wheel center displacement.

- Bounce test
- Longitudinal compliance test
- Lateral compliance-opposed test


## Longitudinal Wheel Center Displacement

The block uses these parameters to account for the K and C effects on the longitudinal wheel center displacement.

- Bounce test
- Longitudinal compliance test


## Shock Force

The block uses the Shock force parameters to calculate the shock force effect on the vertical suspension force. You can specify table-based or constant parameter values.

## Wheel Rate

The block uses the Bounce test parameters to calculate the wheel rate effect on the vertical suspension force.

## Contact Patch Swing Arm

The block uses these equations to calculate the effect of the contact patch swing arm (CPSA) forces on vertical suspension force.

$$
\begin{aligned}
& \tan \left(\theta_{C P S A}\right)=f\left(Z_{w}\right) \\
& F_{z C P S A}=F_{y} \tan \left(\theta_{C P S A}\right)
\end{aligned}
$$

The block also uses the Static loaded radius of wheels parameter in the CPSA force calculation.
The equations use these variables.
$\theta_{\text {CPSA }} \quad$ Contact patch swing arm angle
$F_{y} \quad$ Lateral suspension force
$F_{z C P S A} \quad$ CPSA effect on vertical suspension force
$z_{w} \quad$ Wheel displacement

## Longitudinal Side View Swing Arm Anti-Effects

The block uses these equations to calculate the effect of the side view swing arm (SVSA) forces on vertical suspension force during acceleration and braking.

$$
\begin{aligned}
& \tan \left(\theta_{S V S A}\right)=f\left(Z_{w}\right) \\
& F_{z S V S A}=F_{x} \tan \left(\theta_{S V S A}\right)
\end{aligned}
$$

Use the Drivetrain type parameter to ensure that the block applies the acceleration anti-effects to the correct wheels.

The equations use these variables.

$\theta_{S V S A}$	Contact patch swing arm angle
$F_{x}$	Longitudinal wheel force
$F_{z S V S A}$	SVSA effect on vertical suspension force
$z_{w}$	Wheel displacement

## Anti-Sway Bar

Optionally, use the Anti-sway axle enable by axle, AntiSwayEnByAxl parameter to implement antisway bar reaction forces by axle.

If you do not enable an anti-sway bar, the axle roll stiffness is 0 .

## Front Axle

If you enable an anti-sway bar on the axle, the anti-sway bar stiffness is the difference between the anti-sway bar torque parameter, Front suspension roll stiffness with anti-roll bar,
RollStiffArbFrnt, and the roll stiffness parameter measured with no anti-sway bar present Front suspension roll stiffness without anti-roll bar, RollStiffNoArbFrnt.

## Rear Axle

If you enable an anti-sway bar on the rear axle, the block uses this equation to calculate the twistbeam roll stiffness.

$$
T B_{r s}=S_{r s}-\frac{\Pi\left[\frac{1}{2} W R_{\nabla} T W^{2}\right]}{180}
$$

The equation uses these variables.

$T B_{r s}$	Twist beam roll stiffness
$S_{r s}$	Suspension roll stiffness without twist beam, RollStiffNoTwstRear parameter
$W R_{\nabla}$	Normal wheel rate gradient, calculated from NrmlWhlRates parameter and   suspension displacement
$T W$	Track width

## Ports

The block uses the wheel number, $t$, to index the input and output signals. This table summarizes the wheel, axle, and corresponding wheel number for a vehicle with:

- Two axles
- Two wheels per axle

Wheel	Axle	Wheel Number
Front left	Front	1
Front right	Front	2
Rear left	Rear	1
Rear right	Rear	2

## Input

WhIPz - Wheel z-axis displacement
array
Wheel displacement, $z_{w}$, along wheel-fixed $z$-axis, in $m$. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlPz:

- Signal array dimensions are [1×4].

$$
\mathrm{WhlPz}=z_{w}=\left[\begin{array}{llll}
z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlPz $(1,1)$	1	1
Front right	WhlPz $(1,2)$	1	2
Rear left	WhlPz $(1,3)$	2	1
Rear right	WhlPz $(1,4)$	2	2

WhIRe - Wheel effective radius
array
Effective wheel radius, $R e_{w}$, in $m$. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlRe:

- Signal array dimensions are [1x4].

$$
\text { WhlRe }=R e_{w}=\left[\begin{array}{lll}
R e_{w_{1,1}} & R e_{w_{1,2}} & R e_{w_{2,1}}
\end{array} R e_{w_{2,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlRe $(1,1)$	1	1
Front right	WhlRe $(1,2)$	1	2
Rear left	WhlRe $(1,3)$	2	1
Rear right	WhlRe $(1,4)$	2	2

WhIVz - Wheel z-axis velocity array

Wheel velocity, $\dot{z}_{w}$, along wheel-fixed $z$-axis, in m. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlVz:

- Signal array dimensions are [1×4].

$$
\text { WhlVz }=\dot{z}_{w}=\left[\begin{array}{l}
\dot{z}_{w_{1,1}}
\end{array} \dot{z}_{w_{1,2}} \dot{z}_{w_{2,1}} \dot{z}_{w_{2,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlVz $(1,1)$	1	1
Front right	WhlVz $(1,2)$	1	2
Rear left	WhlVz $(1,3)$	2	1
Rear right	WhlVz $(1,4)$	2	2

WhIFx - Longitudinal wheel force on vehicle
array
Longitudinal wheel force applied to vehicle, $F_{w x}$, along the vehicle-fixed $x$-axis. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlFx:

- Signal array dimensions are [1×4].

WhlFx $=F_{w x}=\left[F_{w x_{1,1}} F_{w x_{1,2}} F_{w x_{2,1}} F_{w x_{2,2}}\right]$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlFx $(1,1)$	1	1
Front right	WhlFx $(1,2)$	1	2
Rear left	WhlFx $(1,3)$	2	1
Rear right	WhlFx $(1,4)$	2	2

WhIFy - Lateral wheel force on vehicle array

Lateral wheel force applied to vehicle, $F_{w y}$, along the vehicle-fixed $y$-axis. Array dimensions are 1 by the total number of wheels on the vehicle.

For example, for a two-axle vehicle with two wheels per axle, the WhlFy:

- Signal array dimensions are [1×4].

$$
\text { WhlFy }=F_{w y}=\left[F_{w y_{1,1}} F_{w y_{1,2}} F_{w y_{2,1}} F_{w y_{2,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	WhlFy $(1,1)$	1	1
Front right	WhlFy $(1,2)$	1	2
Rear left	WhlFy $(1.3)$	2	1


Wheel	Array Element	Axle	Wheel Number
Rear right	WhlFy $(1,4)$	2	2

WhIM - Suspension moment on wheel
array
Longitudinal, lateral, and vertical suspension moments at axle $a$, wheel $t$, applied to the wheel at the axle wheel carrier reference coordinate, in $N \cdot m$. Input array dimensions are 3 by the number of wheels on the vehicle.

- WhlM (1, ...) - Suspension moment applied to the wheel about the vehicle-fixed $x$-axis (longitudinal)
- WhlM $(2, \ldots)$ - Suspension moment applied to the wheel about the vehicle-fixed $y$-axis (lateral)
- WhlM $(3, \ldots)$ - Suspension moment applied to the wheel about the vehicle-fixed $z$-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlM:

- Signal dimensions are [3×4].
- Signal contains suspension moments applied to four wheels according to their axle and wheel locations.

$$
\text { WhlM }=M_{w}=\left[\begin{array}{lllll}
M_{w x_{1,1}} & M_{w x_{1,2}} & M_{w x_{2,1}} & M_{w x_{2,2}} \\
M_{w y_{1,1}} & M_{w y 1,2} & M_{w y_{2,1}} & M_{w y 2,2} \\
M_{w z_{1,1}} & M_{w z_{1,2}} & M_{w z_{2,1}} & M_{w z_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel   Numbe   r	Moment Axis
Front   left	WhlM $(1,1)$	1	1	Vehicle-fixed $x$-axis (longitudinal)
Front   right	WhlM $(1,2)$	1	2	
Rear   left	WhlM $(1,3)$	2	1	
Rear   right	WhlM $(1,4)$	2	2	
Front   left	WhlM $(2,1)$	1	1	Vehicle-fixed $y$-axis (lateral)
Front   right	WhlM $(2,2)$	1	2	
Rear   left	WhlM $(2,3)$	2	1	
Rear   right	WhlM $(2,4)$	2	2	
Front   left	WhlM( 3,1$)$	1	1	Vehicle-fixed $z$-axis (vertical)


Wheel	Array Element	Axle	Wheel   Numbe   r	Moment Axis
Front   right	WhlM $(3,2)$	1	2	
Rear   left	WhlM $(3,3)$	2	1	
Rear   right	WhlM(3,4)	2	2	

VehP - Vehicle displacement
array
Vehicle displacement from axle a, wheel $t$ along vehicle-fixed coordinate system, in m. Input array dimensions are 3 the number of wheels on the vehicle.

- $\operatorname{VehP}(1, \ldots)$ - Vehicle displacement from wheel, $\chi_{v}$, along the vehicle-fixed $x$-axis
- $\operatorname{VehP}(2, \ldots)$ - Vehicle displacement from wheel, $y_{v}$, along the vehicle-fixed $y$-axis
- $\operatorname{VehP}(3, \ldots)-$ Vehicle displacement from wheel, $z_{v}$, along the vehicle-fixed $z$-axis

For example, for a two-axle vehicle with two wheels per axle, the VehP:

- Signal dimensions are [3×4].
- Signal contains four displacements according to their axle and wheel locations.

VehP $=\left[\begin{array}{l}x_{v} \\ y_{v} \\ z_{v}\end{array}\right]=\left[\begin{array}{llll}x_{v_{1,1}} & x_{v_{1,2}} & x_{v_{2,1}} & x_{v_{2,2}} \\ y_{v_{1,1}} & y_{v_{1,2}} & v_{v_{2,1}} & y_{v_{2,2}} \\ z_{v_{1,1}} & z_{v_{1,2}} & z_{v_{2,1}} & z_{v_{2,2}}\end{array}\right]$

Wheel	Array Element	Axle	Wheel   Numbe   r	Axis
Front   left	$\operatorname{VehP}(1,1)$	1	1	Vehicle-fixed $x$-axis
Front   right	$\operatorname{VehP}(1,2)$	1	2	
Rear   left	$\operatorname{VehP}(1,3)$	2	1	
Rear   right	$\operatorname{VehP}(1,4)$	2	2	
Front   left	$\operatorname{VehP}(2,1)$	1	1	Vehicle-fixed $y$-axis
Front   right	$\operatorname{VehP}(2,2)$	1	2	
Rear   left	$\operatorname{VehP}(2,3)$	2	1	


Wheel	Array Element	Axle	Wheel   Numbe   r	Axis
Rear   right	$\operatorname{VehP}(2,4)$	2	2	
Front   left	$\operatorname{VehP}(3,1)$	1	1	Vehicle-fixed $z$-axis
Front   right	$\operatorname{VehP}(3,2)$	1	2	
Rear   left	$\operatorname{VehP}(3,3)$	2	1	
Rear   right	$\operatorname{VehP}(3,4)$	2	2	

VehV - Vehicle velocity
array
Vehicle velocity at axle a, wheel $t$ along vehicle-fixed coordinate system, in m. Input array dimensions are 3 by the number of wheels on the vehicle.

- VehV $(1, \ldots)$ - Vehicle velocity at wheel, $x_{v}$, along the vehicle-fixed $x$-axis
- VehV $(2, \ldots)-$ Vehicle velocity at wheel, $y_{v}$, along the vehicle-fixed $y$-axis
- $\operatorname{VehV}(3, \ldots)-$ Vehicle velocity at wheel, $z_{v}$, along the vehicle-fixed $z$-axis

For example, for a two-axle vehicle with two wheels per axle, the VehV:

- Signal dimensions are [3×4].
- Signal contains 4 velocities according to their axle and wheel locations.

VehV $=\left[\begin{array}{c}\dot{x}_{v} \\ \dot{y}_{v} \\ \dot{z}_{v}\end{array}\right]=\left[\begin{array}{lllll}\dot{x}_{v_{1,1}} & \dot{x}_{v_{1,2}} & \dot{x}_{v_{2,1}} & \dot{x}_{v_{2,2}} \\ \dot{y}_{v_{1,1}} & \dot{y}_{v_{1,2}} & \dot{y}_{v_{2,1}} & \dot{y}_{v_{2,2}} \\ \dot{z}_{v_{1,1}} & \dot{z}_{v_{1,2}} & \dot{z}_{v_{2,1}} & \dot{z}_{v_{2,2}}\end{array}\right]$

Wheel	Array Element	Axle	Wheel   Numbe   r	Axis
Front   left	VehV (1,1)	1	1	Vehicle-fixed $x$-axis
Front   right	VehV (1,2)	1	2	
Rear   left	VehV (1,3)	2	1	
Rear   right	VehV (1,4)	2	2	
Front   left	VehV(2,1)	1	1	Vehicle-fixed $y$-axis


Wheel	Array Element	Axle	Wheel   Numbe   r	Axis
Front   right	VehV $(2,2)$	1	2	
Rear   left	VehV $(2,3)$	2	1	
Rear   right	VehV $(2,4)$	2	2	
Front   left	$\operatorname{VehV}(3,1)$	1	1	Vehicle-fixed $z$-axis
Front   right	$\operatorname{VehV}(3,2)$	1	2	
Rear   left	$\operatorname{VehV}(3,3)$	2	1	
Rear   right	$\operatorname{VehV}(3,4)$	2	2	

StrgAng - Steering angle, optional
array
Optional steering angle for each wheel, $\delta$. Input array dimensions are 1 by the number of steered wheels.

For example, for a two-axle vehicle with two wheels per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set Steered axle enable by axle, StrgEnByAxl to [1 0]. The input signal array dimensions are [1×2].
- The StrgAng signal contains two steering angles according to their axle and wheel locations.

$$
\text { StrgAng }=\delta_{\text {steer }}=\left[\delta_{\text {steer }_{1,1}} \delta_{\text {steer }_{1,2}}\right]
$$

Wheel	Array Element	Axle	Wheel Number
Front left	StrgAng $(1,1)$	1	1
Front right	StrgAng $(1,2)$	1	2

## Dependencies

To create input port StrgAng, set an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 .

Phi - Vehicle pitch angle
scalar
Vehicle pitch angle about earth-fixed $Y$-axis, in rad.
TrckWdth - Track width

```
array
```

Distance between wheels on each axle. Input array dimensions are 1-by-2.

Array Element	Description
TrckWdth $(1,1)$	Distance between wheels on front axle
TrckWdth $(1,2)$	Distance between wheels on rear axle

## Output

Info - Bus signal
bus
Bus signal containing block values. The signals are arrays that depend on the wheel location.
For example, here are the indices for a two-axle, two-wheel vehicle. The total number of wheels is four.

- 1D array signal (1-by-4)

Wheel	Array Element	Axle	Wheel Number
Front left	$(1,1)$	1	1
Front right	$(1,2)$	1	2
Rear left	$(1,3)$	2	1
Rear right	$(1,4)$	2	2

- 3D array signal (3-by-4)

Wheel	Array Element	Axle	Wheel Number
Front left	$(1,1)$	1	1
Front right	$(1,2)$	1	2
Rear left	$(1,3)$	2	1
Rear right	$(1,4)$	2	2
Front left	$(2,1)$	1	1
Front right	$(2,2)$	1	2
Rear left	$(2,3)$	2	1
Rear right	$(2,4)$	2	2
Front left	$(3,1)$	1	1
Front right	$(3,2)$	1	2
Rear left	$(3,3)$	2	1
Rear right	$(3,4)$	2	2


Signal	Description	Array Signal	Variable	Units
Camber	Wheel angles according to the axle and wheel location.	1D	WhlAng[1, ...] = $=\left[\xi_{a, t}\right]$	rad
Caster			WhlAng $[2, \ldots]=\eta=\left[\eta_{a, t}\right]$	
Toe			WhlAng $[3, \ldots]=\zeta=\left[\zeta_{a, t}\right]$	


Signal	Description	Array Signal	Variable U	Units
Height	Suspension height	1D	H m	m
Power	Suspension power dissipation	1D		W
Energy	Suspension absorbed energy	1D	$E_{\text {susp }}$	J
VehF	Suspension forces applied to the vehicle	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { VehF }=F_{v}= \\ & {\left[\begin{array}{llll} F_{v x_{1,1}} & F_{v x_{1}, 2} & F_{v x_{2,1}} & F_{v x_{2,2}} \\ F_{v v_{1,1}} & F_{v y 1,2} & F_{v y_{2,1}} & F_{v y_{2,2}} \\ F_{v z_{1,1}} & F_{v z_{1,2}} & F_{v z_{2,1}} & F_{v z_{2,2}} \end{array}\right.} \end{aligned}$	N
VehM	Suspension moments applied to vehicle	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { VehM }=M_{v}= \\ & {\left[\begin{array}{llll} M_{v x_{1}, 1} & M_{v x_{1}, 2} & M_{v x_{2,1}} & M_{v \chi_{2},}, \\ M_{v y_{1,1}} & M_{v y_{1,2}} & M_{v y_{2,1}} & M_{v y_{2},} \\ M_{v \chi_{1,1}} & M_{v \chi_{1,2}} & M_{v z_{2,1}} & M_{v \chi_{2},} \end{array}\right.} \end{aligned}$	$\overline{\mathrm{N} \cdot \mathrm{~m}}$   2, 2   2, 2   2, 2


Signal	Description	Array Signal	Variable	Units
WhlF	Suspension force applied to wheel	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlF }=F_{w}= \\ & {\left[\begin{array}{llll} F_{w x_{1,1}} & F_{w x_{1}, 2} & F_{w x_{2,1}} & F_{w x_{2},}, \\ F_{w y_{1,1}} & F_{w y 1,2} & F_{w y_{2,1}} & F_{w y_{2},} \\ F_{w z_{1,1}} & F_{w z_{1,2}} & F_{w z_{2,1}} & F_{w z_{2},} \end{array}\right.} \end{aligned}$	
WhlP	Wheel displacement	3D	For a two-axle, two wheels per axle vehicle: $\begin{aligned} & \text { WhlP }=\left[\begin{array}{l} x_{w} \\ y_{w} \\ z_{w} \end{array}\right]= \\ & {\left[\begin{array}{llll} x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_{w_{2},} \\ y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_{w w_{2}} \\ z_{w t r_{1,1}} & z_{w t r_{1,2}} & z_{w t r_{2,1}} & z_{w t r_{2}} \end{array}\right.} \end{aligned}$	
Whlv	Wheel velocity	3D	For a two-axle, two wheels per axle vehicle: $\left.\begin{array}{l} \text { WhlV }=\left[\begin{array}{l} \dot{x}_{w} \\ \dot{y}_{w} \\ \dot{z}_{w} \end{array}\right] \\ = \\ {\left[\begin{array}{lll} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} \\ \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} \end{array} \dot{y}_{w_{2,2}}\right.} \\ \dot{z}_{w_{1,1}} \\ \dot{z}_{w_{1,2}} \\ \dot{z}_{w_{2,1}} \\ \dot{z}_{w_{2,2}} \end{array}\right]\left[\begin{array}{l} \text { an } \end{array}\right]$	$\mathrm{m} / \mathrm{s}$


Signal	Description	Array Signal	Variable	Units
WhlAng	Wheel camber, caster toe angles	3D	For a two-axle, two wheels per axle vehicle: $\left.\begin{array}{l} \text { WhlAng }=\left[\begin{array}{l} \xi \\ \eta \\ \zeta \end{array}\right] \\ =\left[\begin{array}{lll} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} \\ \xi_{2,2} \\ \eta_{1,1} & \eta_{1,2} & \eta_{2,1} \\ \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} \end{array} \zeta_{2,2}\right. \end{array}\right] . \begin{aligned} & \eta_{2} \end{aligned}$	rad

## VehF - Suspension force on vehicle

array
Longitudinal, lateral, and vertical suspension force at axle a, wheel $t$, applied to the vehicle at the suspension connection point, in N . Array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{VehF}(1, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed $x$-axis (longitudinal)
- $\operatorname{VehF}(2, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed $y$-axis (lateral)
- $\operatorname{VehF}(3, \ldots)$ - Suspension force applied to vehicle along the vehicle-fixed $z$-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the VehF:

- Signal dimensions are [3×4].
- Signal contains suspension forces applied to the vehicle according to the axle and wheel locations.

$$
\text { VehF }=F_{v}=\left[\begin{array}{lllll}
F_{v x_{1,1}} & F_{v x_{1,2}} & F_{v x_{2,1}} & F_{v x_{2,2}} \\
F_{v y_{1,1}} & F_{v y_{1,2}} & F_{v y_{2,1}} & F_{v y_{2,2}} \\
F_{v z_{1,1}} & F_{v z_{1,2}} & F_{v z_{2,1}} & F_{v z_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel   Numbe   r	Force Axis
Front   left	$\operatorname{VehF}(1,1)$	1	1	Vehicle-fixed $x$-axis (longitudinal)
Front   right	$\operatorname{VehF}(1,2)$	1	2	
Rear   left	$\operatorname{VehF}(1,3)$	2	1	
Rear   right	$\operatorname{VehF}(1,4)$	2	2	
Front   left	$\operatorname{VehF}(2,1)$	1	1	Vehicle-fixed $y$-axis (lateral)
Front   right	$\operatorname{VehF}(2,2)$	1	2	


Wheel	Array Element	Axle	Wheel   Numbe   r	Force Axis
Rear   left	$\operatorname{VehF}(2,3)$	2	1	
Rear   right	$\operatorname{VehF}(2,4)$	2	2	
Front   left	$\operatorname{VehF}(3,1)$	1	1	Vehicle-fixed $z$-axis (vertical)
Front   right	$\operatorname{VehF}(3,2)$	1	2	
Rear   left	$\operatorname{VehF}(3,3)$	2	1	
Rear   right	$\operatorname{VehF}(3,4)$	2	2	

VehM - Suspension moment on vehicle
array
Longitudinal, lateral, and vertical suspension moment at axle a, wheel $t$, applied to the vehicle at the suspension connection point, in $\mathrm{N} \cdot \mathrm{m}$. Array dimensions are 3 by the number of wheels on the vehicle.

- VehM (1, ...) - Suspension moment applied to the vehicle about the vehicle-fixed $x$-axis (longitudinal)
- VehM ( $2, \ldots$ ) - Suspension moment applied to the vehicle about the vehicle-fixed $y$-axis (lateral)
- VehM $(3, \ldots)$ - Suspension moment applied to the vehicle about the vehicle-fixed $z$-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the VehM:

- Signal dimensions are [3×4].
- Signal contains suspension moments applied to vehicle according to the axle and wheel locations.
$\mathrm{VehM}=M_{v}=\left[\begin{array}{lllll}M_{v x_{1,1}} & M_{v x_{1,2}} & M_{v x_{2,1}} & M_{v x_{2,2}} \\ M_{v y_{1,1}} & M_{v y_{1,2}} & M_{v y_{2,1}} & M_{v y_{2,2}} \\ M_{v z_{1,1}} & M_{v z_{1,2}} & M_{v z_{2,1}} & M_{v z_{2,2}}\end{array}\right]$

Array Element	Axle	Wheel   Number	Moment Axis
$\operatorname{VehM}(1,1)$	1	1	Vehicle-fixed $x$-axis (longitudinal)
$\operatorname{VehM}(1,2)$	1	2	
$\operatorname{VehM}(1,3)$	2	1	
$\operatorname{VehM}(1,4)$	2	2	
$\operatorname{VehM}(2,1)$	1	1	Vehicle-fixed $y$-axis (lateral)
$\operatorname{VehM}(2,2)$	1	2	


Array Element	Axle	Wheel   Number	Moment Axis
$\operatorname{VehM}(2,3)$	2	1	
$\operatorname{VehM}(2,4)$	2	2	
$\operatorname{VehM}(3,1)$	1	1	Vehicle-fixed $z$-axis (vertical)
$\operatorname{VehM}(3,2)$	1	2	
$\operatorname{VehM}(3,3)$	2	1	
$\operatorname{VehM}(3,4)$	2	2	

WhIF - Suspension force on wheel
array
Longitudinal, lateral, and vertical suspension forces at axle a, wheel $t$, applied to the wheel at the axle wheel carrier reference coordinate, in N . Array dimensions are 3 by the number of wheels on the vehicle.

- $\operatorname{WhlF}(1, \ldots)$ - Suspension force on wheel along the vehicle-fixed $x$-axis (longitudinal)
- $\operatorname{WhlF}(2, \ldots)$ - Suspension force on wheel along the vehicle-fixed $y$-axis (lateral)
- WhlF $(3, \ldots)$ - Suspension force on wheel along the vehicle-fixed $z$-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the WhlF:

- Signal dimensions are [3×4].
- Signal contains wheel forces applied to the vehicle according to the axle and wheel locations.

WhlF $=F_{w}=\left[\begin{array}{lllll}F_{w x_{1,1}} & F_{w x_{1,2}} & F_{w x_{2,1}} & F_{w x_{2,2}} \\ F_{w y_{1,1}} & F_{w y_{1,2}} & F_{w y_{2,1}} & F_{w y_{2,2}} \\ F_{w z_{1,1}} & F_{w z_{1,2}} & F_{w z_{2,1}} & F_{w z_{2,2}}\end{array}\right]$

Wheel	Array Element	Axle	Wheel   Numbe   r	Force Axis
Front   left	WhlF $(1,1)$	1	1	Vehicle-fixed $x$-axis (longitudinal)
Front   right	WhlF $(1,2)$	1	2	
Rear   left	WhlF $(1,3)$	2	1	
Rear   right	WhlF $(1,4)$	2	2	
Front   left	WhlF $(2,1)$	1	1	Vehicle-fixed $y$-axis (lateral)
Front   right	WhlF $(2,2)$	1	2	


Wheel	Array Element	Axle	Wheel   Numbe   r	Force Axis
Rear   left	WhlF $(2,3)$	2	1	
Rear   right	WhlF $(2,4)$	2	2	
Front   left	WhlF (3,1)	1	1	Vehicle-fixed $z$-axis (vertical)
Front   right	WhlF (3,2)	1	2	
Rear   left	WhlF $(3,3)$	2	1	
Rear   right	WhlF (3,4)	2	2	

WhIV - Wheel velocity
array
Longitudinal, lateral, and vertical wheel velocity at axle a, wheel t , in $\mathrm{m} / \mathrm{s}$. Array dimensions are 3 by the number of wheels on the vehicle.

- WhlV $(1, \ldots)$ - Wheel velocity along the vehicle-fixed $x$-axis (longitudinal)
- WhlV $(2, \ldots)-$ Wheel velocity along the vehicle-fixed $y$-axis (lateral)
- WhlV $(3, \ldots)-$ Wheel velocity along the vehicle-fixed $z$-axis (vertical)

For example, for a two-axle vehicle with two wheels per axle, the Whlv:

- Signal dimensions are [3×4].
- Signal contains wheel forces applied to the vehicle according to the axle and wheel locations.

$$
\text { WhlV }=\left[\begin{array}{l}
\dot{x}_{w} \\
\dot{y}_{w} \\
\dot{z}_{w}
\end{array}\right]=\left[\begin{array}{llll}
\dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\
\dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\
\dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel   Numbe   r	Force Axis
Front   left	WhlV $(1,1)$	1	1	Vehicle-fixed $x$-axis (longitudinal)
Front   right	WhlV $(1,2)$	1	2	
Rear   left	WhlV $(1,3)$	2	1	
Rear   right	WhlV $(1,4)$	2	2	


Wheel	Array Element	Axle	Wheel Numbe r	Force Axis
Front left	WhlV (2,1)	1	1	Vehicle-fixed $y$-axis (lateral)
Front right	WhlV (2,2)	1	2	
Rear left	WhlV (2,3)	2	1	
Rear right	WhlV (2,4)	2	2	
Front left	WhlV (3,1)	1	1	Vehicle-fixed $z$-axis (vertical)
Front right	WhlV (3,2)	1	2	
Rear left	WhlV (3, 3)	2	1	
Rear right	WhlV(3,4)	2	2	

WhIAng - Wheel camber, caster, toe angles
array
Camber, caster, and toe angles at axle $a$, wheel $t$, in rad. Array dimensions are 3 by the number of wheels on the vehicle.

- WhlAng (1,...) - Camber angle
- WhlAng ( $2, \ldots$ ) - Caster angle
- Whlang $(3, \ldots)$ - Toe angle

For example, for a two-axle vehicle with two wheels per axle, the WhlAng:

- Signal dimensions are [3×4].
- Signal contains angles according to the axle and wheel locations.

$$
\text { WhlAng }=\left[\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right]=\left[\begin{array}{llll}
\xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\
\eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\
\zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2}
\end{array}\right]
$$

Wheel	Array Element	Axle	Wheel   Numbe   r	Angle
Front   left	WhlAng (1,1)	1	1	Camber
Front   right	WhlAng (1,2)	1	2	


Wheel	Array Element	Axle	Wheel   Numbe   r	Angle
Rear   left	WhlAng (1,3)	2	1	
Rear   right	WhlAng (1,4)	2	2	
Front   left	WhlAng (2,1)	1	1	Caster
Front   right	WhlAng (2,2)	1	2	
Rear   left	WhlAng (2,3)	2	1	
Rear   right	WhlAng (2,4)	2	2	
Front   left	WhlAng (3,1)	1	1	Toe
Front   right	WhlF (3,2)	1	2	
Rear   left	WhlF(3,3)	2	1	
Rear   right	WhlF(3,4)	2	2	

## Parameters

Steered axle enable by axle, StrgEnByAxI - Boolean vector to enable axle steering
[1 0] (default) |vector
Boolean vector that enables axle steering, $E n_{\text {steer }}$, dimensionless. Vector is 1 by the number of vehicle axles, $N_{a}$. For example:

- [1 0] - For a two-axle vehicle, enables axle 1 steering and disables axle 2 steering
- [1 1] - For a two-axle vehicle, enables axle 1 and axle 2 steering


## Dependencies

Setting any element of the Steered axle enable by axle, StrgEnByAxl vector to 1 creates Input port StrgAng.

Anti-sway axle enable by axle, AntiSwayEnByAxI - Boolean vector to enable axle anti-sway [0 0] (default)|vector

Boolean vector that enables axle anti-sway for axle $a$, dimensionless. For example, [10] enables a front axle anti-sway and disables a rear axle anti-sway. Vector is 1 by the number of vehicle axles, $N_{a}$.

If you enable an anti-sway bar on the front axle, the anti-sway bar stiffness is the difference between the anti-sway bar torque parameter, Suspension roll stiffness with anti-roll bar, RollStiffArb,
and the roll stiffness parameter measured with no anti-roll bar present Suspension roll stiffness without anti-roll bar, RollStiffNoArb.

If you enable an anti-sway bar on the rear axle, the block uses this equation to calculate the twistbeam roll stiffness.

$$
T B_{r s}=S_{r s}-\frac{\Pi\left[\frac{1}{2} W R_{\nabla} T W^{2}\right]}{180}
$$

The equation uses these variables.

$T B_{r s}$	Twist beam roll stiffness
$S_{r s}$	Suspension roll stiffness without twist beam, RollStiffNoTwstRear parameter
$W R_{\nabla}$	Normal wheel rate gradient, calculated from NrmIWhlRates parameter and   suspension displacement
$T W$	Track width

If you do not enable an anti-sway bar, the stiffness is 0 .

## Suspension Parameters

Suspension type - Type of suspension
Independent front and rear|Independent front and twist beam rear
Select type of suspension.
Drivetrain type - Type of drivetrain
FWD (default) \| RWD \| AWD
Select type of drivetrain.

- AWD - All-wheel drive
- FWD - Front-wheel drive
- RWD - Rear-wheel drive


## Directions

+ Steer angle - Positive steer angle
Right (default) | Left
Direction of positive steer angle during kinematics and compliance test.
+ Fx used in compliance tests - Positive longitudinal force
Front (default) | Rear
Direction of positive longitudinal force during kinematics and compliance test.
+ Fy used in compliance tests - Positive lateral force
Right (default) |Left
Direction of positive lateral force during kinematics and compliance test.
+ Suspension Jounce - Positive suspension jounce
Up (default) | Down

Direction of positive suspension jounce during kinematics and compliance test.

+ WhIMz used in compliance tests - Positive yaw moment
Counter-clockwise (default)|Clockwise
Direction of positive yaw moment during kinematics and compliance test.


## Shock force

Shock type - Type of shock force
Table-based (default)|Table-based individualConstant
Type of shock force.
If a table-based individual setting is chosen, table-based shock force is implemented together with constant motion ratios. If a table-based setting is chosen both shock force and motion ratios are calculated from lookup tables.

Setting	Implementation
Table-based	Table-based shock force and motion ratios.
Table-based individual	Table-based shock force and constant motion   ratios.
Constant	Constant shock force and motion ratios.

## Shock force vs shock compression rate, ShckFrceVsCompRate - Table

struct('FL',[-100. -5000;0 0;100. 5000],'FR',[-100. -5000;0 0;100.
5000],'RL',[-100. -5000;0 0;100. 5000],'RR',[-100. -5000;0 0;100. 5000])
(default)
Shock force versus shock compression rate, specified as a structure, in $\mathrm{N} / \mathrm{mm}$ per sec.

## Dependencies

To create this parameter, set Shock type to Table-based or Table-based individual.
Data Types: struct
Motion ratios by axle, MotRatios - Table
struct('FL',[-0.1-0.1;0 0;0.1 0.1],'FR',[-0.1 -0.1;0 0;0.1 0.1],'RL',[-0.1
-0.1;0 0;0.1 0.1],'RR',[-0.1 -0.1;0 0;0.1 0.1]) (default)
Motion ratios by axle, specified as a structure.
Data Types: struct

## Bounce test

Bump steer, BumpSteer - Table
struct('FL', [-0.1 1.1459;0 0;0.1 -1.1459], 'FR', [-0.1 1.1459;0 0;0.1 -1.1459],'RL',[-0.1 0.;0 0;0.1 0.],'RR',[-0.1 0.;0 0;0.1 0.]) (default)

Bump steer, specified as a structure, in deg/m.
Data Types: struct

Bump camber, BumpCamber - Table

```
struct('FL',[-0.1 1.7189;0 0;0.1 -1.7189],'FR',[-0.1 1.7189;0 0;0.1
-1.7189],'RL',[-0.1 0.;0 0;0.1 0.],'RR',[-0.1 0.;0 0;0.1 0.]) (default)
```

Bump camber, specified as a structure, in deg/m.
Data Types: struct
Bump caster, BumpCaster - Table
struct('FL',[-0.1 1.1459;0 0;0.1 -1.1459],'FR',[-0.1 1.1459;0 0;0.1
-1.1459],'RL',[-0.1 -11.4592;0 0;0.1 11.4592],'RR',[-0.1 -11.4592;0 0;0.1
11.4592]) (default)

Bump caster, specified as a structure, in deg/m.
Data Types: struct
Lateral wheel center displacement, LatWhICtrDisp - Table
struct('FL',[-0.1 0.02;0 0;0.1 -0.02],'FR',[-0.1 0.02;0 0;0.1 -0.02],'RL', [-0.1 0.;0 0;0.1 0.],'RR',[-0.1 0.;0 0;0.1 0.]) (default)

Lateral wheel center displacement, specified as a structure, in $\mathrm{mm} / \mathrm{mm}$.
Data Types: struct
Longitudinal wheel center displacement, LngWhICtrDisp - Table
struct('FL',[-0.1 -0.002;0 0;0.1 0.002],'FR',[-0.1 -0.002;0 0;0.1
0.002],'RL',[-0.1 0.;0 0;0.1 0.],'RR',[-0.1 0.02;0 0;0.1 0.01]) (default)

Longitudinal wheel center displacement, specified as a structure, in $\mathrm{mm} / \mathrm{mm}$.
Data Types: struct
Normal wheel rates, NrmIWhIRates - Table
struct('FL',[-100. -5000;0 0;100. 5000],'FR',[-100. -5000;0 0;100.
5000],'RL',[-100. -5000;0 0;100. 5000],'RR',[-100. -5000;0 0;100. 5000]) (default) | vector

Normal wheel rates, specified as a structure, in N/mm.
Data Types: struct
Normal wheel force offsets, NrmIWhIFrcOff - Force offset
[0 0 0 0] (default)
Normal wheel force offsets, specified as a vector, in N .

## Dependencies

To create this parameter, specify a Normal wheel rates, NrmlWhlRates vector.
Data Types: struct

## Roll test

Roll steer, RollSteer - Table
struct('RL',[-10. -1.;0 0;10. 1.],'RR',[-10. 1.;0 0;10. -1.]) (default)
Rear axle roll steer, specified as a structure, in deg/deg.

## Dependencies

To enable this parameter, set Suspension type to Independent front and twist-beam rear.
Data Types: struct
Roll camber, RollCamber - Table
struct('RL',[-10. -1.;0 0;10. 1.],'RR',[-10. 1.;0 0;10. -1.]) (default)
Rear axle roll camber, specified as a structure, in deg/deg.

## Dependencies

To enable this parameter, set Suspension type to Independent front and twist-beam rear.
Data Types: struct
Roll caster, RollCaster - Table
struct('RL',[-10. -1.;0 0;10. 1.],'RR',[-10. 1.;0 0;10. -1.]) (default)
Rear axle roll caster, specified as a structure, in deg/deg.

## Dependencies

To enable this parameter, set Suspension type to Independent front and twist-beam rear.
Data Types: struct
Front suspension roll stiffness with anti-roll bar, RollStiffArbFrnt - Anti-sway bar enabled 800 (default) | scalar

Front axle suspension roll stiffness with anti-roll bar, specified as a scalar.
If you enable an anti-sway bar on the axle, the anti-sway bar stiffness is the difference between the anti-sway bar torque parameter, Front suspension roll stiffness with anti-roll bar,
RollStiffArbFrnt, and the roll stiffness parameter measured with no anti-sway bar present, Front suspension roll stiffness without anti-roll bar, RollStiffNoArbFrnt.

If you do not enable an anti-sway bar, the front axle roll stiffness is 0 .

## Dependencies

To enable this parameter, set Suspension type to Independent front and twist-beam rear.
Data Types: double
Front suspension roll stiffness without anti-roll bar, RollStiffNoArbFrnt - Anti-sway bar not enabled
0 (default) | scalar
Front suspension roll stiffness without an anti-roll bar, specified as a scalar, in Nm/deg.
If you enable an anti-sway bar on the axle, the anti-sway bar stiffness is the difference between the anti-sway bar torque parameter, Front suspension roll stiffness with anti-roll bar,
RollStiffArbFrnt, and the roll stiffness parameter measured with no anti-sway bar present, Front suspension roll stiffness without anti-roll bar, RollStiffNoArbFrnt.

If you do not enable an anti-sway bar, the axle roll stiffness is 0 .

## Dependencies

To enable this parameter, set Suspension type to Independent front and twist-beam rear.

## Data Types: double

Rear suspension roll stiffness without twist-beam, RollStiffNoTwstRear - Anti-sway bar not enabled
0 (default) | scalar
Rear suspension roll stiffness without an twist beam, specified as a scalar, in Nm/deg. T
If you do not enable an anti-sway bar, the rear axle roll stiffness is 0 .
If you enable an anti-sway bar on the rear axle, the block uses this equation to calculate the twistbeam roll stiffness.

$$
T B_{r s}=S_{r s}-\frac{\Pi\left[\frac{1}{2} W R_{\nabla} T W^{2}\right]}{180}
$$

The equation uses these variables.

$T B_{r s}$	Twist beam roll stiffness
$S_{r s}$	Suspension roll stiffness without twist beam, RollStiffNoTwstRear parameter
$W R_{\nabla}$	Normal wheel rate gradient, calculated from NrmlWhlRates parameter and   suspension displacement
$T W$	Track width
Dependencies	

To enable this parameter, set Suspension type to Independent front and twist-beam rear.
Data Types: double

## Steer test

Camber vs steer angle, CambVsSteerAng - Table
struct('FL',[-10. -1.;0 0;10. 1.],'FR',[-10. 1.;0 0;10. -1.],'RL',[-10. -1.;0 0;10. 1.],'RR',[-10. 1.;0 0;10. -1.]) (default)

Camber vs steer angle, specified as a structure, in deg/deg.
Data Types: struct
Caster vs steer angle, CastVsSteerAng - Table
struct('FL',[-10. -1.;0 0;10. 1.],'FR',[-10. 1.;0 0;10. -1.],'RL',[-10. -1.;0 0;10. 1.],'RR',[-10. 1.;0 0;10. -1.]) (default)

Caster vs steer angle, specified as a structure, in deg/deg.
Data Types: struct

## Longitudinal compliance test

Longitudinal steer compliance, LngSteerCompl - Table
struct('NegFx', struct('FL',[-2. -1.;0 0;2. 1.],'FR',[-2. 1.;0 0;2. -1.],'RL',
$\left.[-2 .-1 . ; 0 \quad 0 ; 2.1],. ' R R^{\prime},[-2.1 . ; 0 \quad 0 ; 2 .-1].\right), ' P o s F X^{\prime}$, struct('FL',[-2. -1.;0

```
0;2. 1.],'FR',[-2. 1.;0 0;2. -1.],'RL',[-2. -1.;0 0;2. 1.],'RR',[-2. 1.;0
0;2. -1.])) (default)
```

Longitudinal steer compliance, specified as a structure, in deg/kN.

## Data Types: struct

Longitudinal camber compliance, LngCambCompl - Table struct('NegFx',struct('FL',[-2. -1.;0 0;2. 1.],'FR',[-2. 1.;0 0;2. -1.],'RL', [-2. -1.;0 0;2. 1.],'RR',[-2. 1.;0 0;2. -1.]),'PosFx',struct('FL',[-2. -1.;0 0;2. 1.],'FR',[-2. 1.;0 0;2. -1.],'RL',[-2. -1.;0 0;2. 1.],'RR',[-2. 1.;0 0;2. -1.]) ) (default)

Longitudinal camber compliance, specified as a structure, in deg/kN.

## Data Types: struct

Longitudinal caster compliance, LngCastCompI - Table

```
struct('NegFx',struct('FL',[-2. -1.;0 0;2. 1.],'FR',[-2. 1.;0 0;2. -1.],'RL',
[-2. -1.;0 0;2. 1.],'RR',[-2. 1.;0 0;2. -1.]),'PosFx',struct('FL',[-2. -1.;0
0;2. 1.],'FR',[-2. 1.;0 0;2. -1.],'RL',[-2. -1.;0 0;2. 1.],'RR',[-2. 1.;0
0;2. -1.])) (default)
```

Longitudinal caster compliance, specified as a structure, in deg/kN.

## Data Types: struct

Longitudinal wheel center compliance, LngWhICtrCompl - Table
struct('NegFx',struct('FL',[-2. -10.;0 0;2. 10.],'FR',[-2. 10.;0 0;2.
-10.],'RL',[-2. -10.;0 0;2. 10.],'RR',[-2. 10.;0 0;2.
-10.]),'PosFx',struct('FL',[-2. -10.;0 0;2. 10.],'FR',[-2. 10.;0 0;2.
-10.],'RL',[-2. -10.;0 0;2. 10.],'RR',[-2. 10.;0 0;2. -10.])) (default)
Longitudinal wheel center compliance, specified as a structure, in mm/kN.
Data Types: struct
Lateral wheel center compliance from braking, LatWhICtrComplLngBrk - Table
struct('NegFx', struct('FL',[-2. -10.;0 0;2. 10.],'FR',[-2. 10.;0 0;2. -10.],'RL',[-2. -10.;0 0;2. 10.],'RR',[-2. 10.;0 0;2.
-10.]),'PosFx',struct('FL',[-2. -10.;0 0;2. 10.],'FR',[-2. 10.;0 0;2.
-10.],'RL',[-2. -10.;0 0;2. 10.],'RR',[-2. 10.;0 0;2. -10.])) (default)
Lateral wheel center compliance from braking, specified as a structure, in mm/kN.
Data Types: struct

## Lateral compliance-opposed test

## Lateral steer compliance, LatSteerCompl - Table

struct('FL', [-2. -1.;0 0;2. 1.],'FR',[-2. 1.;0 0;2. -1.],'RL',[-2. -1.;0 0;2. 1.],'RR',[-2. 1.;0 0;2. -1.]) (default)

Lateral steer compliance, specified as a structure, in deg/kN.
Data Types: struct

## Lateral camber compliance, LatCambCompl - Table

struct('FL',[-2. -1.;0 0;2. 1.],'FR',[-2. 1.;0 0;2. -1.],'RL',[-2. -1.;0 0;2. 1.],'RR',[-2. 1.;0 0;2. -1.]) (default)

Lateral camber compliance, specified as a structure, in deg/kN.
Data Types: struct

## Lateral wheel center compliance from lateral sources, LatWhICtrComplLat - Table

```
struct('FL',[-2. -5.;0 0;2. 5.],'FR',[-2. 5.;0 0;2. -5.],'RL',[-2. -5.;0 0;2.
```

5.],'RR',[-2. 5.;0 0;2. -5.]) (default)

Lateral wheel center compliance from lateral sources, specified as a structure, in $\mathrm{mm} / \mathrm{kN}$.
Data Types: struct

## Aligning torque compliance-opposed test

Aligning torque steer compliance, AlgnTrqSteerCompl - Table
struct('FL',[-0.2-1.;0 0;0.2 1.],'FR',[-0.2 1.;0 0;0.2 -1.],'RL',[-0.2 -1.;0 0;0.2 1.],'RR',[-0.2 1.;0 0;0.2 -1.]) (default)

Aligning torque steer compliance, specified as a structure, in deg/kNm.
Data Types: struct
Aligning torque camber compliance, AlgnTrqCambCompl - Table

```
struct('FL',[-0.2 -1.;0 0;0.2 1.],'FR',[-0.2 1.;0 0;0.2 -1.],'RL',[-0.2 -1.;0
0;0.2 1.],'RR',[-0.2 1.;0 0;0.2 -1.])(default)
```

Aligning torque camber compliance, specified as a structure, in deg/kNm.
Data Types: struct

## Parallel lateral force compliance test

Vertical load transfer, VrtLdTrnsfr - Table
struct('FL',[-2. -1.;0 0;2. 1.],'FR',[-2. 1.;0 0;2. -1.],'RL',[-2. -1.;0 0;2.
1.],'RR',[-2. 1.;0 0;2. -1.]) (default)

Vertical load transfer, specified as a structure, in $\mathrm{N} / \mathrm{kN}$.

## Dependencies

To create this parameter, set Suspension type to Independent front and twist-beam rear.
Data Types: struct

## Static alignment settings

Toe, StatToe - Wheel toe angle
[0 0 0 0] (default) | 1-by-4 vector
Static toe angle for each wheel, specified as a 1-by-4 vector, in deg.

Wheel	Array Element	Axle	Wheel Location
Front left	$(1,1)$	1	1


Wheel	Array Element	Axle	Wheel Location
Front right	$(1,2)$	1	2
Rear left	$(1,3)$	2	1
Rear left	$(1,4)$	2	2

## Data Types: double

Camber, StatCamber - Wheel camber angle

```
[0 0 0 0] (default)| 1-by-4 vector
```

Static camber angle for each wheel, specified as a 1-by-4 vector, in deg.

Wheel	Array Element	Axle
Front left	$(1,1)$	1
Front right	$(1,2)$	1
Rear left	$(1,3)$	2
Rear left	$(1,4)$	2

## Data Types: double

Caster, StatCaster - Wheel caster angle
[0 0 0 0] (default) | 1-by-4 vector
Static caster angle for each wheel, specified as a 1-by-4 vector, in deg.

Wheel	Array Element	Axle
Front left	$(1,1)$	1
Front right	$(1,2)$	1
Rear left	$(1,3)$	2
Rear left	$(1,4)$	2

Data Types: double

## Wheels

Static loaded radius of wheels, StatLdWhIR - Wheel radius
[0.3 0.3 0.3 0.3] (default)| 1-by-4 vector
Static loaded radius of wheels, specified as a 1-by-4 vector, in m.

Wheel	Array Element	Axle
Front left	$(1,1)$	1
Front right	$(1,2)$	1
Rear left	$(1,3)$	2
Rear left	$(1,4)$	2

Data Types: double

## Version History

Introduced in R2022b

## References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

## See Also

Independent Suspension - Double Wishbone | Independent Suspension - Mapped | Independent Suspension-MacPherson

## Drivetrain Blocks

## Rotational Inertia

Ideal mechanical rotational inertia


## Libraries:

Powertrain Blockset / Drivetrain / Couplings
Vehicle Dynamics Blockset / Powertrain / Drivetrain / Couplings

## Description

The Rotational Inertia block implements an ideal mechanical rotational inertia.

## Power Accounting

For the power accounting, the block implements these equations.

Bus Signal	Description	Variable	Equations		
PwrInfo	PwrTrnsfrd - Power   transferred between   blocks	PwrR	Mechanical power   from base shaft	$P_{T R}$	$P_{T R}=T_{R} \omega$
Positive signals   indicate flow into   block   -Negative signals   indicate flow out of   block	PwrC	Mechanical power   from follower   shaft	$P_{T C}$	$P_{T C}=T_{C} \omega$	
PwrNotTrnsfrd -   Power crossing the   block boundary, but   not transferred	PwrDampLoss	Power loss due to   damping   Positive signals   indicate an input   -Negative signals   indicate a loss	$P_{d}$	$P_{d}=-b\|\omega\|^{2}$	
PwrStored - Stored   energy rate of change   - Positive signals   indicate an increase	PwrStoredShft	Rate change of   stored internal   torsional energy	$P_{s}$	$P_{S}=\omega \dot{\omega} J$	
Negative signals   indicate a decrease					

The equations use these variables.

[^0]| $T_{C}$ | Output torque |
| :--- | :--- |
| $\omega$ | Driveshaft angular velocity |
| $J$ | Rotational inertia |
| $b$ | Rotational viscous damping |
| $P_{d}$ | Power loss due to damping |
| $P_{s}$ | Rate change of stored internal torsional energy |

## Ports

Input
RTrq - Input torque
scalar
Applied input driveshaft torque, $T_{R}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this port, for Port Configuration, select Simulink.
CTrq - Output torque
scalar
Load driveshaft torque, $T_{C}$, in $\mathrm{N} \cdot \mathrm{m}$.
Dependencies
To enable this port, for Port Configuration, select Simulink.
$\mathbf{R}$ - Angular velocity and torque
two-way connector port
Angular velocity in rad/s. Torque is in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this port, for Port Configuration, select Two-way connection.
Inertia - Input
scalar
Rotational inertia, in $\mathrm{kg} \cdot \mathrm{m} \wedge 2$.
Dependencies
To create the Inertia port, select External inertia input.
Output
Info - Bus signal
bus
Bus signal containing these block calculations.

Signal			Description	Variable	Units
Trq	R		Applied input driveshaft torque	$T_{R}$	$\mathrm{N} \cdot \mathrm{m}$
	C		Output driveshaft torque	$T_{C}$	$\mathrm{N} \cdot \mathrm{m}$
	Damp		Damping torque	$T_{d}=b \omega$	$\mathrm{N} \cdot \mathrm{m}$
Spd			Angular driveshaft speed	$\omega$	rad/s
PwrInfo	PwrTrnsfrd	PwrR	Mechanical power from base shaft	$P_{T R}$	W
		PwrC	Mechanical power from follower shaft	$P_{T C}$	W
	PwrNotTrnsf rd	PwrDampLos S	Power loss due to damping	$P_{d}$	W
	PwrStored	PwrStoredS hft	Rate change of stored internal torsional energy	$P_{s}$	W

## Dependencies

To enable this port, select Output Info bus.
Spd - Driveshaft speed
scalar
Angular driveshaft speed, $\omega$, in rad/s.

## Dependencies

To enable this port, for Port Configuration, select Simulink.
C - Angular velocity and torque
two-way connector port
Angular velocity in rad/s. Torque is in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this port, for Port Configuration, select Two-way connection.

## Parameters

## Block Options

Port Configuration - Specify configuration
Simulink (default) |Two-way connection
Specify the port configuration.

## Dependencies

Specifying Simulink creates these ports:

- RTrq
- CTrq
- Spd

Specifying Two-way connection creates these ports:

- R
- C

Output Info bus - Selection
off (default) | on
Select to create the Info output port.
External inertia input - Input rotational inertia
off (default) | on

## Dependencies

To create the Inertia port, select External inertia input.

## Parameters

Rotational inertia, J - Inertia

```
.01 (default) | scalar
```

Rotational inertia, in $\mathrm{kg} \cdot \mathrm{m} \wedge 2$.

## Dependencies

To enable this parameter, clear Input rotational inertia.
Torsional damping, b - Damping
. 001 (default) | scalar
Torsional damping, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Initial velocity, omega_o - Angular
0 (default) | scalar
Initial angular velocity, in rad/s.

## Version History

Introduced in R2017a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

## See Also

Split Torsional Compliance | Torsional Compliance

## Split Torsional Compliance

Split torsional coupler


Libraries:
Powertrain Blockset / Drivetrain / Couplings
Vehicle Dynamics Blockset / Powertrain / Drivetrain / Couplings

## Description

The Split Torsional Compliance block implements parallel spring-damper coupling between shafts. You can specify the type of coupling by selecting one of the Coupling Configuration parameters:

- Shaft split - Single input shaft coupled to two output shafts
- Shaft merge - Two input shafts coupled to a single output shaft

In fuel economy and emissions studies, you can use the Split Torsional Compliance block to model mechanical rotational compliance between common driveline elements such as motors, planetary gears, and clutches. For example, use the Shaft split configuration to couple a motor and two planetary gear sets. Use the Shaft merge configuration to couple a dual clutch transmission to an output shaft.

## Shaft Split

For the Shaft split configuration, the block implements this schematic and equations.


$$
\begin{aligned}
& T_{\text {in }}=-\left(\omega_{\text {in }}-\omega_{1 \text { out }}\right) b_{1}-\left(\omega_{\text {in }}-\omega_{2 \text { out }}\right) b_{2}-\theta_{1} k_{1}-\theta_{2} k_{2} \\
& T_{1 \text { out }}=\left(\omega_{\text {in }}-\omega_{1 \text { out }}\right) b_{1}+\theta_{1} k_{1} \\
& T_{2 \text { out }}=\left(\omega_{\text {in }}-\omega_{2 \text { out }}\right) b_{2}+\theta_{2} k_{2} \\
& \dot{\theta}_{1}=\left(\omega_{\text {in }}-\omega_{1 \text { out }}\right) \\
& \dot{\theta}_{2}=\left(\omega_{\text {in }}-\omega_{2 \text { out }}\right)
\end{aligned}
$$

To account for frequency-dependent damping, both damping terms incorporate a low-pass filter. The equations use these variables.

$T_{\text {in }}$	Resulting applied input reaction torque
$\omega_{\text {in }}$	Input shaft rotational velocity
$T_{\text {lout }}$	Resulting applied torque to first output shaft
$\omega_{\text {lout }}$	First output shaft rotational velocity
$T_{2 \text { out }}$	Resulting applied torque to second output shaft
$\omega_{2 \text { out }}$	Second output shaft rotational velocity
$\theta_{1}, \theta_{2}$	First, second shaft rotation, respectively
$b_{1}, b_{2}$	First, second shaft viscous damping, respectively
$k_{1}, k_{2}$	First, second shaft torsional stiffness, respectively

## Shaft Merge

For the Shaft merge configuration, the block implements this schematic and equations.


$$
\begin{aligned}
& T_{\text {out }}=\left(-\omega_{\text {out }}+\omega_{1 \text { in }}\right) b_{1}+\left(-\omega_{\text {out }}+\omega_{2 \text { in }}\right) b_{2}+\theta_{1} k_{1}+\theta_{2} k_{2} \\
& T_{1 \text { out }}=\left(\omega_{\text {out }}-\omega_{1 \text { in }}\right) b_{1}-\theta_{1} k_{1} \\
& T_{2 \text { out }}=\left(\omega_{\text {out }}-\omega_{2 \text { in }}\right) b_{2}-\theta_{2} k_{2} \\
& \dot{\theta}_{1}=\left(\omega_{1 \text { in }}-\omega_{\text {out }}\right) \\
& \dot{\theta}_{2}=\left(\omega_{2 \text { in }}-\omega_{\text {out }}\right)
\end{aligned}
$$

To account for frequency-dependent damping, both damping terms incorporate a low-pass filter.

The equations use these variables.

$T_{\text {out }}$	Resulting applied output torque
$\omega_{\text {out }}$	Output shaft rotational velocity
$T_{1 \text { in }}$	Resulting reaction torque to first input shaft
$\omega_{1 \text { in }}$	First input shaft rotational velocity
$T_{2 \text { in }}$	Resulting reaction torque to second input shaft
$\omega_{2 \text { in }}$	Second input shaft rotational velocity
$\theta_{1}, \theta_{2}$	First, second shaft rotation, respectively
$b_{1}, b_{2}$	First, second shaft viscous damping, respectively
$k_{1}, k_{2}$	First, second shaft torsional stiffness, respectively

## Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Variable	Equations
PwrInfo	PwrTrnsfrd - Power transferred between blocks   - Positive signals indicate flow into block   - Negative signals indicate flow out of block	PwrR	For the Shaft split configuration, mechanical power from input shaft	$P_{\text {TR }}$	$P_{T R}=-T_{R} \omega_{R}$
		PwrC1	For the Shaft split configuration, mechanical power from first output shaft	$P_{\text {TC1 }}$	$\begin{aligned} & P_{T C 1}= \\ & -T_{C 1} \omega_{C 1} \end{aligned}$
		PwrC2	For the Shaft split configuration, mechanical power from second output shaft	$P_{\text {TC2 }}$	$\begin{aligned} & P_{T C 2}= \\ & -T_{C 2} \omega_{C 2} \end{aligned}$
		PwrC	For the Shaft merge configuration, mechanical power from output shaft	$P_{\text {TC }}$	$P_{T C}=T_{C} \omega_{C}$


Bus Signal			Description	Variable	Equations
		PwrR1	For the Shaft merge configuration, mechanical power from first input shaft	$P_{\text {TR1 }}$	$\begin{gathered} P_{T R 1}= \\ T_{R 1} \omega_{R 1} \end{gathered}$
		PwrR2	For the Shaft merge configuration, mechanical power from second input shaft	$P_{\text {TR2 }}$	$\begin{gathered} P_{T R 2}= \\ T_{R 2} \omega_{R 2} \end{gathered}$
	PwrNotTrnsfrd Power crossing the block boundary, but not transferred   - Positive signals indicate an input   - Negative signals indicate a loss	PwrDampLoss	Mechanical damping loss	$P_{d}$	$\begin{aligned} & P_{d}=-\left(b_{1}\left\|\dot{\theta}_{1}\right\|^{2}\right. \\ & \left.+b_{2}\left\|\dot{\theta}_{2}\right\|^{2}\right) \end{aligned}$
	PwrStored - Stored energy rate of change   - Positive signals indicate an increase   - Negative signals indicate a decrease	PwrStoredShft	Rate change in spring energy	$P_{s}$	$\begin{aligned} & P_{s}=\left(k_{1} \theta_{1} \dot{\theta}_{1}\right. \\ & \left.+k_{2} \theta_{2} \dot{\theta}_{2}\right) \end{aligned}$

The equations use these variables.

$T_{R}$	Shaft R torque
$T_{C}$	Shaft C torque
$\omega_{R}$	Shaft R angular velocity
$\omega_{C}$	Shaft C angular velocity
$\theta$	Coupled shaft rotation
$k$	Shaft torsional stiffness
$b$	Rotational viscous damping
$P_{t}$	Total mechanical power
$P_{d}$	Power loss due to damping
$P_{s}$	Rate change of stored spring energy

## Ports

Input
RSpd - Input shaft speed
scalar
Input shaft rotational velocity, $\omega_{i n}$, in rad/s.

## Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

C1Spd - First output shaft speed
scalar
First output shaft rotational velocity, $\omega_{1 \text { out }}$, in rad/s.

## Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

C2Spd - Second output shaft speed
scalar
Second output shaft rotational velocity, $\omega_{\text {2out }}$ in rad/s.

## Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

CSpd - Input speed
scalar
Output shaft rotational velocity, $\omega_{\text {out }}$, in rad/s.

## Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R1Spd - First input shaft speed
scalar
First input shaft rotational velocity, $\omega_{1 \text { in }}$, in rad/s.

## Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R2Spd - Second input shaft speed

## scalar

Second input shaft rotational velocity, $\omega_{2 i n}$, in rad/s.

## Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge
$\mathbf{R}$ - Input shaft angular velocity and torque
two-way connector port
Input shaft angular velocity, $\omega_{i n}$, in rad/s and torque, $T_{i n}$, in $\mathrm{N} \cdot \mathrm{m}$.
Dependencies
To enable this port, select:
- Port Configuration>Two-way connection
- Coupling Configuration>Shaft split

R1 - First input shaft angular velocity and torque
two-way connector port
First input shaft angular velocity, $\omega_{1 i n}$, in rad/s and torque, $T_{1 i n}$, in $N \cdot \mathrm{~m}$.

## Dependencies

To enable this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge

R2 - Second input shaft angular velocity and torque
two-way connector port
Second input shaft angular velocity, $\omega_{2 i n}$, in rad/s and torque, $T_{2 i n}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge


## Output

Info - Bus signal
bus
If you set Coupling Configuration to Shaft split, the Info bus contains these signals.

Signal			Description	Variable	Units
Trq	R		Input shaft torque	$T_{\text {in }}$	$\mathrm{N} \cdot \mathrm{m}$
	C1		First output shaft torque	$T_{1 \text { out }}$	$\mathrm{N} \cdot \mathrm{m}$
	C2		Second output shaft torque	$T_{\text {out }}$	$\mathrm{N} \cdot \mathrm{m}$
	Damp	C1	First output shaft damping torque	$b_{1} \omega_{1 \text { out }}$	$\mathrm{N} \cdot \mathrm{m}$
		C2	Second output shaft damping torque	$b_{2} \omega_{2 \text { out }}$	$\mathrm{N} \cdot \mathrm{m}$
	Spring	C1	First output shaft spring torque	$k_{1} \theta_{1}$	$\mathrm{N} \cdot \mathrm{m}$
		C2	Second output shaft spring torque	$k_{2} \theta_{2}$	$\mathrm{N} \cdot \mathrm{m}$
Spd	R		Input shaft angular velocity	$\omega_{\text {in }}$	rad/s
	C1		First output shaft angular velocity	$\omega_{1 \text { out }}$	rad/s
	C2		Second output shaft angular velocity	$\omega_{\text {2out }}$	$\mathrm{rad} / \mathrm{s}$
	deltadot1		Difference in input and first output shaft angular velocity	$\dot{\theta}_{1}$	rad/s
	deltadot2		Difference in input and second output shaft angular velocity	$\dot{\theta}_{2}$	rad/s
PwrInfo	PwrTrnsfrd	PwrR	Mechanical power from input shaft	$P_{T R}$	W
		PwrC1	Mechanical power from first output shaft	$P_{\text {TC1 }}$	W
		PwrC2	Mechanical power from second output shaft	$P_{\text {TC2 }}$	W
	PwrNotTrnsf rd	PwrDampLo SS	Mechanical damping loss	$P_{d}$	W
	PwrStored	PwrStored Shft	Rate change of stored internal torsional energy	$P_{s}$	W

If you set Coupling Configuration to Shaft merge, the Info bus contains these signals.

Signal		Description	Variable	Units
Trq	C	Output shaft torque	$T_{\text {out }}$	$\mathrm{N} \cdot \mathrm{m}$
	R1	First input shaft torque	$T_{1 \text { in }}$	$\mathrm{N} \cdot \mathrm{m}$
	R2	Second input shaft torque	$T_{2 i n}$	$\mathrm{~N} \cdot \mathrm{~m}$


Signal			Description	Variable	Units
	Damp	R1	First input shaft damping torque	$b_{1} \omega_{1 \text { in }}$	$\mathrm{N} \cdot \mathrm{m}$
		R2	Second in shaft damping torque	$b_{2} \omega_{2 i n}$	$\mathrm{N} \cdot \mathrm{m}$
	Spring	R1	First input shaft spring torque	$k_{1} \theta_{1}$	$\mathrm{N} \cdot \mathrm{m}$
		R2	Second in shaft spring torque	$k_{2} \theta_{2}$	$\mathrm{N} \cdot \mathrm{m}$
Spd	C		Output shaft angular velocity	$\omega_{\text {out }}$	rad/s
	R1		First input shaft angular velocity	$\omega_{1 i n}$	rad/s
	R2		Second input shaft angular velocity	$\omega_{2 i n}$	rad/s
	deltadot1		Difference in first input and output shaft angular velocity	$\dot{\theta}_{1}$	rad/s
	deltadot2		Difference in second input and output shaft angular velocity	$\dot{\theta}_{2}$	rad/s
PwrInfo	PwrTrnsfrd	PwrC	Mechanical power from output shaft	$P_{T C}$	W
		PwrR1	Mechanical power from first input shaft	$P_{\text {TR1 }}$	W
		PwrR2	Mechanical power from second input shaft	$P_{\text {TR2 }}$	W
	PwrNotTrnsf rd	PwrDampLo ss	Mechanical damping loss	$P_{d}$	W
	PwrStored	PwrStored Shft	Rate change of stored internal torsional energy	$P_{s}$	W

## Dependencies

To enable this port, select Output Info bus.
RTrq - Input shaft torque
scalar
Input shaft torque, $T_{\text {in }}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

C1Trq - First output shaft torque
scalar
First output shaft torque, $T_{1 o u t}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

C2Trq - Second output shaft torque scalar

Second output shaft torque, $T_{2 o u t}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

CTrq - Output shaft torque
scalar
Output shaft torque, $T_{\text {out }}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge
$\mathbf{R 1} \mathbf{T r q}$ - First input shaft torque
scalar
First input shaft torque, $T_{1 i n}$, in $\mathrm{N} \cdot \mathrm{m}$.


## Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

R2Trq - Second input shaft torque scalar

Second input shaft torque, $T_{2 i n}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

C1 - First output shaft angular velocity and torque two-way connector port

First output shaft angular velocity, $\omega_{1 \text { out }}$, in rad/s and torque, $T_{1 \text { out }}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft split

C2 - Second output shaft angular velocity and torque
two-way connector port
Second output shaft angular velocity, $\omega_{2 o u t}$, in rad/s and torque, $T_{2 \text { out }}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft split

C - Output shaft angular velocity and torque
two-way connector port
Output shaft angular velocity, $\omega_{\text {out }}$, in rad/s and torque, $T_{\text {out }}$ in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge


## Parameters

## Block Options

Port Configuration - Specify configuration
Simulink (default)|Two-way connection
Specify the port configuration.
Coupling Configuration - Specify configuration
Shaft split (default)|Shaft merge
Specify the coupling type.
Output Info bus - Selection
off (default) | on
Select to create the Info output port.

## Coupling 1

Torsional stiffness, k1 - Stiffness
5e4 (default) | scalar
Rotational inertia, $k_{1}$, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.

Torsional damping, b1 - Damping
le2 (default) | scalar
Torsional damping, $b_{1}$, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Damping cutoff frequency, omega1_c - Frequency 3000 (default)| scalar

Damping cutoff frequency, in rad/s.

## Coupling 2

Torsional stiffness, k2 - Stiffness
5e4 (default) | scalar
Rotational inertia, $k_{2}$, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.
Torsional damping, b2 - Damping
le2 (default) | scalar
Torsional damping, $b_{2}$, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$
Damping cutoff frequency, omega2_c - Frequency 3000 (default) | scalar

Damping cutoff frequency, in rad/s.

## Version History

Introduced in R2017b

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink $\circledR^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

## See Also

Rotational Inertia | Torsional Compliance

## Torsional Compliance

Parallel spring-damper


Libraries:
Powertrain Blockset / Drivetrain / Couplings
Vehicle Dynamics Blockset / Powertrain / Drivetrain / Couplings

## Description

The Torsional Compliance block implements a parallel spring-damper to couple two rotating driveshafts. The block uses the driveshaft angular velocities, torsional stiffness, and torsional damping to determine the torques.
$T_{R}=-\left(\omega_{R}-\omega_{C}\right) b-\theta k$
$T_{C}=\left(\omega_{R}-\omega_{C}\right) b+\theta k$
$\dot{\theta}=\left(\omega_{R}-\omega_{C}\right)$

## Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Variable	Equations
PwrInfo	PwrTrnsfrd - Power transferred between blocks   - Positive signals indicate flow into block   - Negative signals indicate flow out of block	PwrR	Mechanical power from driveshaft R	$P_{\text {TR }}$	$\begin{gathered} P_{T R}= \\ T_{R} \omega_{R} \end{gathered}$
		PwrC	Mechanical power from driveshaft C	$P_{\text {TC }}$	$\begin{array}{r} P_{T C}= \\ T_{C} \omega_{C} \end{array}$
	PwrNotTrnsfrd - Power crossing the block boundary, but not transferred   - Positive signals indicate an input   - Negative signals indicate a loss	PwrDampLoss	Mechanical damping loss	$P_{d}$	$\begin{aligned} & P_{d}= \\ & -b\|\dot{\theta}\|^{2} \end{aligned}$
	PwrStored - Stored energy rate of change   - Positive signals indicate an increase   - Negative signals indicate a decrease	PwrStoredShft	Rate change in spring energy	$P_{S}$	$P_{S}=-\theta k \dot{\theta}$

The equations use these variables.

$T_{R}$	Driveshaft R torque
$T_{C}$	Driveshaft C torque
$\omega_{R}$	Driveshaft R angular velocity
$\omega_{C}$	Driveshaft C angular velocity
$\theta$	Coupled driveshaft rotation
$k$	Driveshaft torsional stiffness
$b$	Rotational viscous damping
$P_{d}$	Power loss due to damping
$P_{s}$	Rate change of stored spring energy

## Ports

Input
RSpd - Driveshaft R angular velocity
scalar
Input driveshaft angular velocity, in rad/s.

## Dependencies

To enable this port, for Port Configuration, select Simulink.
CSpd - Driveshaft C angular velocity
scalar
Output driveshaft angular velocity, in rad/s.

## Dependencies

To enable this port, for Port Configuration, select Simulink.
$\mathbf{R}$ - Angular velocity and torque
two-way connector port
Angular velocity in rad/s. Torque is in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this port, for Port Configuration, select Two-way connection.

## Output

Info - Bus signal
bus
Bus signal containing these block calculations.

Signal	Description	Variable	Units	
$\operatorname{Trq}$	R	Input driveshaft torque	$T_{R}$	$\mathrm{~N} \cdot \mathrm{~m}$
	C	Output driveshaft torque	$T_{C}$	$\mathrm{~N} \cdot \mathrm{~m}$


Signal			Description	Variable	Units
	Damp		Damping torque	$T_{s}=b \dot{\theta}$	N.m
	Spring		Spring torque	$T_{d}=k \theta$	$\mathrm{N} \cdot \mathrm{m}$
Spd	R		Input driveshaft angular velocity	$\omega_{R}$	rad/s
	C		Output driveshaft angular velocity	$\omega_{C}$	rad/s
	deltadot		Difference in input and output driveshaft angular velocity	$\dot{\theta}$	rad/s
PwrInfo	PwrTrnsfrd	PwrR	Mechanical power from driveshaft R	$P_{T R}$	W
		PwrC	Mechanical power from driveshaft C	$P_{\text {TC }}$	W
	PwrNotTrnsf rd	PwrDampLos   S	Power loss due to damping	$P_{d}$	W
	PwrStored	PwrStoredS hft	Rate change of stored internal kinetic energy	$P_{s}$	W

## Dependencies

To enable this port, select Output Info bus.
RTrq - Driveshaft R torque
scalar
Input drive shaft torque, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this port, for Port Configuration, select Simulink.
CTrq - Driveshaft C torque
scalar
Applied output driveshaft torque, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this port, for Port Configuration, select Simulink.
C - Angular velocity and torque
two-way connector port
Angular velocity in rad/s. Torque is in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this port, for Port Configuration, select Two-way connection.

## Parameters

## Block Options

Port Configuration - Specify configuration
Simulink (default)|Two-way connection
Specify the port configuration.
Dependencies
Specifying Simulink creates these ports:

- RSpd
- CSpd
- RTrq
- CTrq

Specifying Two-way connection creates these ports:

- R
- C

Output Info bus - Selection
off (default) | on
Select to create the Info output port.
Torsional stiffness, $\mathbf{k}$ - Inertia
le4 (default) | scalar
Torsional stiffness, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.
Torsional damping, $\mathbf{b}$ - Damping
1e2 (default) | scalar
Torsional damping, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Initial deflection, theta_o - Angular
0 (default) | scalar
Initial deflection, in rad.
Initial velocity difference, domega_o - Angular
0 (default) | scalar
Initial velocity difference, in rad/s.
Damping cut-off frequency, omega_c - Frequency 3000 (default) | scalar

Damping cut-off frequency, in rad/s.

## Version History

Introduced in R2017a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink $\circledR^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.
See Also
Rotational Inertia | Split Torsional Compliance

## Active Differential

Spur or planetary active differential gear


## Libraries:

Vehicle Dynamics Blockset / Powertrain / Drivetrain / Final Drive Unit

## Description

The Active Differential block implements an active differential to account for the power transfer from the transmission to the axles. The block models the active differential as an open differential coupled to either a spur or planetary differential gear set. The block uses external pressure signals to regulate the clutch pressure to either speed up or slow down each axle rotation.

Use the block in hardware-in-the-loop (HIL) and optimization workflows to dynamically couple the driveshaft to the wheel axles when you want to direct the transmission torque to a specific axle. For detailed front wheel driving studies, use the block to couple the driveshaft to universal joints. The block is suitable to use in system-level closed-loop control studies, for example, yaw stability and torque vectoring. All the parameters are tunable.

To specify the active differential, open the Active Differential parameters and specify Active differential type.

Setting	Block Implementation
Spur gears, superposition   clutches	Clutches are in superposition through a three-gang gear system   and a differential case
Double planetary gears,   stationary clutches	Clutches are fixed to the carrier and axles through double   planetary gear sets

Use the Open Differential parameter Crown wheel (ring gear) located to specify the open differential location, either to the left or right of the center-line.

Depending on the available data, to specify the method to couple the different torques applied to the axles, use the Slip Coupling parameter Coupling type.

Setting	Block Implementation
Pre-loaded ideal clutch	Torque modeled as a dry clutch with constant friction coefficients
Slip speed dependent   torque data	Torque determined from a lookup table that is a function of slip-   speed and clutch pressure

The Active Differential block does not include a controller or external clutch actuator dynamics. Use this information to control the input clutch pressure. The info bus contains the slip speeds at clutch 1, $\Delta \omega_{\text {cl1 }}$, and clutch 2, $\Delta \omega_{c l 2}$.

Input Axle Torque	$\Delta \boldsymbol{\omega}_{\text {cl1 }}$	$\Delta \omega_{c \mid 2}$	Input Clutch Pressure
Positive axle 1 torque	$>0$	N/A	Increase clutch 1   pressure
Positive axle 1 torque	$<0$	N/A	Disengage clutch 1 and   2
Positive axle 2 torque	N/A	$>0$	Increase clutch 1   pressure
Positive axle 2 torque	N/A	$<0$	Disengage clutch 1 and   2

## Differentials

The Active Differential block implements these equations to represent the mechanical dynamic response for the superposition and stationary clutch configurations. To determine the gear ratios, the block uses the clutch speed and the number of teeth for each gear pair. The allowable wheel speed difference (AWSD) limits the wheel speed difference for positive torque.

$\begin{array}{c}\text { Mechanical } \\ \text { Dynamic } \\ \text { Response }\end{array}$	Equations	
	$\begin{array}{c}\text { Superposition Clutches and Spur } \\ \text { Gearing }\end{array}$	Stationary Clutches and Planetary
Gearing		

## Superposition Clutches and Spur Gearing

These superposition clutch illustrations show the clutch configuration and schematic for torque transfer to the left wheel.


## Stationary Clutches and Planetary Gearing

The illustrations show the stationary clutch configuration and schematic.


## Slip Coupling

For both the ideal clutch and slip-speed configurations, the slip coupling is a function of the slipspeed and clutch pressure. The slip-speed depends on the slip velocity at each of the clutch interfaces.

$$
\varpi=\left[\Delta \omega_{c 1}, \Delta \omega_{c 2}\right]
$$

## Ideal Clutch

The ideal clutch coupling model uses the axle slip speed, clutch pressure, and friction to calculate the clutch torque. The friction coefficient is a function of the slip speed.

$$
T_{C}=F_{T} N_{d} \mu(|\bar{\omega}|) R_{e f f} \tanh (4 \bar{\omega})
$$

To calculate the total clutch force, the block uses the effective radius, clutch pressure, and clutch preload force.

$$
F_{T}=F_{C}+P_{1,2} \mathrm{~A}_{e f f}, \quad F_{T} \geq 0
$$

The disc radii determine the effective clutch radius over which the clutch force acts.

$$
R_{e f f}=\frac{2\left(R_{0}{ }^{3}-R_{i} 3\right)}{\left.3\left(R_{0}{ }^{2}-R_{i}\right)^{2}\right)}
$$

## Slip-Speed

To calculate the clutch torque, the slip speed coupling model uses torque data that is a function of slip speed and clutch pressure. The angular velocities of the axles determine the slip speed.

$$
T_{C}=T_{C}\left(\varpi, \quad P_{1,2}\right)
$$

The equations use these variables.

$A_{e f f}$	Effective clutch pressure area
$b_{d}$	Crown gear linear viscous damping
$b_{1}, b_{2}$	Axle 1 and 2 linear viscous damping, respectively
$F_{c}, F_{T}$	Clutch preload force and total force, respectively
$J_{d}$	Carrier rotational inertia
$J_{g c}$	Three-gang gear rotational inertia
$J_{c 1}, J_{c 2}$	Planetary carrier 1 and 2 rotational inertia, respectively
$J_{r 1}, J_{r 2}$	Planetary ring gear 1 and 2 rotational inertia, respectively
$J_{s 1}, J_{s 2}$	Planetary sun gear 1 and 2 rotational inertia, respectively
$J_{1}, J_{2}$	Axle 1 and 2 rotational inertia, respectively
$N$	Carrier-to-drive shaft gear ratio
$N_{d}$	Number of disks
$N_{s 1}, N_{s 2}$	Clutch 1 and 2 carrier-to-spur gear ratio, respectively
$N_{p 1}, N_{p 2}$	Planetary 1 and 2 carrier-to-axle gear ratio, respectively
$P_{1}, P_{2}$	Clutch 1 and 2 pressure, respectively


$R_{e f f}$	Effective clutch radius
$R_{i}, R_{o}$	Annular disk inner and outer radius, respectively
$T_{c}$	Clutch torque
$T_{c l 1}, T_{c l 2}$	Clutch 1 and 2 coupling torque, respectively
$T_{d}$	Driveshaft torque
$T_{1}, T_{2}$	Axle 1 and 2 torque, respectively
$T_{i}$	Axle internal resistance torque
$T_{i 1}, T_{i 2}$	Axle 1 and 2 internal resistance torque
$\omega_{d}$	Driveshaft angular velocity
$\omega$	Slip speed
$\omega_{1}, \omega_{2}$	Axle 1 and 2 angular velocity, respectively
$\Delta \omega_{c l 1}, \Delta \omega_{c l 2}$	Clutch 1 and 2 slip speed at interface, respectively
$\omega_{c l 1}, \omega_{c l 2}$	Clutch 1 and 2 angular velocity, respectively
$\mu$	Clutch coefficient of friction
$z_{i}$	Number of teeth on gear $i$

## Ports

Inputs
Prs1 - Clutch 1 pressure
scalar
Clutch 1 pressure, $P_{1}$, in Pa.
Prs2 - Clutch 2 pressure
scalar
Clutch 2 pressure, $P_{2}$, in Pa.
DriveshftTrq - Driveshaft torque
scalar
Applied input torque, $T_{d}$, typically from the engine driveshaft, in $\mathrm{N} \cdot \mathrm{m}$.
AxI1Trq - Torque
scalar
Axle 1 torque, $T_{1}$, in $\mathrm{N} \cdot \mathrm{m}$.
AxI2Trq - Torque
scalar
Axle 2 torque, $T_{2}$, in $N \cdot m$.
Output
Info - Bus signal
bus

Bus signal containing these block calculations.

Signal		Description	Units
Driveshft	DriveshftTrq	Drive shaft torque	$\mathrm{N} \cdot \mathrm{m}$
	DriveshftSpd	Drive shaft angular velocity	$\mathrm{rad} / \mathrm{s}$
	Axl1Trq	Axle 1 torque	$\mathrm{N} \cdot \mathrm{m}$
	Axl1Spd	Axle 1 angular velocity	$\mathrm{rad} / \mathrm{s}$
Cplng	Axl2Trq	Axle 2 torque	$\mathrm{N} \cdot \mathrm{m}$
	Axl2Spd	Axle 2 angular velocity	$\mathrm{rad} / \mathrm{s}$
	CplngTrq1	Clutch 1 coupling torque	$\mathrm{N} \cdot \mathrm{m}$
	CplngTrq2	Clutch 2 coupling torque	$\mathrm{N} \cdot \mathrm{m}$
	CplngSlipSpd1	Clutch 1 slip speed	$\mathrm{rad} / \mathrm{s}$
	CplngSlipSpd2	Clutch 2 slip speed	$\mathrm{rad} / \mathrm{s}$
	CplngPrs1	Clutch 1 input pressure	Pa
	CplngPrs2	Clutch 2 input pressure	Pa

DriveshftSpd - Angular velocity
scalar
Driveshaft angular velocity, $\omega_{d}$, in rad/s.
AxIISpd - Angular velocity
scalar
Axle 1 angular velocity, $\omega_{1}$, in rad/s.
AxI2Spd - Angular velocity
scalar
Axle 2 angular velocity, $\omega_{2}$, in rad/s.

## Parameters

## Active Differential

## Active differential type - Differential

Spur gears, superposition clutches (default)|Double planetary gears, stationary clutches

Specify the type of active differential.

Setting	Block Implementation
Spur gears, superposition   clutches	Clutches are in superposition through a three-gang gear system   and a differential case
Double planetary gears,   stationary clutches	Clutches are fixed to the carrier and axles through double   planetary gear sets

Clutch 1 to differential case gear ratio, Ns1 - Clutch 1-spur gear ratio

## . 875 (default) | scalar

Clutch 1-to-carrier spur gear ratio, $N_{s 1}$, dimensionless.

## Dependencies

To enable the spur gear parameters, select Spur gears, superposition clutches for the Active differential type parameter.

Clutch 2 to differential case gear ratio, Ns2 - Clutch 2-spur gear ratio 1.125 (default) | scalar

Clutch 2-to-carrier spur gear ratio, $N_{s 2}$, dimensionless.

## Dependencies

To enable the spur gear parameters, select Spur gears, superposition clutches for the Active differential type parameter.

Three-gang gear inertia, Jgc - Rotational inertia

## . 003 (default) | scalar

Three-gang gear rotational inertia, $J_{g c}$, in $\mathrm{kg} \cdot \mathrm{m} \wedge 2$.

## Dependencies

To enable the spur gear parameters, select Spur gears, superposition clutches for the Active differential type parameter.

Axle 1 planetary carrier to axle gear ratio, Np1 - Planetary 1 carrier gear ratio
1.125 (default) | scalar

Planetary 1 carrier-to-axle gear ratio, $N_{p 1}$, dimensionless.

## Dependencies

To enable the planetary gear parameters, select Double planetary gears, stationary clutches for the Active differential type parameter.

Axle 1 sun gear inertia, Js1 - Planetary 1 sun gear inertia
. 001 (default) | scalar
Planetary 1 sun gear inertia, $J_{s 1}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.

## Dependencies

To enable the planetary gear parameters, select Double planetary gears, stationary clutches for the Active differential type parameter.

Axle 1 carrier inertia, Jc1 - Planetary 1 carrier inertia
. 001 (default) | scalar
Planetary 1 carrier inertia, $J_{c 1}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.

## Dependencies

To enable the planetary gear parameters, select Double planetary gears, stationary clutches for the Active differential type parameter.

Axle 1 ring inertia, Jr1 - Planetary 1 ring gear inertia

## . 002 (default) | scalar

Planetary 1 ring gear inertia, $J_{r 1}, \mathrm{~kg} \cdot \mathrm{~m}^{\wedge} 2$.

## Dependencies

To enable the planetary gear parameters, select Double planetary gears, stationary clutches for the Active differential type parameter.

Axle 2 planetary carrier to axle gear ratio, Np2 - Planetary 2 carrier gear ratio
1.125 (default) | scalar

Planetary 2 carrier-to-axle gear ratio, $N_{p 2}$, dimensionless.

## Dependencies

To enable the planetary gear parameters, select Double planetary gears, stationary clutches for the Active differential type parameter.

Axle 2 sun gear inertia, Js2 - Planetary 2 sun gear inertia
. 001 (default) | scalar
Planetary 2 sun gear inertia, $J_{s 2}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.

## Dependencies

To enable the planetary gear parameters, select Double planetary gears, stationary clutches for the Active differential type parameter.

Axle 2 carrier inertia, Jc2 - Planetary 2 carrier inertia
. 001 (default) | scalar
Planetary 2 carrier inertia, $J_{c 2}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.

## Dependencies

To enable the planetary gear parameters, select Double planetary gears, stationary clutches for the Active differential type parameter.

Axle 2 ring inertia, Jr2 - Planetary 2 ring gear inertia
. 002 (default) | scalar
Planetary 2 ring gear inertia, $J_{r 2}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Dependencies
To enable the planetary gear parameters, select Double planetary gears, stationary clutches for the Active differential type parameter.

## Open Differential

Crown wheel (ring gear) located - Specify crown wheel connection
To the left of center-line (default)|To the right of center-line
Specify the crown wheel connection to the drive shaft.

Carrier to drive shaft ratio, NC/ND - Ratio
4 (default) | scalar
Carrier-to-drive shaft gear ratio, $N$.
Carrier inertia, Jd - Inertia
. 1 (default) | scalar
Rotational inertia of the crown gear assembly, $J_{d}$, in $\mathrm{kg} \cdot \mathrm{m} \wedge 2$. You can include the drive shaft inertia.
Carrier damping, bd - Damping
le-3 (default) | scalar
Crown gear linear viscous damping, $b_{d}$, in $N \cdot m \cdot s / r a d$.
Axle 1 inertia, Jw1 - Inertia
. 1 (default) | scalar
Axle 1 rotational inertia, $J_{1}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Axle 1 damping, bw1 - Damping
1e-3 (default) | scalar
Axle 1 linear viscous damping, $b_{1}$, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 2 inertia, Jw2 - Inertia
. 1 (default) | scalar
Axle 2 rotational inertia, $J_{2}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Axle 2 damping, bw2 - Damping
1e-3 (default) | scalar
Axle 2 linear viscous damping, $b_{2}$, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 1 initial velocity, omegaw1o - Angular velocity
0 (default) | scalar
Axle 1 initial velocity, $\omega_{01}$, in rad/s.
Axle 2 initial velocity, omegaw2o - Angular velocity
0 (default) | scalar
Axle 2 initial velocity, $\omega_{02}$, in rad/s.

## Slip Coupling

## Coupling type - Torque coupling

Ideal pre-loaded clutch (default)|Slip speed dependent torque data|Input torque dependent torque data

Specify the type of torque coupling.

Setting	Block Implementation
Pre-loaded ideal clutch	Torque modeled as a wet clutch with a constant velocity


Setting	Block Implementation
Slip speed dependent   torque data	Torque determined from a lookup table that is a function of slip-   speed and clutch pressure

## Effective applied pressure area - Pressure area

0.01 (default) | scalar

Effective applied pressure area, in $\mathrm{N} / \mathrm{m}^{\wedge} 2$.

## Dependencies

To enable the clutch parameters, select Ideal pre-loaded clutch for the Coupling type parameter.

Number of disks, Ndisks - Torque coupling
4 (default) | scalar
Number of disks.

## Dependencies

To enable the clutch parameters, select Ideal pre-loaded clutch for the Coupling type parameter.

Effective radius, Reff - Radius
. 20 (default) | scalar
The effective radius, $R_{e f f}$, used with the applied clutch friction force to determine the friction force. The effective radius is defined as:

$$
R_{e f f}=\frac{2\left(R_{O}^{3}-R_{i} 3\right)}{3\left(R_{0}^{2}-R_{i}^{2}\right)}
$$

The equation uses these variables.

$R_{o}$	Annular disk outer radius
$R_{i}$	Annular disk inner radius

## Dependencies

To enable the clutch parameters, select Ideal pre-loaded clutch for the Coupling type parameter.

Nominal preload force, Fc - Force
500 (default) | scalar
Nominal preload force, in N.

## Dependencies

To enable the clutch parameters, select Ideal pre-loaded clutch for the Coupling type parameter.

Friction coefficient vector, mu - Friction

```
[.16 0.13 0.115 0.11 0.105 0.1025 0.10125 .10125] (default)|vector
```

Friction coefficient vector.

## Dependencies

To enable the clutch parameters, select Ideal pre-loaded clutch for the Coupling type parameter.

Slip speed vector, dw - Angular velocity
[0 10 20406080100 500] (default)| vector
Slip speed vector, in rad/s.
To enable the clutch parameters, select Ideal pre-loaded clutch for the Coupling type parameter.

Torque - slip speed matrix, TdPdw - Clutch torque
[-1000, -500, -90, -50, -5, $0,5,50,90,500,1000] . * o n e s(11)$ (default)|matrix
Torque matrix, $T_{c}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable the slip speed parameters, select Slip speed dependent torque data for the Coupling type parameter.

Clutch pressure vector, $\mathbf{p T}$ - Clutch pressure breakpoints
[0 1e3 5e3 7e3 1e4 2e4 5e4 1e5 5e5 le6 5e6] (default)|vector
Clutch pressure breakpoints vector, $P_{1,2}$, in Pa.

## Dependencies

To enable the slip speed parameters, select Slip speed dependent torque data for the Coupling type parameter.

Slip speed vector, dwT - Slip speed breakpoints
[-500-200, -175, -100, - 50, 0, 50, 100, 175, 200, 500] (default)| vector
Slip speed breakpoints vector, $\omega$, in rad/s.

## Dependencies

To enable the slip speed parameters, select Slip speed dependent torque data for the Coupling type parameter.

Coupling time constant, tauC - Constant

```
.01 (default)| scalar
```

Coupling time constant, in s.

## Version History

Introduced in R2018b

## References

[1] Deur, J., Ivanović, V., Hancock, M., and Assadian, F. "Modeling of Active Differential Dynamics." In ASME proceedings. Transportation Systems. Vol. 17, pp: 427-436.

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink $®$ Coder $^{\mathrm{TM}}$.

## See Also

Open Differential | Limited Slip Differential

## Limited Slip Differential

Limited differential as a planetary bevel gear


## Libraries:

Powertrain Blockset / Drivetrain / Final Drive Unit
Vehicle Dynamics Blockset / Powertrain / Drivetrain / Final Drive Unit

## Description

The Limited Slip Differential block implements a differential as a planetary bevel gear train. The block matches the driveshaft bevel gear to the crown (ring) bevel gear. You can specify:

- Carrier-to-driveshaft ratio
- Crown wheel location
- Viscous and damping coefficients for the axles and carrier
- Type of slip coupling

Use the block in system-level driveline analysis to account for the power transfer from the transmission to the wheels. The block is suitable for use in hardware-in-the-loop (HIL) and optimization workflows. All the parameters are tunable.

In a limited slip differential, to prevent one of the wheels from slipping, the differential splits the torque applied to the left and right axles. With different torque applied to the axles, the wheels can move at different angular velocities, preventing slip. The block implements three methods for coupling the different torques applied to the axes:

- Pre-loaded ideal clutch
- Slip speed-dependent torque data
- Input torque dependent torque data

The block uses a coordinate system that produces positive tire and vehicle motion for standard engine, transmission, and differential configurations. The arrows indicate positive motion.


## Efficiency

To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.

Setting	Implementation
Constant	Constant efficiency that you can set with the Constant efficiency factor,   eta parameter.
Driveshaft torque,   temperature and   speed	Efficiency as a function of base gear input torque, air temperature, and   driveshaft speed. Use these parameters to specify the lookup table and   breakpoints:   - $\quad$ Efficiency lookup table, eta_tbl   - $\quad$ Efficiency torque breakpoints, Trq_bpts   - $\quad$ Efficiency speed breakpoints, omega_bpts   - $\quad$ Efficiency temperature breakpoints, Temp_bpts   For the air temperature, you can either:
	- Select Input temperature to create an input port.   - Set a Ambient temperature, Tamb parameter value.   To select the interpolation method, use the Interpolation method   parameter. For more information, see "Interpolation Methods".

## Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations
PwrInfo	PwrTrnsfrd - Power transferred between blocks   - Positive signals indicate flow into block   - Negative signals indicate flow out of block	PwrDriveshft	Mechanical power from driveshaft	$\eta T_{d} \omega_{d}$
		PwrAxl1	Mechanical power from axle 1	$\eta T_{1} \omega_{1}$
		PwrAxl2	Mechanical power from axle 2	$\eta T_{2} \omega_{2}$
	PwrNotTrnsfrd - Power crossing the block boundary, but not transferred   - Positive signals indicate an input   - Negative signals indicate a loss	PwrMechLoss	Total power loss	$\begin{aligned} & \dot{W}_{\text {loss }}=-\left(P_{t}+P_{d}+1\right. \\ & P_{t}=\eta\left(T_{d} \omega_{d}+T_{1} \omega_{1}+T\right. \end{aligned}$
		PwrDampLoss	Power loss due to damping	$\begin{aligned} & P_{d}=-\left(b_{1}\left\|\omega_{1}\right\|\right. \\ & \left.+b_{2}\left\|\omega_{2}\right\|+b_{d}\left\|\omega_{d}\right\|\right) \end{aligned}$
		PwrCplngLoss	Power loss due to clutch	$P_{C}=T_{C}\|\bar{\omega}\|$
	PwrStored - Stored energy rate of change   - Positive signals indicate an increase   - Negative signals indicate a decrease	PwrStoredShft	Rate change of stored internal energy	$\begin{aligned} & P_{s}=-\left(\omega_{1} \dot{\omega}_{1} J_{1}\right. \\ & \left.+\omega_{2} \dot{\omega}_{2} J_{2}+\omega_{d} \dot{\omega}_{d} J_{d}\right) \end{aligned}$

## Dynamics

The Limited Slip Differential block implements these differential equations to represent the mechanical dynamic response for the crown gear, left axle, and right axle.

Mechanical   Dynamic   Response	Differential Equation
Crown Gear	$\dot{\omega}_{d} J_{d}=\eta T_{d}-\omega_{d} b_{d}-T_{i}$
Left Axle	$\dot{\omega}_{1} J_{1}=\eta T_{1}-\omega_{1} b_{1}-T_{i 1}$
Right Axle	$\dot{\omega}_{2} J_{2}=\eta T_{2}-\omega_{2} b_{2}-T_{i 2}$

The block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$
\begin{aligned}
& \eta T_{1}=\frac{N}{2} T_{i}-\frac{1}{2} T_{c} \\
& \eta T_{2}=\frac{N}{2} T_{i}+\frac{1}{2} T_{c}
\end{aligned}
$$

$$
\omega_{d}=\frac{N}{2}\left(\omega_{1}+\omega_{2}\right)
$$

The equations use these variables.

$N$	Carrier-to-driveshaft gear ratio
$J_{d}$	Rotational inertia of the crown gear assembly
$b_{d}$	Crown gear linear viscous damping
$\omega_{d}$	Driveshaft angular speed
$\omega$	Slip speed
$J_{1}$	Axle 1 rotational inertia
$b_{1}$	Axle 1 linear viscous damping
$\omega_{1}$	Axle 1 speed
$J_{2}$	Axle 2 rotational inertia
$b_{2}$	Axle 2 linear viscous damping
$\omega_{2}$	Axle 2 angular speed
$\eta$	Efficiency
$T_{d}$	Driveshaft torque
$T_{1}$	Axle 1 torque
$T_{2}$	Axle 2 torque
$T_{i}$	Axle internal resistance torque
$T_{i 1}$	Axle 1 internal resistance torque
$T_{i 2}$	Axle 2 internal resistance torque
$\mu$	Coefficient of friction
$R_{e f f}$	Effective clutch radius
$R_{0}$	Annular disk outer radius
$R_{i}$	Annular disk inner radius
$F_{c}$	Clutch force
$T_{c}$	Clutch torque
$\mu$	Coefficient of friction

Table blocks in the Limited Slip Differential have these parameter settings:

- Interpolation method - Linear
- Extrapolation method - Clip

Ideal Clutch Coupling
The ideal clutch coupling model uses the axle slip speed and friction to calculate the clutch torque. The friction coefficient is a function of the slip speed.

$$
T_{c}=F_{C} N \mu(|\sigma|) R_{e f f} \tanh (4|\sigma|)
$$

The disc radii determine the effective clutch radius over which the clutch force acts.

$$
R_{e f f}=\frac{2\left(R_{0}{ }^{3}-R_{i} 3\right)}{3\left(R_{0}{ }^{2}-R_{i} 2\right)}
$$

The angular velocities of the axles determine the slip speed.

$$
\varpi=\omega_{1}-\omega_{2}
$$

## Slip Speed Coupling

To calculate the clutch torque, the slip speed coupling model uses torque data that is a function of slip speed. The angular velocities of the axles determine the slip speed.

$$
\varpi=\omega_{1}-\omega_{2}
$$

## Input Torque Coupling

To calculate the clutch torque, the input torque coupling model uses torque data that is a function of input torque.

The Open Differential block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$
\begin{aligned}
& \eta T_{i 1}=\eta T_{i 2}=\frac{N}{2} T_{i} \\
& \omega_{d}=\frac{N}{2}\left(\omega_{1}+\omega_{2}\right)
\end{aligned}
$$

## Ports

Inputs
DriveshftTrq - Torque
scalar
Applied input torque, typically from the engine crankshaft, in $\mathrm{N} \cdot \mathrm{m}$.
AxIITrq - Torque
scalar
Axle 1 torque, $T_{1}$, in $\mathrm{N} \cdot \mathrm{m}$.
AxI2Trq - Torque
scalar
Axle 2 torque, $T_{2}$, in $\mathrm{N} \cdot \mathrm{m}$.
Temp - Temperature
scalar
Temperature, in K.

## Dependencies

To enable this port:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Select Input temperature.


## Output

Info - Bus signal
bus
Bus signal containing these block calculations.

Signal			Description	Units
Driveshft	DriveshftTrq		Driveshaft torque	$\mathrm{N} \cdot \mathrm{m}$
	DriveshftSpd		Driveshaft speed	rad/s
Axl1	Axl1Trq		Axle 1 torque	$\mathrm{N} \cdot \mathrm{m}$
	Axl1Spd		Axle 1 speed	rad/s
Axl2	Axl2Trq		Axle 2 torque	$\mathrm{N} \cdot \mathrm{m}$
	Axl2Spd		Axle 2 speed	rad/s
Cplng	CplngTrq		Torque coupling	$\mathrm{N} \cdot \mathrm{m}$
	CplngSlipSpd		Slip speed	rad/s
PwrInfo	PwrTrnsfrd	PwrDrivesh ft	Mechanical power from driveshaft	W
		PwrAxl1	Mechanical power from axle 1	W
		PwrAxl2	Mechanical power from axle 2	W
	PwrNotTrns frd	PwrMechLos S	Total power loss	W
		PwrDampLos s	Power loss due to damping	W
		PwrCplngLo ss	Power loss due to clutch	W
	PwrStoredS hft	PwrStoredS hft	Rate change of stored internal energy	W

## DriveshftSpd - Angular speed

## scalar

Driveshaft angular speed, $\omega_{d}$, in rad/s.
AxI1Spd - Angular speed
scalar
Axle 1 angular speed, $\omega_{1}$, in rad/s.
AxI2Spd - Angular speed
scalar
Axle 2 angular speed, $\omega_{2}$, in rad/s.

## Parameters

## Block Options

Efficiency factors - Specify configuration
Constant (default)|Driveshaft torque, speed and temperature
To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.

Setting	Implementation
Constant	Constant efficiency that you can set with the Constant efficiency factor,   eta parameter.
Driveshaft torque,   temperature and   speed	Efficiency as a function of base gear input torque, air temperature, and   driveshaft speed. Use these parameters to specify the lookup table and   breakpoints:   - $\quad$ Efficiency lookup table, eta_tbl   - $\quad$ Efficiency torque breakpoints, Trq_bpts   - $\quad$ Efficiency speed breakpoints, omega_bpts   - $\quad$ Efficiency temperature breakpoints, Temp_bpts   For the air temperature, you can either:
	- Select Input temperature to create an input port.   - Set a Ambient temperature, Tamb parameter value.   To select the interpolation method, use the Interpolation method   parameter. For more information, see "Interpolation Methods".

## Interpolation method - Method

Flat|Nearest|Linear point-slope|Linear Lagrange|Cubic spline
For more information, see "Interpolation Methods".

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Input temperature - Create input port
off (default) | on
Select to create input port Temp for the temperature.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

## Open Differential

Crown wheel (ring gear) located - Specify crown wheel connection
To the left of center-line (default)|To the right of center-line

Specify the crown wheel connection to the driveshaft.

## Carrier to drive shaft ratio, NC/ND - Ratio

4 (default) | scalar
Carrier-to-driveshaft gear ratio, $N$.
Carrier inertia, Jd - Inertia
. 1 (default) | scalar
Rotational inertia of the crown gear assembly, $J_{d}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. You can include the driveshaft inertia.
Carrier damping, bd - Damping
le-3 (default) | scalar
Crown gear linear viscous damping, $b_{d}$, in $N \cdot \mathrm{~m} \cdot \mathrm{~s} / \mathrm{rad}$.
Axle 1 inertia, Jw1 - Inertia
. 1 (default) | scalar
Axle 1 rotational inertia, $J_{1}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Axle 1 damping, bw 1 - Damping
1e-3 (default) | scalar
Axle 1 linear viscous damping, $b_{1}$, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 2 inertia, Jw2 - Inertia
. 1 (default) | scalar
Axle 2 rotational inertia, $J_{2}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Axle 2 damping, bw2 - Damping
1e-3 (default) | scalar
Axle 2 linear viscous damping, $b_{2}$, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 1 initial velocity, omegaw10 - Angular velocity
0 (default) | scalar
Axle 1 initial velocity, $\omega_{o 1}$, in rad/s.
Axle 2 initial velocity, omegaw2o - Angular velocity
0 (default) | scalar
Axle 2 initial velocity, $\omega_{o 2}$, in rad/s.
Constant efficiency factor, eta - Efficiency
1 (default) | scalar
Constant efficiency, $\eta$.

## Dependencies

To enable this parameter, set Efficiency factors to Constant.

Efficiency lookup table, eta_tbl - Lookup table
M-by-N-by-L array
Dimensionless array of values for efficiency as a function of:

- M input torques
- $N$ input speed
- L air temperatures

Each value specifies the efficiency for a specific combination of torque, speed, and temperature. The array size must match the dimensions defined by the torque, speed, and temperature breakpoint vectors.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency torque breakpoints, Trq_bpts - Torque breakpoints
[25, 50, 75, 100, 150, 200, 250] (default) | 1-by-M vector
Vector of input torque, breakpoints for efficiency, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency speed breakpoints, omega_bpts - Speed breakpoints
[52.4 78.5 105131157183209262314419 524] (default)| 1-by-N vector
Vector of speed, breakpoints for efficiency, in rad/s.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency temperature breakpoints, Temp_bpts - Temperature breakpoints
[290 358] (default) | 1-by-L vector
Vector of ambient temperature breakpoints for efficiency, in K.
Dependencies
To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Ambient temperature, Tamb - Ambient temperature
297.15 (default) | scalar

Ambient air temperature, $T_{\text {air }}$, in K.
Dependencies
To enable this parameter:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Clear Input temperature.


## Slip Coupling

Coupling type - Torque coupling
Pre-loaded ideal clutch (default)|Slip speed dependent torque data|Input torque dependent torque data

Specify the type of torque coupling.
Number of disks, Ndisks - Torque coupling
4 (default) | scalar
Number of disks.

## Dependencies

To enable the ideal clutch parameters, select Pre-loaded ideal clutch for the Coupling type parameter.

Effective radius, Reff - Radius
. 20 (default) | scalar
The effective radius, $R_{e f f}$, used with the applied clutch friction force to determine the friction force. The effective radius is defined as:

$$
R_{e f f}=\frac{2\left(R_{O}{ }^{3}-R_{i} 3\right)}{\left.3\left(R_{O}^{2}-R_{i}\right)^{2}\right)}
$$

The equation uses these variables.
$R_{0} \quad$ Annular disk outer radius
$R_{i} \quad$ Annular disk inner radius

## Dependencies

To enable the clutch parameters, select Pre-loaded ideal clutch for the Coupling type parameter.

Nominal preload force, Fc - Force
500 (default) | scalar
Nominal preload force, in N .

## Dependencies

To enable the clutch parameters, select Pre-loaded ideal clutch for the Coupling type parameter.

Friction coefficient vector, muc - Friction
[. 160.130 .1150 .110 .1050 .10250 .10125$]$ (default)|vector
Friction coefficient vector.

## Dependencies

To enable the clutch parameters, select Pre-loaded ideal clutch for the Coupling type parameter.

Slip speed vector, dw - Angular velocity
[0 1020406080 100] (default) |vector
Slip speed vector, in rad/s.

## Dependencies

To enable the clutch parameters, select Pre-loaded ideal clutch for the Coupling type parameter.

Torque - slip speed vector, Tdw - Torque
[-100, -90, -50, -5, 0, 5, 50, 90, 100] (default)|vector
Torque vector, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable the slip speed parameters, select Slip speed dependent torque data for the Coupling type parameter.

Slip speed vector, dwT - Angular velocity
[-200, -175, -100, - 50, 0, 50, 100, 175, 200] (default)|vector
Slip speed vector, in rad/s.

## Dependencies

To enable the slip speed parameters, select Slip speed dependent torque data for the Coupling type parameter.

Torque - input torque vector, TTin - Torque
[-200-175-100-50 050100175 200] (default)|vector
Torque vector, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable the input torque parameters, select Input torque dependent torque data for the Coupling type parameter.

Input torque vector, Tin - Torque
[-200-175-100-50 050100175 200] (default)|vector
Torque vector, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable the input torque parameters, select Input torque dependent torque data for the Coupling type parameter.

## Coupling time constant, tauC - Constant

```
. }01\mathrm{ (default)| scalar
```

Coupling time constant, in s.

## Version History

Introduced in R2017a

## References

[1] Deur, J., Ivanović, V., Hancock, M., and Assadian, F. "Modeling of Active Differential Dynamics." In ASME proceedings. Transportation Systems. Vol. 17, pp: 427-436.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder ${ }^{\mathrm{TM}}$.

## See Also

Open Differential

## Open Differential

Differential as a planetary bevel gear


## Libraries:

Powertrain Blockset / Drivetrain / Final Drive Unit
Vehicle Dynamics Blockset / Powertrain / Drivetrain / Final Drive Unit

## Description

The Open Differential block implements a differential as a planetary bevel gear train. The block matches the driveshaft bevel gear to the crown (ring) bevel gear. You can specify:

- Carrier-to-driveshaft ratio
- Crown wheel location
- Viscous and damping coefficients for the axles and carrier

Use the Open Differential block to:

- Dynamically couple the post-transmission driveshaft to the wheel axles or universal joints
- Model simplified or older drivetrains when optimal traction control does not require passive or active torque vectoring
- Model mechanical power splitting in generic gearbox and drive line scenarios

The block is suitable for use in hardware-in-the-loop (HIL) and optimization workflows. All the parameters are tunable.

The block uses a coordinate system that produces positive tire and vehicle motion for standard engine, transmission, and differential configurations. The arrows indicate positive motion.


## Efficiency

To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.

Setting	Implementation
Constant	Constant efficiency that you can set with the Constant efficiency factor,   eta parameter.
Driveshaft torque,   temperature and   speed	Efficiency as a function of base gear input torque, air temperature, and   driveshaft speed. Use these parameters to specify the lookup table and   breakpoints:   - $\quad$ Efficiency lookup table, eta_tbl   - $\quad$ Efficiency torque breakpoints, Trq_bpts   - $\quad$ Efficiency speed breakpoints, omega_bpts   - $\quad$ Efficiency temperature breakpoints, Temp_bpts   For the air temperature, you can either:
	- Select Input temperature to create an input port.   - Set a Ambient temperature, Tamb parameter value.   To select the interpolation method, use the Interpolation method   parameter. For more information, see "Interpolation Methods".

## Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations
PwrInfo	PwrTrnsfrd - Power transferred between blocks   - Positive signals indicate flow into block   - Negative signals indicate flow out of block	PwrDriveshft	Mechanical power from driveshaft	$\eta T_{d} \omega_{d}$
		PwrAxl1	Mechanical power from axle 1	$\eta T_{1} \omega_{1}$
		PwrAxl2	Mechanical power from axle 2	$\eta T_{2} \omega_{2}$
	PwrNotTrnsfrd - Power crossing the block boundary, but not transferred   - Positive signals indicate an input   - Negative signals indicate a loss	PwrMechLoss	Total power loss	$\begin{aligned} & \dot{W}_{\text {loss }}=-\left(P_{t}+P_{d}\right)+ \\ & P_{t}=\eta T_{d} \omega_{d}+\eta T_{1} \omega_{1}+\eta ? \end{aligned}$
		PwrDampLoss	Power loss due to damping	$\begin{aligned} & P_{d}=-\left(b_{1}\left\|\omega_{1}\right\|\right. \\ & \left.+b_{2}\left\|\omega_{2}\right\|+b_{d}\left\|\omega_{d}\right\|\right) \end{aligned}$
	PwrStored - Stored energy rate of change   - Positive signals indicate an increase   - Negative signals indicate a decrease	PwrStoredShft	Rate change of stored internal energy	$\begin{aligned} & P_{s}=-\left(\omega_{1} \dot{\omega}_{1} J_{1}\right. \\ & \left.+\omega_{2} \dot{\omega}_{2} J_{2}+\omega_{d} \dot{\omega}_{d} J_{d}\right) \end{aligned}$

## Dynamics

The Open Differential block implements these differential equations to represent the mechanical dynamic response for the crown gear, left axle, and right axle.

Mechanical   Dynamic   Response	Differential Equation
Crown Gear	$\dot{\omega}_{d} J_{d}=\eta T_{d}-\omega_{d} b_{d}-T_{i}$
Left Axle	$\dot{\omega}_{1} J_{1}=\eta T_{1}-\omega_{1} b_{1}-T_{i 1}$
Right Axle	$\dot{\omega}_{2} J_{2}=\eta T_{2}-\omega_{2} b_{2}-T_{i 2}$

The Open Differential block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$
\begin{aligned}
& \eta T_{i 1}=\eta T_{i 2}=\frac{N}{2} T_{i} \\
& \omega_{d}=\frac{N}{2}\left(\omega_{1}+\omega_{2}\right)
\end{aligned}
$$

The equations use these variables.

$N$	Carrier-to-driveshaft gear ratio
$J_{d}$	Rotational inertia of the crown gear assembly
$b_{d}$	Crown gear linear viscous damping
$\omega_{d}$	Driveshaft angular speed
$\eta$	Differential efficiency
$J_{1}$	Axle 1 rotational inertia
$b_{1}$	Axle 1 linear viscous damping
$\omega_{1}$	Axle 1 speed
$J_{2}$	Axle 2 rotational inertia
$b_{2}$	Axle 2 linear viscous damping
$\omega_{2}$	Axle 2 angular speed
$T_{d}$	Driveshaft torque
$T_{1}$	Axle 1 torque
$T_{2}$	Axle 2 torque
$T_{i}$	Driveshaft internal resistance torque
$T_{i 1}$	Axle 1 internal resistance torque
$T_{i 2}$	Axle 2 internal resistance torque

## Ports

Inputs
DriveshftTrq - Torque
scalar
Applied input torque, typically from the engine crankshaft, in $\mathrm{N} \cdot \mathrm{m}$.
AxI1Trq - Torque
scalar
Axle 1 torque, $T_{1}$, in $\mathrm{N} \cdot \mathrm{m}$.
AxI2Trq - Torque
scalar
Axle 2 torque, $T_{2}$, in $\mathrm{N} \cdot \mathrm{m}$.
Temp - Temperature
scalar
Temperature, in K.

## Dependencies

To enable this port:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Select Input temperature.


## Output

Info - Bus signal
bus
Bus signal containing these block calculations.

Signal			Description	Units
Driveshft	DriveshftTrq		Driveshaft torque	$\mathrm{N} \cdot \mathrm{m}$
	DriveshftSpd		Driveshaft speed	rad/s
Axl1	Axl1Trq		Axle 1 torque	$\mathrm{N} \cdot \mathrm{m}$
	Axl1Spd		Axle 1 speed	rad/s
Axl2	Axl2Trq		Axle 2 torque	$\mathrm{N} \cdot \mathrm{m}$
	Axl2Spd		Axle 2 speed	rad/s
PwrInfo	PwrTrnsfrd	PwrDriveshft	Mechanical power from driveshaft	W
		PwrAxl1	Mechanical power from axle 1	W
		PwrAxl2	Mechanical power from axle 2	W
	PwrTrnsfrd	PwrMechLoss	Total power loss	W
		PwrDampLoss	Power loss due to damping	W
	PwrStored	PwrStoredShft	Rate change of stored internal energy	W

DriveshftSpd - Angular speed
scalar
Driveshaft angular speed, $\omega_{d}$, in rad/s.
AxI1Spd - Angular speed
scalar
Axle 1 angular speed, $\omega_{1}$, in rad/s.
AxI2Spd - Angular speed
scalar
Axle 2 angular speed, $\omega_{2}$, in rad/s.

## Parameters

## Block Options

Efficiency factors - Specify configuration
Constant (default)|Driveshaft torque, speed and temperature
To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.

Setting	Implementation
Constant	Constant efficiency that you can set with the Constant efficiency factor,   eta parameter.
Driveshaft torque,   temperature and   speed	Efficiency as a function of base gear input torque, air temperature, and   driveshaft speed. Use these parameters to specify the lookup table and   breakpoints:   - $\quad$ Efficiency lookup table, eta_tbl   - $\quad$ Efficiency torque breakpoints, Trq_bpts   - $\quad$ Efficiency speed breakpoints, omega_bpts   - $\quad$ Efficiency temperature breakpoints, Temp_bpts   For the air temperature, you can either:
	- Select Input temperature to create an input port.   - Set a Ambient temperature, Tamb parameter value.   To select the interpolation method, use the Interpolation method   parameter. For more information, see "Interpolation Methods".

Interpolation method - Method
Flat|Nearest|Linear point-slope|Linear Lagrange|Cubic spline
For more information, see "Interpolation Methods".

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Input temperature - Create input port
off (default) | on
Select to create input port Temp for the temperature.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Crown wheel (ring gear) located - Specify crown wheel connection
To the left of center-line (default)|To the right of center-line
Specify the crown wheel connection to the driveshaft.

Carrier to drive shaft ratio, Ndiff - Ratio
4 (default) | scalar
Carrier-to-driveshaft gear ratio, $N$, dimensionless.
Carrier inertia, Jd - Inertia
. 1 (default) | scalar
Rotational inertia of the crown gear assembly, $J_{d}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. You can include the driveshaft inertia.
Carrier damping, bd - Damping
1e-3 (default) | scalar
Crown gear linear viscous damping, $b_{d}$, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 1 inertia, Jw1 - Inertia
. 1 (default) | scalar
Axle 1 rotational inertia, $J_{1}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Axle 1 damping, bw1 - Damping
1e-3 (default) | scalar
Axle 1 linear viscous damping, $b_{1}$, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 2 inertia, Jw2 - Inertia
. 1 (default) | scalar
Axle 2 rotational inertia, $J_{2}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Axle 2 damping, bw2 - Damping
1e-3 (default) | scalar
Axle 2 linear viscous damping, $b_{2}$, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 1 initial velocity, omegaw 10 - Angular velocity
0 (default) | scalar
Axle 1 initial velocity, $\omega_{01}$, in rad/s.
Axle 2 initial velocity, omegaw 20 - Angular velocity
0 (default) | scalar
Axle 2 initial velocity, $\omega_{02}$, in rad/s.
Efficiency
Constant efficiency factor, eta - Efficiency
1 (default) | scalar
Constant efficiency, $\eta$.

## Dependencies

To enable this parameter, set Efficiency factors to Constant.

## Efficiency lookup table, eta_tbl - Lookup table

M-by-N-by-L array
Dimensionless array of values for efficiency as a function of:

- M input torques
- $N$ input speed
- L air temperatures

Each value specifies the efficiency for a specific combination of torque, speed, and temperature. The array size must match the dimensions defined by the torque, speed, and temperature breakpoint vectors.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency torque breakpoints, Trq_bpts - Torque breakpoints
[25, 50, 75, 100, 150, 200, 250] (default) | 1-by-M vector
Vector of input torque, breakpoints for efficiency, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency speed breakpoints, omega_bpts - Speed breakpoints
[52.4 78.5 105131157183209262314419 524] (default)| 1-by-N vector
Vector of speed, breakpoints for efficiency, in rad/s.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency temperature breakpoints, Temp_bpts - Temperature breakpoints
[290 358] (default) | 1-by-L vector
Vector of ambient temperature breakpoints for efficiency, in K.
Dependencies
To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Ambient temperature, Tamb - Ambient temperature
297.15 (default) | scalar

Ambient air temperature, $T_{\text {air }}$, in K.
Dependencies
To enable this parameter:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Clear Input temperature.


## Version History

Introduced in R2017a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

## See Also

Limited Slip Differential

## Ideal Fixed Gear Transmission

Ideal fixed gear transmission without clutch or synchronization


## Libraries:

Powertrain Blockset / Transmission / Transmission Systems
Vehicle Dynamics Blockset / Powertrain / Transmission

## Description

The Ideal Fixed Gear Transmission implements an idealized fixed-gear transmission without a clutch or synchronization. Use the block to model the overall gear ratio and power loss when you do not need a detailed transmission model, for example, in component-sizing, fuel economy, and emission studies. The block implements a transmission model with minimal parameterization or computational cost.

To specify the block efficiency calculation, for Efficiency factors, select either of these options.

Setting	Block Implementation
Gear only	Efficiency determined from a 1D lookup table that is a function of   the gear.
Gear, input torque, input   speed, and temperature	Efficiency determined from a 4D lookup table that is a function of:     -    Gear    Input torque    -    Input speed    Oil temperature

The block uses this equation to determine the transmission dynamics:

$$
\begin{aligned}
& \dot{\omega_{i}} \frac{J_{N}}{N^{2}}=\eta_{N}\left(\frac{T_{O}}{N}+T_{i}\right)-\frac{\omega_{i}}{N^{2}} b_{N} \\
& \omega_{i}=N \omega_{o}
\end{aligned}
$$

The block filters the gear command signal:

$$
\frac{G}{G_{c m d}}(s)=\frac{1}{\tau_{s} s+1}
$$

## Neutral Gear

When Initial gear number, G_o is equal to 0, the initial gear is neutral. The block uses these parameters to decouple the input flywheel from the downstream gearing.

## - Initial input velocity, omega_o

- Initial neutral input velocity, omegainN_o

The block uses these equations for the neutral gear speed and flywheel.

$$
\begin{aligned}
& \dot{\omega}_{\text {neutral }} \frac{J_{N}}{N^{2}}=\eta_{N} \frac{T_{o}}{N}-\frac{\omega_{\text {neutral }}}{N^{2}} b_{N} \\
& \omega_{\text {neutral }}=N \omega_{o} \\
& \dot{\omega}_{1} J_{F}=\eta_{@ N=0} T_{i}-b_{@ N=0} \omega_{i} \\
& J_{F}=J_{@ N}=1-J_{@ N}=0
\end{aligned}
$$

## Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Varia	Equations
PwrIn fo	PwrTrnsfrd - Power transferred between blocks   - Positive signals indicate flow into block   - Negative signals indicate flow out of block	PwrEng	Engine power	$P_{\text {eng }}$	$\omega_{i} T_{i}$
		PwrDif frntl	Differential power	$P_{\text {diff }}$	$\omega_{o} T_{o}$
	PwrNotTrnsfrd - Power crossing the block boundary, but not transferred   - Positive signals indicate an input   - Negative signals indicate a loss	PwrEff Loss	Mechanical power loss	$P_{\text {effloss }}$	$\omega_{o} T_{o}\left(\eta_{N}-1\right)$
		PwrDam ploss	Mechanical damping loss	$P_{\text {dampl }}$ oss	For $G=0: \quad-\frac{b_{N} \omega_{i}^{2}}{\left\|N^{2}\right\|}$   For $\mathrm{G} \neq 0:-b_{N} \omega_{i}^{2}-\frac{b_{N} \omega_{\text {neutral }}^{2}}{\left\|N^{2}\right\|}$
	PwrStored - Stored energy rate of change   - Positive signals indicate an increase   - Negative signals indicate a decrease	PwrSto redTra ns	Rate change in rotational kinetic energy	$P_{\text {str }}$	For $\mathrm{G}=0: \quad \frac{J_{N}}{N^{2}} \dot{\omega}_{i} \omega_{i}$   For $\mathrm{G} \neq 0: \quad J_{F} \dot{\omega}_{i} \omega_{i}+\frac{J_{N}}{N^{2}} \dot{\omega}_{\text {neutral }} \omega_{\text {neutr }}$

The equations use these variables.

$b_{N}$	Engaged gear viscous damping
$J_{N}$	Engaged gear rotational inertia
$J_{F}$	Flywheel rotational inertia
$\eta_{N}$	Engaged gear efficiency
$G$	Engaged gear number
$G_{c m d}$	Gear number to engage
$N$	Engaged gear ratio

$T_{i} \quad$ Applied input torque, typically from the engine crankshaft or dual mass flywheel
$T_{o} \quad$ Applied load torque, typically from the differential or drive shaft
$\omega_{o} \quad$ Initial input drive shaft rotational velocity
$\omega_{i}, \omega_{i} \quad$ Applied drive shaft angular speed and acceleration
$\omega_{N o} \quad$ Initial neutral gear input rotational velocity
$\omega_{\text {neutral }} \quad$ Neutral gear drive shaft rotational velocity
$\tau_{s} \quad$ Shift time constant

## Ports

## Inputs

Gear - Gear number to engage
scalar
Integer value of gear number to engage, $G_{c m d}$.
EngTrq - Applied input torque
scalar
Applied input torque, $T_{i}$, typically from the engine crankshaft or dual mass flywheel damper, in $\mathrm{N} \cdot \mathrm{m}$.
DiffTrq - Applied load torque
scalar
Applied load torque, $T_{o}$, typically from the differential, in $\mathrm{N} \cdot \mathrm{m}$.
Temp - Oil temperature
scalar
Oil temperature, in K. To determine the efficiency, the block uses a 4D lookup table that is a function of:

- Gear
- Input torque
- Input speed
- Oil temperature


## Dependencies

To enable this port, set Efficiency factors to Gear, input torque, input speed, and temperature.

## Output

Info - Bus signal
bus
Bus signal containing these block calculations.

Signal			Description	Variabl	Units
Eng	EngTrq		Applied input torque, typically from the engine crankshaft or dual mass flywheel damper	$T_{i}$	$\mathrm{N} \cdot \mathrm{m}$
	EngSpd		Applied drive shaft angular speed input	$\omega_{i}$	rad/s
Diff	DiffTrq		Applied load torque, typically from the differential	$T_{o}$	$\mathrm{N} \cdot \mathrm{m}$
	DiffSpd		Drive shaft angular speed output	$\omega_{0}$	rad/s
Trans	TransSpdRatio		Input to output speed ratio at time t	$\Phi(t)$	N/A
	TransEta		Ratio of output power to input power	$\eta_{N}$	N/A
	TransGearCmd		Commanded gear	$N_{\text {cmd }}$	N/A
	TransGear		Engaged gear	$N$	N/A
PwrInfo	PwrTrnsfrd	PwrEng	Engine power	$P_{\text {eng }}$	W
		PwrDiffrntl	Differential power	$P_{\text {diff }}$	W
	PwrNotTrnsfrd	PwrEffLoss	Mechanical power loss	$P_{\text {effloss }}$	W
		PwrDampLoss	Mechanical damping loss	$P_{\text {damploss }}$	W
	PwrStored	PwrStoredTrans	Rate change in rotational kinetic energy	$P_{\text {str }}$	W

EngSpd - Angular speed
scalar
Applied drive shaft angular speed input, $\omega_{i}$, in rad/s.

## DiffSpd - Angular speed

scalar
Drive shaft angular speed output, $\omega_{o}$, in rad/s.

## Parameters

Efficiency factors - Specify efficiency calculation
Gear only (default)|Gear, input torque, input speed, and temperature
To specify the block efficiency calculation, for Efficiency factors, select either of these options.

Setting	Block Implementation
Gear only	Efficiency determined from a 1D lookup table that is a function of   the gear.
Gear, input torque, input   speed, and temperature	Efficiency determined from a 4D lookup table that is a function of:      -                     -   -   - Input torque

## Dependencies

Setting Parameter To	Enables
Gear only	Efficiency vector, eta
Gear, input torque, input   speed, and temperature	Efficiency torque breakpoints, Trq_bpts
	Efficiency speed breakpoints, omega_bpts
	Efficiency temperature breakpoints, Temp_bpts
	Efficiency lookup table, eta_tbl

Gear property interpolation method - Interpolation
Nearest (default)|Linear|Flat|Cubic spline
Method that the block uses to switch the gear ratio during gear shifting.

## Transmission

Gear number vector, G - Specify number of transmission speeds

```
[-1,0,1,2,3,4,5] (default)| vector
```

Vector of integer gear commands used to specify the number of transmission speeds. Neutral gear is 0 . For example, you can set these parameter values.

To Specify	Set Gear number, G To
Four transmission speeds, including   neutral	$[0,1,2,3,4]$
Three transmission speeds, including   neutral and reverse	$[-1,0,1,2,3]$
Five transmission speeds, including   neutral and reverse	$[-1,0,1,2,3,4,5]$

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

## Efficiency torque breakpoints, Trq_bpts - Breakpoints

[25,50, 75, 100, 150, 200, 250] (default) | vector
Torque breakpoints for efficiency table.

## Dependencies

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Efficiency speed breakpoints, omega_bpts - Breakpoints
[52.4 78.5 105131157183209262314419 524] (default)|vector
Speed breakpoints for efficiency table.

## Dependencies

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Efficiency temperature breakpoints, Temp_bpts - Breakpoints
[313 358] (default)|vector
Temperature breakpoints for efficiency table.

## Dependencies

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Gear ratio vector, $\mathbf{N}$ - Ratio of input speed to output speed
[-4.47,4.47,4.47,2.47,1.47,1, 0.8] (default) | vector
Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in Gear number, G. For neutral, set the gear ratio to 1. For example, you can set these parameter values.

To Specify Gear Ratios For	Set Gear number, G To	Set Gear ratio, N To
Four transmission speeds,   including neutral	$[0,1,2,3,4]$	$[1,4.47,2.47,1.47,1]$
Five transmission speeds,   including neutral and reverse	$[-1,0,1,2,3,4,5]$	$[-4.47,1,4.47,2.47,1.47,1,0.8]$

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

Inertia vector, Jout - Gear rotational inertia
[0.128 0.01 0.128 0.1 0.062 0.028 0.01] (default)|vector
Vector of gear rotational inertias, $J_{N}$, with indices corresponding to the inertias specified in Gear number, $\mathbf{G}$, in $\mathrm{kg}^{*} \mathrm{~m}^{\wedge} 2$. For example, you can set these parameter values.

To Specify Inertia For	Set Gear number, G To	Set Inertia, J To
Four gears, including neutral	$[0,1,2,3,4]$	$[0.01,2.28,2.04,0.32,0.028]$
Inertia for five gears, including	$[-1,0,1,2,3,4,5]$	$[2.28,0.01,2.28$,
reverse and neutral		$2.04,0.32,0.028,0.01]$

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

Damping vector, bout - Gear viscous damping coefficient
[.003 . 001 . 003 . 0025 . 002 . 001 .001] (default) |vector
Vector of gear viscous damping coefficients, $b_{N}$, with indices corresponding to the coefficients specified in Gear number, G, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$. For example, you can set these parameter values.

To Specify Damping For	Set Gear number, G To	Set Damping, b To
Four gears, including neutral	$[0,1,2,3,4]$	$[0.001,0.003$,   $0.0025,0.002,0.001]$
Five gears, including reverse   and neutral	$[-1,0,1,2,3,4,5]$	$[0.003,0.001,0.003,0.0025$,
		$0.002,0.001,0.001]$

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

Efficiency vector, eta - Gear efficiency
[0.9,0.9,0.9, 0.9,0.9,0.95,0.95] (default) | vector
Vector of gear mechanical efficiency, $\eta_{N}$, with indices corresponding to the efficiencies specified in Gear number, G. For example, you can set these parameter values.

To Specify Efficiency For	Set Gear number, G To	Set Efficiency, eta To
Four gears, including neutral	$[0,1,2,3,4]$	$[0.9,0.9,0.9,0.9,0.95]$
Five gears, including reverse	$[-1,0,1,2,3,4,5]$	$[0.9,0.9,0.9$,
and neutral		$0.9,0.9,0.95,0.95]$

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

## Dependencies

To enable this parameter, set Efficiency factors to Gear only.
Efficiency lookup table, eta_tbl - Gear efficiency
array
Table of gear mechanical efficiency, $\eta_{N}$ as a function of gear, input torque, input speed, and temperature.

## Dependencies

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Initial gear number, G_o - Gear
0 (default) | scalar
Initial gear number, $G_{o}$, dimensionless.
Initial output velocity, omega_o - Output speed
0 (default) | scalar
Transmission initial output rotational velocity, $\omega_{0}$, in rad/s.
Initial neutral input velocity, omegainN_o - Neutral gear input speed 0 (default) | scalar

Initial neutral gear input rotational velocity, $\omega_{N o}$, in rad/s.
Shift time constant, tau_s - Time
. 01 (default) | scalar
Shift time constant, $\tau_{s}$, in $s$.

## Version History

Introduced in R2017a

## Extended Capabilities

$\mathbf{C} / \mathbf{C}++$ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

## See Also

Limited Slip Differential | Open Differential

## Transfer Case

Differential as a planetary bevel gear


## Libraries:

Powertrain Blockset / Drivetrain / Final Drive Unit
Vehicle Dynamics Blockset / Powertrain / Drivetrain / Final Drive Unit

## Description

The Transfer Case block implements a differential as a planetary bevel gear train. The block matches the driveshaft bevel gear to the crown (ring) bevel gear. You can specify:

- Carrier-to-driveshaft ratio
- Crown wheel location
- Viscous and damping coefficients for the axles and carrier

Use the Transfer Case block to:

- Dynamically couple the post-transmission driveshaft to the wheel axles or universal joints
- Model simplified or older drivetrains when optimal traction control does not require passive or active torque vectoring
- Model mechanical power splitting in generic gearbox and drive line scenarios

The block is suitable for use in hardware-in-the-loop (HIL) and optimization workflows. All the parameters are tunable.

## Efficiency

To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.

Setting	Implementation
Constant	Constant efficiency that you can set with the Constant efficiency factor,   eta parameter.


Setting	Implementation
Driveshaft torque, temperature and speed	Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints:   - Efficiency lookup table, eta_tbl   - Efficiency torque breakpoints, Trq_bpts   - Efficiency speed breakpoints, omega_bpts   - Efficiency temperature breakpoints, Temp_bpts   For the air temperature, you can either:   - Select Input temperature to create an input port.   - Set a Ambient temperature, Tamb parameter value.   To select the interpolation method, use the Interpolation method parameter. For more information, see "Interpolation Methods".

## Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations
PwrInfo	PwrTrnsfrd - Power transferred between blocks   - Positive signals indicate flow into block   - Negative signals indicate flow out of block	PwrDriveshft	Mechanical power from driveshaft	$\eta T_{d} \omega_{d}$
		PwrAxl1	Mechanical power from axle 1	$\eta T_{1} \omega_{1}$
		PwrAxl2	Mechanical power from axle 2	$\eta T_{2} \omega_{2}$
	PwrNotTrnsfrd - Power crossing the block boundary, but not transferred   - Positive signals indicate an input   - Negative signals indicate a loss	PwrMechLoss	Total power loss	$\begin{aligned} & \dot{W}_{\text {loss }}=-\left(P_{t}+P_{d}\right)+ \\ & P_{t}=\eta T_{d} \omega_{d}+\eta T_{1} \omega_{1}+\eta T \end{aligned}$
		PwrDampLoss	Power loss due to damping	$\begin{aligned} & P_{d}=-\left(b_{1}\left\|\omega_{1}\right\|\right. \\ & \left.+b_{2}\left\|\omega_{2}\right\|+b_{d}\left\|\omega_{d}\right\|\right) \end{aligned}$
	PwrStored - Stored energy rate of change   - Positive signals indicate an increase   - Negative signals indicate a decrease	PwrStoredShft	Rate change of stored internal energy	$\begin{aligned} & P_{s}=-\left(\omega_{1} \dot{\omega}_{1} J_{1}\right. \\ & \left.+\omega_{2} \dot{\omega}_{2} J_{2}+\omega_{d} \dot{\omega}_{d} J_{d}\right) \end{aligned}$

## Dynamics

The Transfer Case block implements these differential equations to represent the mechanical dynamic response for the crown gear, front axle, and rear axle.

Mechanical   Dynamic   Response	Differential Equation
Crown Gear	$\dot{\omega}_{d} J_{d}=\eta T_{d}-\omega_{d} b_{d}-T_{i}$
Front Axle	$\dot{\omega}_{1} J_{1}=\eta T_{1}-\omega_{1} b_{1}-T_{i 1}$
Rear Axle	$\dot{\omega}_{2} J_{2}=\eta T_{2}-\omega_{2} b_{2}-T_{i 2}$

The equations use these variables.

$N$	Carrier-to-driveshaft gear ratio
$J_{d}$	Rotational inertia of the crown gear assembly
$b_{d}$	Crown gear linear viscous damping
$\omega_{d}$	Driveshaft angular speed
$\eta$	Differential efficiency
$J_{1}$	Axle 1 rotational inertia
$b_{1}$	Axle 1 linear viscous damping
$\omega_{1}$	Axle 1 speed
$J_{2}$	Axle 2 rotational inertia
$b_{2}$	Axle 2 linear viscous damping
$\omega_{2}$	Axle 2 angular speed
$T_{d}$	Driveshaft torque
$T_{1}$	Axle 1 torque
$T_{2}$	Axle 2 torque
$T_{i}$	Driveshaft internal resistance torque
$T_{i 1}$	Axle 1 internal resistance torque
$T_{i 2}$	Axle 2 internal resistance torque

## Ports

Inputs
DriveshftTrq - Torque
scalar
Applied input torque, typically from the engine crankshaft, in $N \cdot m$.
AxI1Trq - Torque
scalar
Axle 1 torque, $T_{1}$, in $\mathrm{N} \cdot \mathrm{m}$.

## AxI2Trq - Torque

scalar
Axle 2 torque, $T_{2}$, in $N \cdot \mathrm{~m}$.
Temp - Temperature
scalar

Temperature, in K.

## Dependencies

To enable this port:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Select Input temperature.

TrqSplitRatioConstant - Front axle torque split ratio
scalar

Front axle torque split ratio.

## Dependencies

To enable this port, select Input front axle torque split ratio, TrqSplitRatio.
SpdLockConstant - Axle speed lock
scalar
Axle speed lock.

## Dependencies

To enable this port, select Input axle speed lock, SpdLock.
Output
Info - Bus signal
bus
Bus signal containing these block calculations.

Signal		Description	Units
Driveshft	DriveshftTrq	Driveshaft torque	$\mathrm{N} \cdot \mathrm{m}$
	DriveshftSpd	Driveshaft speed	$\mathrm{rad} / \mathrm{s}$
Axl1	Axl1Trq	Axle 1 torque	$\mathrm{N} \cdot \mathrm{m}$
	Axl1Spd	Axle 1 speed	$\mathrm{rad} / \mathrm{s}$
Axl2	Axl2Trq	Axle 2 torque	$\mathrm{N} \cdot \mathrm{m}$
	Axl2Spd	Axle 2 speed	rad/s
PwrInfo	PwrTrnsfrd	PwrDriveshft	Mechanical power from   driveshaft


Signal		PwrAxl1	Description	Units
		PwrAxl2	Mechanical power from   axle 1	W
		PwrTrnsfrd	Mechanical power from   axle 2	W
		PwrMechLoss	Total power loss	W
	PwrDampLoss	Power loss due to   damping	W	
	PwrStored	PwrStoredShft	Rate change of stored   internal energy	W

DriveshftSpd - Angular speed

## scalar

Driveshaft angular speed, $\omega_{d}$, in rad/s.
AxI1Spd - Angular speed
scalar
Axle 1 angular speed, $\omega_{1}$, in rad/s.
AxI2Spd - Angular speed
scalar
Axle 2 angular speed, $\omega_{2}$, in rad/s.

## Parameters

## Block Options

Efficiency factors - Specify configuration
Constant (default)|Driveshaft torque, speed and temperature
To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.

Setting	Implementation
Constant	Constant efficiency that you can set with the Constant efficiency factor,   eta parameter.


Setting	Implementation
Driveshaft torque, temperature and speed	Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints:   - Efficiency lookup table, eta_tbl   - Efficiency torque breakpoints, Trq_bpts   - Efficiency speed breakpoints, omega_bpts   - Efficiency temperature breakpoints, Temp_bpts   For the air temperature, you can either:   - Select Input temperature to create an input port.   - Set a Ambient temperature, Tamb parameter value.   To select the interpolation method, use the Interpolation method parameter. For more information, see "Interpolation Methods".

Interpolation method - Method
Flat | Nearest | Linear point-slope | Linear Lagrange | Cubic spline
For more information, see "Interpolation Methods".

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Input temperature - Create input port
off (default) | on
Select to create input port Temp for the temperature.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Input front axle torque split ratio, TrqSplitRatio - Create input port
off (default) | on
Select to create input port TrqSplitRatioConstant for the front axle torque split ratio.
Input axle speed lock, SpdLock - Create input port
off (default) | on
Select to create input port SpdLockConstant for the axle speed lock.
Crown wheel (ring gear) located - Specify crown wheel connection
To the left of center-line (default)|To the right of center-line
Specify the crown wheel connection to the driveshaft.

## Carrier to drive shaft ratio, Ndiff - Ratio

4 (default) | scalar

Carrier-to-driveshaft gear ratio, $N$, dimensionless.

## Carrier inertia, Jd - Inertia

. 1 (default) | scalar
Rotational inertia of the crown gear assembly, $J_{d}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. You can include the driveshaft inertia.
Carrier damping, bd - Damping
le-3 (default) | scalar
Crown gear linear viscous damping, $b_{d}$, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 1 inertia, Jw1 - Inertia
. 1 (default) | scalar
Axle 1 rotational inertia, $J_{1}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Axle 1 damping, bw1 - Damping
1e-3 (default) | scalar
Axle 1 linear viscous damping, $b_{1}$, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 2 inertia, Jw2 - Inertia
. 1 (default) | scalar
Axle 2 rotational inertia, $J_{2}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Axle 2 damping, bw2 - Damping
le-3 (default) |scalar
Axle 2 linear viscous damping, $b_{2}$, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 1 initial velocity, omegaw 10 - Angular velocity
0 (default) | scalar
Axle 1 initial velocity, $\omega_{01}$, in rad/s.
Axle 2 initial velocity, omegaw 20 - Angular velocity
0 (default) | scalar
Axle 2 initial velocity, $\omega_{02}$, in rad/s.
Efficiency
Constant efficiency factor, eta - Efficiency
1 (default) | scalar
Constant efficiency, $\eta$.

## Dependencies

To enable this parameter, set Efficiency factors to Constant.
Efficiency lookup table, eta_tbl - Lookup table
M-by-N-by-L array
Dimensionless array of values for efficiency as a function of:

- M input torques
- N input speed
- L air temperatures

Each value specifies the efficiency for a specific combination of torque, speed, and temperature. The array size must match the dimensions defined by the torque, speed, and temperature breakpoint vectors.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency torque breakpoints, Trq_bpts - Torque breakpoints
[25, 50, 75, 100, 150, 200, 250] (default)| 1-by-M vector
Vector of input torque, breakpoints for efficiency, in $N \cdot m$.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency speed breakpoints, omega_bpts - Speed breakpoints
$[52.478 .5105131157183209262314419$ 524] (default)| 1-by-N vector
Vector of speed, breakpoints for efficiency, in rad/s.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency temperature breakpoints, Temp_bpts - Temperature breakpoints
[290 358] (default) | 1-by-L vector
Vector of ambient temperature breakpoints for efficiency, in K.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Ambient temperature, Tamb - Ambient temperature
297.15 (default) | scalar

Ambient air temperature, $T_{\text {air }}$, in K.

## Dependencies

To enable this parameter:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Clear Input temperature.

Front axle torque split ratio, TrqSplitRatio - Front axle torque split ratio
0.5 (default) | scalar

Front axle torque split ratio.

## Dependencies

To enable this parameter, clear Input front axle torque split ratio, TrqSplitRatio.
Axle speed lock, SpdLock - Axle speed lock
0 (default) | scalar
Axle speed lock. Set this value to 0 to make the front and rear axle rotational speed not fixed. Set this value to 1 to make the front and rear axle rotational speed fixed.

Dependencies
To enable this parameter, clear Input axle speed lock, SpdLock.

## Version History

Introduced in R2021b

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

## See Also

Limited Slip Differential

## Wheel and Tire Blocks

## Longitudinal Wheel

Longitudinal wheel with disc, drum, or mapped brake


## Libraries:

Powertrain Blockset / Drivetrain / Wheels
Vehicle Dynamics Blockset / Wheels and Tires

## Description

The Longitudinal Wheel block implements the longitudinal behavior of an ideal wheel. You can specify the longitudinal force and rolling resistance calculation method, and brake type. Use the block in driveline and longitudinal vehicle simulations where low frequency tire-road and braking forces are required to determine vehicle acceleration, braking, and wheel-rolling resistance. For example, you can use the block to determine the torque and power requirements for a specified drive cycle or braking event. The block is not suitable for applications that require combined lateral slip.

There are four types of Longitudinal Wheel blocks. Each block implements a different brake type.

Block Name	Brake Type Setting	Brake Implementation
Longitudinal Wheel - No   Brake	None	None
Longitudinal Wheel - Disc   Brake	Disc	Brake that converts the brake cylinder   pressure into a braking force.
Longitudinal Wheel - Drum   Brake	Drum	Simplex drum brake that converts the   applied force and brake geometry into a   net braking torque.
Longitudinal Wheel - Mapped   Brake	Mapped	Lookup table that is a function of the   wheel speed and applied brake pressure.

The block models longitudinal force as a function of wheel slip relative to the road surface. To calculate the longitudinal force, specify one of these Longitudinal Force parameters.

Setting	Block Implementation
Magic Formula constant value	Magic Formula with constant coefficient for stiffness, shape,   peak, and curvature.
Magic Formula pure   longitudinal slip	Magic Formula with load-dependent coefficients that   implement equations 4.E9 through 4.E18 in Tire and Vehicle   Dynamics.
Mapped force	Lookup table that is a function of the normal force and wheel   slip ratio.

To calculate the rolling resistance torque, specify one of these Rolling Resistance parameters.

Setting	Block Implementation
None	None
Pressure and velocity	Method in Stepwise Coastdown Methodology for Measuring   Tire Rolling Resistance. The rolling resistance is a function of   tire pressure, normal force, and velocity.
ISO 28580	Method specified in ISO 28580:2018, Passenger car, truck   and bus tyre rolling resistance measurement method -   Single point test and correlation of measurement results.
Magic Formula	Magic formula equations from 4.E70 in Tire and Vehicle   Dynamics. The magic formula is an empirical equation based   on fitting coefficients.
Mapped torque	Lookup table that is a function of the normal force and spin   axis longitudinal velocity.

To calculate vertical motion, specify one of these Vertical Motion parameters.

Setting	Block Implementation
None	Block passes the applied chassis forces directly through to   the rolling resistance and longitudinal force calculations.
Mapped stiffness and damping	Vertical motion depends on wheel stiffness and damping.   Stiffness is a function of tire sidewall displacement and   pressure. Damping is a function of tire sidewall velocity and   pressure.

## Rotational Wheel Dynamics

The block calculates the inertial response of the wheel subject to:

- Axle losses
- Brake and drive torque
- Tire rolling resistance
- Ground contact through the tire-road interface

The input torque is the summation of the applied axle torque, braking torque, and moment arising from the combined tire torque.

$$
T_{i}=T_{a}-T_{b}+T_{d}
$$

For the moment arising from the combined tire torque, the block implements tractive wheel forces and rolling resistance with first order dynamics. The rolling resistance has a time constant parameterized in terms of a relaxation length.

$$
T_{d}(s)=\frac{1}{\frac{L_{e}}{|\omega| R_{e}} s+1}+\left(F_{\chi} R_{e}+M_{y}\right)
$$

To calculate the rolling resistance torque, you can specify one of these Rolling Resistance parameters.

Setting	Block Implementation
None	Block sets rolling resistance, $M_{y}$, to zero.
Pressure and   velocity	Block uses the method in SAE Stepwise Coastdown Methodology for Measuring   Tire Rolling Resistance. The rolling resistance is a function of tire pressure,   normal force, and velocity, specifically,      $M_{y}=R_{e}\left\{a+b\left\|V_{x}\right\|+c V_{x}{ }^{2}\right\}\left\{F_{z} \beta p_{i} \alpha\right\} \tanh \left(4 V_{x}\right)$
IS0 28580	Block uses the method specified in ISO 28580:2018, Passenger car, truck and   bus tyre rolling resistance measurement method - Single point test and   correlation of measurement results. The method accounts for normal load,   parasitic loss, and thermal corrections from test conditions, specifically,
$\quad M_{y}=R_{e}\left(\frac{F_{z} C_{r}}{1+K_{t}\left(T_{a m b}-T_{\text {meas }}\right)}-F_{p l}\right)$ tanh( $\omega$ )	

If the brakes are enabled, the block determines the braking locked or unlocked condition based on an idealized dry clutch friction model. Based on the lock-up condition, the block implements these friction and dynamic models.

If	Lock-Up   Condition	Friction Model	Dynamic Model
$\omega \neq 0$	Unlocked	$T_{f}=T_{k}$,	
or			
$T_{S}<\left\|T_{i}+T_{f}-\omega b\right\|$		$T_{k}=F_{c} R_{e f f} \mu_{k} \tanh \left[4\left(-\omega_{d}\right)\right]$   $T_{S}=F_{c} R_{e f f} \mu_{S}$      $R_{e f f}=\frac{2\left(R_{0} 3-R_{i} 3\right)}{3\left(R_{o} 2-R_{i} 2\right)}$	
$\omega=0$   and   $T_{S} \geq\left\|T_{i}+T_{f}-\omega b\right\|$	Locked	$T_{f}=T_{S}$	

The equations use these variables.

$\omega$	Wheel angular velocity
$a$	Velocity-independent force component
$b$	Linear velocity force component
$c$	Quadratic velocity force component


$L_{e}$	Tire relaxation length
$J$	Moment of inertia
$M_{y}$	Rolling resistance torque
$T_{a}$	Applied axle torque
$T_{b}$	Braking torque
$T_{d}$	Combined tire torque
$T_{f}$	Frictional torque
$T_{i}$	Net input torque
$T_{k}$	Kinetic frictional torque
$T_{o}$	Net output torque
$T_{s}$	Static frictional torque
$F_{c}$	Applied clutch force
$F_{x}$	Longitudinal force developed by the tire road interface due to slip
$R_{e f f}$	Effective clutch radius
$R_{o}$	Annular disk outer radius
$R_{i}$	Annular disk inner radius
$R_{e}$	Effective tire radius while under load and for a given pressure
$V_{x}$	Longitudinal axle velocity
$F_{z}$	Vehicle normal force
$C_{r}$	Rolling resistance constant
$T_{a m b}$	Ambient temperature
$T_{m e a s}$	Measured temperature for rolling resistance constant
$F_{p l}$	Parasitic force loss
$K_{t}$	Thermal correction factor
$\alpha$	Tire pressure exponent
$\beta$	Normal force exponent
$p_{i}$	Tire pressure
$\mu_{s}$	Coefficient of static friction
$\mu_{k}$	Coefficient of kinetic friction
Brakes	
Disc	

If you specify the Brake Type parameter as Disc, the block implements a disc brake. This figure shows the side and front views of a disc brake.


A disc brake converts brake cylinder pressure from the brake cylinder into force. The disc brake applies the force at the brake pad mean radius.

The block uses these equations to calculate brake torque for the disc brake.

$$
\begin{aligned}
& T= \begin{cases}\frac{\mu P_{\pi B} B_{a} 2 R_{m} N_{\text {pads }}}{4} & \text { when } N \neq 0 \\
\frac{\mu_{\text {static } P \pi B_{a} 2 R_{m} N_{\text {pads }}}^{4}}{2} & \text { when } N=0\end{cases} \\
& R m=\frac{R o+R i}{2}
\end{aligned}
$$

The equations use these variables.

Variable	Value
$T$	Brake torque
$P$	Applied brake pressure
$N$	Wheel speed
$N_{\text {pads }}$	Number of brake pads in disc brake assembly
$\mu_{\text {static }}$	Disc pad-rotor coefficient of static friction
$\mu$	Disc pad-rotor coefficient of kinetic friction
$B_{a}$	Brake actuator bore diameter
$R_{m}$	Mean radius of brake pad force application on brake rotor

Variable Value
$R_{o} \quad$ Outer radius of brake pad
$R_{i} \quad$ Inner radius of brake pad

## Drum

If you specify the Brake Type parameter as Drum, the block implements a static (steady-state) simplex drum brake. A simplex drum brake consists of a single two-sided hydraulic actuator and two brake shoes. The brake shoes do not share a common hinge pin.

The simplex drum brake model uses the applied force and brake geometry to calculate a net torque for each brake shoe. The drum model assumes that the actuators and shoe geometry are symmetrical for both sides, allowing a single set of geometry and friction parameters to be used for both shoes.

The block implements equations that are derived from these equations in Fundamentals of Machine Elements.

$$
\begin{aligned}
& T_{\text {rshoe }}=\left(\frac{\pi \mu c r\left(\cos \theta_{2}-\cos \theta_{1}\right) B_{a} 2}{2 \mu\left(2 r\left(\cos \theta_{2}-\cos \theta_{1}\right)+a\left(\cos ^{2} \theta_{2}-\cos ^{2} \theta_{1}\right)\right)+\operatorname{ar}\left(2 \theta_{1}-2 \theta_{2}+\sin 2 \theta_{2}-\sin 2 \theta_{1}\right)}\right) P \\
& T_{\text {lshoe }}=\left(\frac{\pi \mu c r\left(\cos \theta_{2}-\cos \theta_{1}\right) B_{a} 2}{-2 \mu\left(2 r\left(\cos \theta_{2}-\cos \theta_{1}\right)+a\left(\cos ^{2} \theta_{2}-\cos ^{2} \theta_{1}\right)\right)+\operatorname{ar}\left(2 \theta_{1}-2 \theta_{2}+\sin 2 \theta_{2}-\sin 2 \theta_{1}\right)}\right) P \\
& T= \begin{cases}T_{\text {rshoe }}+T_{\text {lshoe }} & \text { when } N \neq 0 \\
\left(T_{\text {rshoe }}+T_{\text {lshoe }}\right) \frac{\mu_{\text {static }}}{\mu} & \text { when } N=0\end{cases}
\end{aligned}
$$



The equations use these variables.

Variable	Value
$T$	Brake torque
$P$	Applied brake pressure
$N$	Wheel speed
$\mu_{\text {static }}$	Disc pad-rotor coefficient of static friction
$\mu$	Disc pad-rotor coefficient of kinetic friction
$T_{\text {rshoe }}$	Right shoe brake torque
$T_{\text {lshoe }}$	Left shoe brake torque
$a$	Distance from drum center to shoe hinge pin center
$c$	Distance from shoe hinge pin center to brake actuator connection on brake shoe
$r$	Drum internal radius
$B_{a}$	Brake actuator bore diameter
$\Theta_{1}$	Angle from shoe hinge pin center to start of brake pad material on shoe
$\Theta_{2}$	Angle from shoe hinge pin center to end of brake pad material on shoe
Mapped	

If you specify the Brake Type parameter as Mapped, the block uses a lookup table to determine the brake torque.

$$
T=\left\{\begin{array}{lr}
f_{\text {brake }}(P, N) & \text { when } N \neq 0 \\
\left(\frac{\mu_{\text {static }}}{\mu}\right) f_{\text {brake }}(P, N) & \text { when } N=0
\end{array}\right.
$$

The equations use these variables.

Variable	Value
$T$	Brake torque
$f_{\text {brake }}(P, N)$	Brake torque lookup table
$P$	Applied brake pressure
$N$	Wheel speed
$\mu_{\text {static }}$	Friction coefficient of drum pad-face interface under static conditions
$\mu$	Friction coefficient of disc pad-rotor interface

The lookup table for the brake torque, $f_{\text {brake }}(P, N)$, is a function of applied brake pressure and wheel speed, where:

- $T$ is brake torque, in $\mathrm{N} \cdot \mathrm{m}$.
- $P$ is applied brake pressure, in bar.
- $N$ is wheel speed, in rpm.



## Longitudinal Force

To model the Longitudinal Wheel block longitudinal forces, you can use the Magic Formula. The model provides a steady-state tire characteristic function $F_{\mathrm{x}}=f\left(\kappa, F_{z}\right)$, the longitudinal force $F_{\mathrm{x}}$ on the tire, based on:

- Vertical load $F_{z}$
- Wheel slip $\kappa$


The Magic Formula model uses these variables.

$\Omega$	Wheel angular velocity
$r_{\mathrm{w}}$	Wheel radius
$V_{\mathrm{x}}$	Wheel hub longitudinal velocity
$r_{\mathrm{w}} \Omega$	Tire tread longitudinal velocity
$V_{\mathrm{sx}}=r_{\mathrm{w}} \Omega-V_{\mathrm{x}}$	Wheel slip velocity
$K=V_{\mathrm{sx}} /\left\|V_{\mathrm{x}}\right\|$	Wheel slip
$F_{z}, F_{\mathrm{z} 0}$	Vertical load and nominal vertical load on tire

$F_{\mathrm{x}}=f\left(\kappa, F_{\mathrm{z}}\right) \quad \begin{aligned} & \text { Longitudinal force exerted on the tire at the contact point. Also a } \\ & \text { characteristic function } f \text { of the tire. }\end{aligned}$

## Magic Formula Constant Value

If you set Longitudinal Force to Magic Formula constant value, the block implements the Magic Formula as a specific form of the tire characteristic function, characterized by four dimensionless coefficients $(B, C, D, E)$, or stiffness, shape, peak, and curvature:

$$
F_{\mathrm{x}}=f\left(\kappa, F_{\mathrm{z}}\right)=F_{\mathrm{z}} D \sin \left(C \tan ^{-1}\left[\left\{B K-E\left[B K-\tan ^{-1}\left(B_{K}\right)\right]\right\}\right]\right)
$$

The slope of $f$ at $k=0$ is $B C D \cdot F_{z}$.
The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	B	C	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

## Magic Formula Pure Longitudinal Slip

If you set Longitudinal Force to Magic Formula pure longitudinal slip, the block implements a more general Magic Formula using dimensionless coefficients that are functions of the tire load. The block implements the longitudinal force equations in Chapter 4 of Tire and Vehicle Dynamics, including 4.E9 through 4.E18:

$$
F_{\mathrm{x} 0}=D_{\mathrm{x}} \sin \left(C_{\mathrm{x}} \tan ^{-1}\left[\left\{B_{\mathrm{x}} K_{\mathrm{X}}-E_{\mathrm{X}}\left[B_{\mathrm{x}} K_{\mathrm{x}}-\tan ^{-1}\left(B_{\mathrm{x}} K_{\mathrm{x}}\right)\right]\right\}\right]\right)+S_{\mathrm{Vx}}
$$

where:

$$
\begin{aligned}
& K_{\mathrm{X}}=K+S_{H x} \\
& C_{\mathrm{x}}=p_{C x 1} \lambda_{C x} \\
& D_{\mathrm{x}}=\mu_{\mathrm{x}} F_{\mathrm{z}} S_{1} \\
& \mu_{\mathrm{x}}=\left(p_{D \times 1}+p_{D \times 2} d f_{\mathrm{z}}\right)\left(1+p_{p \times 3} d p_{i}+p_{p \times 4} d p_{i}{ }^{2}\right)\left(1-p_{D \times 3} \gamma^{2}\right) \lambda^{*}{ }_{\mu x} \\
& E_{\mathrm{x}}=\left(p_{E x 1}+p_{E x 2} d f_{\mathrm{z}}+p_{E x 3} d f_{\mathrm{z}}{ }^{2}\right)\left[1-p_{E x 4} \operatorname{sgn}\left(K_{\mathrm{x}}\right)\right] \lambda_{E x} \\
& K_{\mathrm{xK}}=F_{\mathrm{z}}\left(p_{K \times 1}+p_{K \times 2} d f_{\mathrm{z}}\right) \exp \left(\mathrm{p}_{\mathrm{Kx} 3} d f_{\mathrm{z}}\right)\left(1+p_{p \times 1} d p_{i}+p_{p \times 2} d p_{i} 2\right) \\
& B_{\mathrm{x}}=K_{\mathrm{xK}} /\left(C_{\mathrm{x}} D_{\mathrm{x}}+\varepsilon_{\mathrm{x}}\right) \\
& S_{H x}=p_{H \times 1}+p_{H \times 2} d f_{\mathrm{z}} \\
& S_{V x}=F_{z} \cdot\left(p_{V x 1}+p_{V x 2} d f_{z}\right) \lambda_{V x} \lambda^{\prime}{ }_{\mu x} S_{1}
\end{aligned}
$$

$S_{H x}$ and $S_{V x}$ represent offsets to the slip and longitudinal force in the force-slip function, or horizontal and vertical offsets if the function is plotted as a curve. $\mu_{x}$ is the longitudinal load-dependent friction coefficient. $\varepsilon_{\chi}$ is a small number inserted to prevent division by zero as $F_{z}$ approaches zero.

## Vertical Dynamics

If you select no vertical degrees-of-freedom by setting Vertical Motion to None, the block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.

If you set Vertical Motion to Mapped stiffness and damping, the vertical motion depends on wheel stiffness and damping. Stiffness is a function of tire sidewall displacement and pressure. Damping is a function of tire sidewall velocity and pressure.

$$
F z \operatorname{tire}\left(z, \dot{z}, P_{\text {tire }}\right)=F_{z k}\left(z, P_{\text {tire }}\right)+F_{z b}\left(\dot{z}, P_{\text {tire }}\right)
$$

The block determines the vertical response using this differential equation.

$$
\ddot{z} m=\text { Fztire }-F_{z}-m g
$$

When you disable the vertical degree-of-freedom, the input normal force from the vehicle passes directly to the longitudinal and rolling force calculations.

$$
\begin{aligned}
& \ddot{z}=\dot{z}=m=0 \\
& \text { Fztire }=m g
\end{aligned}
$$

The block uses the wheel-fixed frame to resolve the vertical forces.


The equations use these variables.
Fztire $\quad$ Tire normal force along the wheel-fixed $z$-axis
m
Axle mass
$F_{z k} \quad$ Tire normal force due to wheel stiffness along the wheel-fixed $z$-axis

$F_{z b}$	Tire normal force due to wheel damping along the wheel-fixed $z$-axis
$F_{z}$	Suspension or vehicle normal force along the wheel-fixed $z$-axis
$P_{\text {Tire }}$	Tire pressure
$z, \dot{z}, \ddot{z}$	Tire displacement, velocity, and acceleration, respectively, along the wheel-fixed $z$ -
	axis

## Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations
PwrInf   0	PwrTrnsfrd -   Power transferred between blocks   - Positive signals indicate flow into block   - Negative signals indicate flow out of block	PwrRoad	Tractive power applied from the axle	$P_{\text {road }}=F_{x} V_{\chi}$
		PwrAxlTrq	External torque applied by the axle to the wheel	$P_{T}=T \omega$
		PwrFz	Vertical force applied to the wheel by the vehicle or suspension	$P_{F z}=F_{z} \dot{z}$
	PwrNotTrnsfrd - Power crossing the block boundary, but not transferred   - Positive signals indicate an input   - Negative signals indicate a loss	PwrSlip	Tractive power loss	$\begin{aligned} & P_{K}=F_{x} V_{x}+( \\ & \left.-F_{c p} R_{e}+M_{y}\right) \omega \end{aligned}$
		PwrMyRoll	Rolling resistance power	$P_{M y}=M_{y} \omega$
		PwrMyBrk	Braking power	$P_{b r k}=M_{b r k}$
		PwrMyb	Rolling viscous damping loss	$P_{b}=-b \omega^{2}$
		PwrFzDamp	Vertical damping power	$P_{F z b}=F_{z b} \dot{\chi}$
	PwrStored -   Stored energy rate of change   - Positive signals indicate an increase   - Negative signals indicate a decrease	PwrStoredzdot	Rate of change of vertical kinetic energy	$P_{\dot{z}}=m \ddot{z} \dot{z}$
		PwrStoredq	Rate of change of rotational kinetic energy	$P_{\omega}=I_{y y} \dot{\omega} \omega$
		PwrStoredFsFzSp rng	Rate of change of stored sidewall potential energy	$P_{F z k}=F_{z k} \dot{z}_{\chi}$
		PwrStoredGrvty	Rate of change of gravitational potential energy	$P_{g}=-m g \dot{Z}$

The equations use these variables.
$\omega \quad$ Wheel angular velocity
$b \quad$ Linear velocity force component

$F_{x}$	Longitudinal force developed by the tire road interface due to slip
$F_{c p}$	Tire slip force at contact patch
$F_{z}$	Vehicle normal force
$F_{z b}$	Tire normal force due to wheel damping
$F_{z k}$	Tire normal force due to wheel stiffness
$I_{y y}$	Wheel rotational inertia
$M_{b r k}$	Braking moment
$M_{y}$	Rolling resistance torque
$R_{e}$	Effective tire radius while under load and for a given pressure
$T$	Axle torque applied on wheel
$V_{x}$	Longitudinal axle velocity
$z, \dot{z}, \ddot{z}$	Tire displacement, velocity, and acceleration, respectively
$\omega$	Wheel angular velocity
$\dot{Z}$	Vehicle vertical velocity along the vehicle-fixed $z$-axis

## Ports

Input
BrkPrs - Brake pressure
scalar
Brake pressure, in Pa.

## Dependencies

To enable this port, for the Brake Type parameter, specify one of these types:

- Disc
- Drum
- Mapped

AxITrq - Axle torque
scalar
Axle torque, $T_{a}$, about wheel spin axis, in $\mathrm{N} \cdot \mathrm{m}$.
Vx - Velocity
scalar
Axle longitudinal velocity along vehicle(body)-fixed $x$-axis, in $\mathrm{m} / \mathrm{s}$.
Fz - Normal force
scalar
Absolute value of suspension or vehicle normal force along body-fixed $z$-axis, in N .
Gnd - Ground displacement
scalar

Ground displacement, Grndz, along negative wheel-fixed $z$-axis, in m .


## Dependencies

To create Gnd:

- Set Vertical Motion to Mapped stiffness and damping.
- On the Vertical pane, select Input ground displacement.

Iam_mux - Friction scaling factor
scal̃ar
Longitudinal friction scaling factor, dimensionless.

## Dependencies

To enable this port, select Input friction scale factor.
TirePrs - Tire pressure
scalar
Tire pressure, in Pa.
Dependencies
To enable this port:

- Set one of these parameters:
- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Pressure and velocity or Magic Formula.
- Vertical Motion to Mapped stiffness and damping.
- On the Wheel Dynamics pane, select Input tire pressure.

Tamb - Ambient temperature
scalar
Ambient temperature, $T_{\text {amb }}$, in K .
The ambient temperature, $T_{\text {amb }}$, is the temperature near tire in application environment, in K. For example, the measured ambient temperature is the ambient temperature near the tire when the vehicle is on the road.

Select to create input port Tamb to input the measured ambient temperature.

## Dependencies

To enable this port:
1 Set Rolling Resistance to ISO 28580.
2 On the Rolling Resistance pane, select to Input ambient temperature.

## Output

Info - Bus signal
bus
Bus signal containing these block calculations.

Signal	Description	Units
AxlTrq	Axle torque about body-fixed   $y$-axis	$\mathrm{N} \cdot \mathrm{m}$
Omega	Wheel angular velocity about   body-fixed $y$-axis	$\mathrm{rad} / \mathrm{s}$
Omegadot	Wheel angular acceleration   about body-fixed $y$-axis	$\mathrm{rad} / \mathrm{s}^{\wedge} 2$
Fx	Longitudinal vehicle force   along body-fixed $x$-axis	N
Fz	Vertical vehicle force along   body-fixed $z$-axis	N
Fzb	Tire normal force due to   wheel damping along the   wheel-fixed $z$-axis	N
Fzk	Tire normal force due to   wheel stiffness along the   wheel-fixed $z$-axis	N
My	Rolling resistance torque   about body-fixed $y$-axis	$\mathrm{N} \cdot \mathrm{m}$


Signal		Description
Myb	Rolling resistance torque due   to damping about body-fixed   y-axis	$\mathrm{N} \cdot \mathrm{m}$
Kappa	Slip ratio	NA
Vx	Vehicle longitudinal velocity   along body-fixed $x$-axis	$\mathrm{m} / \mathrm{s}$
Re	Wheel effective radius along   wheel-fixed $z$-axis	m
BrkTrq	Brake torque about body-fixed   y-axis	N -m
BrkPrs	Brake pressure	Pa
z	Wheel vertical deflection   along wheel-fixed $z$-axis	m
zdot	Wheel vertical velocity along   wheel-fixed $z$-axis	$\mathrm{m} / \mathrm{s}$
zddot	Wheel vertical acceleration   along wheel-fixed $z$-axis	$\mathrm{m} / \mathrm{s} \wedge 2$
Gndz		Ground displacement along   negative of wheel-fixed $z$-axis   (positive input produces wheel   lift)


Signal		Description	Units	
		PwrStoredq	Rate of change of stored   sidewall potential energy	W
		PwrStoredFsFzSprng	Rate of change of   gravitational potential energy	W
		PwrStoredGrvty	Tractive power applied from   the axle	W

Fx - Longitudinal axle force scalar

Longitudinal force acting on axle, along body-fixed $x$-axis, in N. Positive force acts to move the vehicle forward.

Omega - Wheel angular velocity
scalar
Wheel angular velocity, about body-fixed $y$-axis, in rad/s.
z - Wheel vertical deflection
scalar
Wheel vertical deflection along wheel-fixed $z$-axis, in m.

## Dependencies

To enable this port, set Vertical Motion to Mapped stiffness and damping.
zdot - Wheel vertical velocity
scalar
Wheel vertical velocity along wheel-fixed $z$-axis, in $\mathrm{m} / \mathrm{s}$.

## Dependencies

To enable this port, set Vertical Motion to Mapped stiffness and damping.

## Parameters

## Block Options

Longitudinal Force - Select type
Magic Formula constant value (default)|Magic Formula pure longitudinal slip| Mapped force

The block models longitudinal force as a function of wheel slip relative to the road surface. To calculate the longitudinal force, specify one of these Longitudinal Force parameters.

Setting	Block Implementation
Magic Formula constant value	Magic Formula with constant coefficient for stiffness, shape,   peak, and curvature.


Setting	Block Implementation
Magic Formula pure   longitudinal slip	Magic Formula with load-dependent coefficients that   implement equations 4.E9 through 4.E18 in Tire and Vehicle   Dynamics.
Mapped force	Lookup table that is a function of the normal force and wheel   slip ratio.

## Dependencies

Selecting
Magic Formula constant value

Enables These Parameters
Pure longitudinal peak factor, $\mathbf{D x}$
Pure longitudinal shape factor, $\mathbf{C x}$
Pure longitudinal stiffness factor, Bx
Pure longitudinal curvature factor, Ex

Selecting	Enables These Parameters
Magic Formula pure longitudinal slip	Cfx shape factor, PCX1
	Longitudinal friction at nominal normal load, PDX1
	Longitudinal friction at nominal normal load, PDX1
	Frictional variation with load, PDX2
	Frictional variation with camber, PDX3
	Longitudinal curvature at nominal normal load, PEX1
	Variation of curvature factor with load, PEX2
	Variation of curvature factor with square of load, PEX3
	Longitudinal curvature factor with slip, PEX4
	Longitudinal slip stiffness at nominal normal load, PKX1
	Variation of slip stiffness with load, PKX2
	Slip stiffness exponent factor, PKX3
	Horizontal shift in slip ratio at nominal normal load, PHX1
	Variation of horizontal slip ratio with load, PHX2
	Vertical shift in load at nominal normal load, PVX1
	Variation of vertical shift with load, PVX2
	Linear variation of longitudinal slip stiffness with tire pressure, PPX1
	Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2
	Linear variation of peak longitudinal friction with tire pressure, PPX3
	Quadratic variation of peak longitudinal friction with tire pressure, PPX4
	Linear variation of longitudinal slip stiffness with tire pressure, PPX1
	Slip speed decay function scaling factor, lam_muV
	Brake slip stiffness scaling factor, lam_Kxkappa
	Longitudinal shape scaling factor, lam_Cx
	Longitudinal curvature scaling factor, lam_Ex


Selecting	Enables These Parameters
	Longitudinal horizontal shift scaling factor, lam_Hx
	Longitudinal vertical shift scaling factor, lam_Vx
Mapped force	Slip ratio breakpoints, kappaFx
	Normal force breakpoints, FzFx
	Longitudinal force map, FxMap

Rolling Resistance - Rolling resistance torque
None (default)|Pressure and velocity |ISO 28580|Magic Formula|Mapped torque
To calculate the rolling resistance torque, specify one of these Rolling Resistance parameters.

Setting	Block Implementation
None	None
Pressure and velocity	Method in Stepwise Coastdown Methodology for Measuring   Tire Rolling Resistance. The rolling resistance is a function of   tire pressure, normal force, and velocity.
ISO 28580	Method specified in ISO 28580:2018, Passenger car, truck   and bus tyre rolling resistance measurement method -   Single point test and correlation of measurement results.
Magic Formula	Magic formula equations from 4.E70 in Tire and Vehicle   Dynamics. The magic formula is an empirical equation based   on fitting coefficients.
Mapped torque	Lookup table that is a function of the normal force and spin   axis longitudinal velocity.

## Dependencies

Each Rolling Resistance setting enables additional parameters.

Setting	Parameters Enabled
Pressure and velocity	- Velocity independent force coefficient, aMy
	- Linear velocity force component, bMy
	- Quadratic velocity force component, cMy
	- Tire pressure exponent, alphaMy
	- Normal force exponent, betaMy
ISO 28580	- Parasitic losses force, Fpl
	- Rolling resistance constant, Cr
	- Thermal correction factor, Kt
	- Measured temperature, Tmeas
	- Parasitic losses force, Fpl
	- Ambient temperature, Tamb


Setting	Parameters Enabled
Magic Formula	Rolling resistance torque coefficient, QSY
	Longitudinal force rolling resistance coefficient, QSY2
	Linear rotational speed rolling resistance coefficient,   QSY3                           Quartic rotational speed rolling resistance coefficient,   Camber squared rolling resistance torque, QSY5   Load based camber squared rolling resistance torque,   QSY6   Normal load rolling resistance coefficient, QSY7
Pressure load rolling resistance coefficient, QSY8	
	Rolling resistance scaling factor, lam_My
	Spin axis velocity breakpoints, VxMy
Normal force breakpoints, FzMy	
	Rolling resistance torque map, MyMap

Brake Type - Select type
None | Disc | Drum | Mapped
There are four types of Longitudinal Wheel blocks. Each block implements a different brake type.

Block Name	Brake Type Setting	Brake Implementation
Longitudinal Wheel - No   Brake	None	None
Longitudinal Wheel - Disc   Brake	Disc	Brake that converts the brake cylinder   pressure into a braking force.
Longitudinal Wheel - Drum   Brake	Drum	Simplex drum brake that converts the   applied force and brake geometry into a   net braking torque.
Longitudinal Wheel - Mapped   Brake	Mapped	Lookup table that is a function of the   wheel speed and applied brake pressure.

## Vertical Motion - Select type

None (default)| Mapped stiffness and damping
To calculate vertical motion, specify one of these Vertical Motion parameters.

Setting	Block Implementation
None	Block passes the applied chassis forces directly through to   the rolling resistance and longitudinal force calculations.


Setting	Block Implementation
Mapped stiffness and damping	Vertical motion depends on wheel stiffness and damping.   Stiffness is a function of tire sidewall displacement and   pressure. Damping is a function of tire sidewall velocity and   pressure.


Selecting	Enables These Parameters	Creates These Output Ports
Mapped stiffness   and damping	Wheel and unsprung mass, m   Initial deflection, zo   Initial velocity, zdoto   Gravitational acceleration, g   Vertical deflection breakpoints, zFz   Pressure breakpoints, pFz	zdot
	Force due to deflection, Fzz   Vertical velocity breakpoints, zdotFz   Force due to velocity, Fzzdot   Ground displacement, Gndz   Input ground displacement	

Longitudinal scaling factor, lam_x - Friction scaling factor
1 (default)
Longitudinal friction scaling factor, dimensionless.

## Dependencies

To enable this parameter, clear Input friction scale factor.
Input friction scale factor - Selection
Off (default)
Create input port for longitudinal friction scaling factor.

## Dependencies

Selecting this parameter:

- Creates input port lam_mux.
- Disables parameter Longitudinal scaling factor, lam_x.


## Wheel Dynamics

Axle viscous damping coefficient, br - Damping
0.001 (default)| scalar

Axle viscous damping coefficient, $b r$, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Wheel inertia, lyy - Inertia
0.8 (default) | scalar

Wheel inertia, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Wheel initial angular velocity, omegao - Wheel speed
0 (default) | scalar
Initial angular velocity of wheel, along body-fixed $y$-axis, in rad/s.
Relaxation length, Lrel - Relaxation length
0.5 (default) | scalar

Wheel relaxation length, in m.
Loaded radius, $\mathbf{R e}$ - Loaded radius
0.3 (default) | scalar

Loaded wheel radius, Re , in m .


Unloaded radius, UNLOADED_RADIUS - Unloaded radius
0.4 (default) | scalar

Unloaded wheel radius, in m.

## Dependencies

To create this parameter, set Rolling Resistance to Pressure and velocity or Magic Formula.

Nominal longitudinal speed, LONGVL - Speed
16 (default) | scalar
Nominal longitudinal speed along body-fixed $x$-axis, in $\mathrm{m} / \mathrm{s}$.
Dependencies
To enable this parameter, set Longitudinal Force to Magic Formula pure longitudinal slip.
Nominal camber angle, gamma - Camber
0 (default) | scalar
Nominal camber angle, in rad.

## Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

Nominal pressure, NOMPRES - Pressure
220000 (default) | scalar
Nominal pressure, in Pa.

## Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

Pressure, press - Pressure
220000 (default) | scalar
Pressure, in Pa.

## Dependencies

To enable this parameter:

- Set one of these:
- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Pressure and velocity or Magic Formula.
- Vertical Motion to Mapped stiffness and damping.
- On the Wheel Dynamics pane, clear Input tire pressure.


## Longitudinal

Magic Formula Constant Value
Pure longitudinal peak factor, Dx - Factor
1 (default) | scalar
Pure longitudinal peak factor, dimensionless.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	B	C	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula constant value.

## Pure longitudinal shape factor, $\mathbf{C x}$ - Factor

1.65 (default) | scalar

Pure longitudinal shape factor, dimensionless.
The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	B	C	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula constant value.

Pure longitudinal stiffness factor, Bx - Factor
10 (default) | scalar
Pure longitudinal stiffness factor, dimensionless.
The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	B	C	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula constant value.

Pure longitudinal curvature factor, Ex - Factor
0.01 (default) | scalar

Pure longitudinal curvature factor, dimensionless.
The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

Surface	B	C	D	E
Dry tarmac	10	1.9	1	0.97
Wet tarmac	12	2.3	0.82	1
Snow	5	2	0.3	1
Ice	4	2	0.1	1

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula constant value.

Magic Formula Pure Longitudinal Slip
Cfx shape factor, PCX1 - Factor
1.6 (default)| scalar

Cfx shape factor, PCX1, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal friction at nominal normal load, PDX1 - Factor
1 (default) | scalar
Longitudinal friction at nominal normal load, PDX1, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Frictional variation with load, PDX2 - Factor
-0.08 (default) | scalar
Frictional variation with load, PDX2, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Frictional variation with camber, PDX3 - Factor
0 (default) | scalar
Frictional variation with camber, PDX3, 1/rad^2.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

## Longitudinal curvature at nominal normal load, PEX1 - Factor

0.112 (default) | scalar

Longitudinal curvature at nominal normal load, PEX1, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of curvature factor with load, PEX2 - Factor
0.313 (default) | scalar

Variation of curvature factor with load, PEX2, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of curvature factor with square of load, PEX3 - Factor
0 (default) | scalar
Variation of curvature factor with square of load, PEX3, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

## Longitudinal curvature factor with slip, PEX4 - Factor

0.0016 (default) | scalar

Longitudinal curvature factor with slip, PEX4, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

## Longitudinal slip stiffness at nominal normal load, PKX1 - Factor

21.7 (default) | scalar

Longitudinal slip stiffness at nominal normal load, PKX1, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

## Variation of slip stiffness with load, PKX2 - Factor

13.77 (default) | scalar

Variation of slip stiffness with load, PKX2, dimensionless.
Dependencies
To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Slip stiffness exponent factor, PKX3 - Factor

- 0.412 (default) | scalar

Slip stiffness exponent factor, PKX3, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Horizontal shift in slip ratio at nominal normal load, PHX1 - Factor
2.1585E-4 (default) | scalar

Horizontal shift in slip ratio at nominal normal load, PHX1, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of horizontal slip ratio with load, PHX2 - Factor
0.00115 (default) | scalar

Variation of horizontal slip ratio with load, PHX2, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Vertical shift in load at nominal normal load, PVX1 - Factor
1.5973E-5 (default) | scalar

Vertical shift in load at nominal normal load, PVX1, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of vertical shift with load, PVX2 - Factor
1.043E-4 (default) | scalar

Variation of vertical shift with load, PVX2, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Linear variation of longitudinal slip stiffness with tire pressure, PPX1 - Factor - 0.3489 (default) | scalar

Linear variation of longitudinal slip stiffness with tire pressure, PPX1, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2 - Factor 0.382 (default) | scalar

Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

## Linear variation of peak longitudinal friction with tire pressure, PPX3 - Factor -0.09634 (default) | scalar

Linear variation of peak longitudinal friction with tire pressure, PPX3, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Quadratic variation of peak longitudinal friction with tire pressure, PPX4 - Factor 0.06447 (default) | scalar

Quadratic variation of peak longitudinal friction with tire pressure, PPX4, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Slip speed decay function scaling factor, lam_muV - Factor 1 (default) | scalar

Slip speed decay function scaling factor, lam_muV, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Brake slip stiffness scaling factor, lam_Kxkappa - Factor
1 (default) | scalar
Brake slip stiffness scaling factor, lam_Kxkappa, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

## Longitudinal shape scaling factor, lam_Cx - Factor

1 (default) | scalar
Longitudinal shape scaling factor, lam Cx, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

## Longitudinal curvature scaling factor, lam_Ex - Factor

0 (default) | scalar
Longitudinal curvature scaling factor, lam_Ex, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

## Longitudinal horizontal shift scaling factor, lam_Hx - Factor

1 (default) | scalar
Longitudinal horizontal shift scaling factor, lam_Hx, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

## Longitudinal vertical shift scaling factor, lam_Vx - Factor

1 (default) | scalar
Longitudinal vertical shift scaling factor, lam_Vx, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

## Mapped Force

Slip ratio breakpoints, kappaFx - Breakpoints
vector
Slip ratio breakpoints, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Mapped force.
Normal force breakpoints, FzFx - Breakpoints
vector
Normal force breakpoints, N.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Mapped force.

Longitudinal force map, FxMap - Lookup table
array
Longitudinal force versus slip ratio and normal force, N .

## Dependencies

To create this parameter, select the Longitudinal Force parameter Mapped force.

## Rolling Resistance

Pressure and Velocity
Velocity independent force coefficient, $\mathbf{a M y}$ - Velocity-independent force coefficient
8e-4 (default) | scalar
Velocity-independent force coefficient, $a$, in $\mathrm{s} / \mathrm{m}$.

## Dependencies

To enable this parameter, set Rolling Resistance to Pressure and velocity.
Linear velocity force component, bMy - Linear velocity force component
0.001 (default) | scalar

Linear velocity force component, $b$, in $\mathrm{s} / \mathrm{m}$.
Dependencies
To enable this parameter, set Rolling Resistance to Pressure and velocity.
Quadratic velocity force component, cMy - Quadratic velocity force component
1.6e-4 (default) | scalar

Quadratic velocity force component, $c$, in $\mathrm{s}^{\wedge} 2 / \mathrm{m}^{\wedge} 2$.

## Dependencies

To enable this parameter, set Rolling Resistance to Pressure and velocity.
Tire pressure exponent, alphaMy - Tire pressure exponent
-0.003 (default) | scalar
Tire pressure exponent, $\alpha$, dimensionless.
Dependencies
To enable this parameter, set Rolling Resistance to Pressure and velocity.
Normal force exponent, betaMy - Normal force exponent
0.97 (default) | scalar

Normal force exponent, $\beta$, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Pressure and velocity.

ISO 28580
Parasitic losses force, FpI - Parasitic force loss
10 (default) | scalar
Parasitic force loss, $F_{p l}$ in $N$.

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.
Rolling resistance constant, $\mathbf{C r}$ - Rolling resistance constant
1e-3 (default) | scalar
Rolling resistance constant, $C_{r}$, in $\mathrm{N} / \mathrm{kN}$. ISO 28580 specifies the rolling resistance unit as one newton of tractive resistance for every kilonewtons of normal load.

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.
Thermal correction factor, $\mathbf{K t}$ - Thermal correction factor
0.008 (default) | scalar

Thermal correction factor, $K_{t}$, in $1 /$ degC.
Dependencies
To enable this parameter, set Rolling Resistance to ISO 28580.
Measured temperature, Tmeas - Temperature during testing
298.15 (default) | scalar

Measured ambient temperature, $T_{\text {meas }}$, near tire during tire testing, in K .

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.
Ambient temperature, Tamb - Temperature in application environment 298.15 (default) | scalar

Measured ambient temperature, $T_{\text {amb }}$, near tire in application environment, in K. For example, the measured ambient temperature is the ambient temperature near the tire when the vehicle is on the road.

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.
Input ambient temperature - Option to input ambient temperature
off (default) | on
Select to create input port Tamb to input the measured ambient temperature.
The measured ambient temperature, $T_{\text {amb }}$, is the temperature near tire in application environment, in K . For example, the measured ambient temperature is the ambient temperature near the tire when the vehicle is on the road.

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.

## Magic Formula

Rolling resistance torque coefficient, QSY1 - Torque coefficient 0.007 (default) | scalar

Rolling resistance torque coefficient, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Longitudinal force rolling resistance coefficient, QSY2 - Force resistance coefficient 0 (default) | scalar

Longitudinal force rolling resistance coefficient, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Linear rotational speed rolling resistance coefficient, QSY3 - Linear speed coefficient 0.0015 (default) | scalar

Linear rotational speed rolling resistance coefficient, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Quartic rotational speed rolling resistance coefficient, QSY4 - Quartic speed coefficient 8.5e-05 (default) | scalar

Quartic rotational speed rolling resistance coefficient, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Camber squared rolling resistance torque, QSY5 - Camber resistance torque
0 (default) | scalar
Camber squared rolling resistance torque, in $1 / \mathrm{rad}^{\wedge} 2$.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Load based camber squared rolling resistance torque, QSY6 - Load resistance torque 0 (default) | scalar

Load based camber squared rolling resistance torque, in $1 / \mathrm{rad}^{\wedge} 2$.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.

Normal load rolling resistance coefficient, QSY7 - Normal resistance coefficient 0.9 (default) | scalar

Normal load rolling resistance coefficient, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Pressure load rolling resistance coefficient, QSY8 - Pressure resistance coefficient -0.4 (default) | scalar

Pressure load rolling resistance coefficient, dimensionless.
Dependencies
To enable this parameter, set Rolling Resistance to Magic Formula.
Rolling resistance scaling factor, lam_My - Scaling factor
1 (default) | scalar
Rolling resistance scaling factor, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.

## Mapped

Spin axis velocity breakpoints, VxMy - Spin axis velocity breakpoints
-20:1:20 (default) | vector
Spin axis velocity breakpoints, in $\mathrm{m} / \mathrm{s}$.

## Dependencies

To enable this parameter, set Rolling Resistance to Mapped torque.
Normal force breakpoints, FzMy - Normal force breakpoints
0:200:1e4 (default)| vector
Normal force breakpoints, in N.

## Dependencies

To enable this parameter, set Rolling Resistance to Mapped torque.
Rolling resistance torque map, MyMap - Rolling resistance torque map array

Rolling resistance torque versus axle speed and normal force, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this parameter, set Rolling Resistance to Mapped torque.

## Brake

## Static friction coefficient, mu_static - Static friction

## . 3 (default) | scalar

Static friction coefficient, specified as a scalar, dimensionless.

## Dependencies

To enable this parameter, for the Brake Type parameter, specify one of these types:

- Disc
- Drum
- Mapped


## Kinetic friction coefficient, mu_kinetic - Kinetic friction

. 2 (default) | scalar
Kinematic friction coefficient, specified as a scalar, dimensionless.

## Dependencies

To enable this parameter, for the Brake Type parameter, specify one of these types:

- Disc
- Drum
- Mapped

Disc
Disc brake actuator bore, disc_abore - Bore distance
. 05 (default) | scalar
Disc brake actuator bore, specified as a scalar, in $m$.

## Dependencies

To enable the disc brake parameters, select Disc for the Brake Type parameter.
Brake pad mean radius, Rm - Radius
. 177 (default) | scalar
Brake pad mean radius, specified as a scalar, in $m$.

## Dependencies

To enable the disc brake parameters, select Disc for the Brake Type parameter.
Number of brake pads, num_pads - Count
2 (default) | scalar
Number of brake pads, specified as a scalar, dimensionless.

## Dependencies

To enable the disc brake parameters, select Disc for the Brake Type parameter.

## Drum

## Drum brake actuator bore, disc_abore - Bore distance

0.0508 (default) | scalar

Drum brake actuator bore, specified as a scalar, in m.

## Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.
Shoe pin to drum center distance, drum_a - Distance
0.123 (default) | scalar

Shoe pin to drum center distance, in $m$.
Dependencies
To enable the drum brake parameters, select Drum for the Brake Type parameter.
Shoe pin center to force application point distance, drum_c - Distance
0.212 (default) | scalar

Shoe pin center to force application point distance, in m.
Dependencies
To enable the drum brake parameters, select Drum for the Brake Type parameter.
Drum internal radius, drum_r - Radius
0.15 (default) | scalar

Drum internal radius, in m.

## Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.
Shoe pin to pad start angle, drum_thetal - Angle
0 (default) | scalar
Shoe pin to pad start angle, in deg.
Dependencies
To enable the drum brake parameters, select Drum for the Brake Type parameter.
Shoe pin to pad end angle, drum_theta 2 - Angle
126 (default) | scalar
Shoe pin to pad end angle, in deg.

## Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.

## Mapped

Brake actuator pressure breakpoints, brake_p_bpt - Breakpoints

## vector

Brake actuator pressure breakpoints, in bar.

## Dependencies

To enable the mapped brake parameters, select Mapped for the Brake Type parameter.
Wheel speed breakpoints, brake_n_bpt - Breakpoints
vector
Wheel speed breakpoints, in rpm.

## Dependencies

To enable the mapped brake parameters, select Mapped for the Brake Type parameter.
Brake torque map, f_brake_t - Lookup table
array
The lookup table for the brake torque, $f_{\text {brake }}(P, N)$, is a function of applied brake pressure and wheel speed, where:

- $\quad T$ is brake torque, in $\mathrm{N} \cdot \mathrm{m}$.
- $P$ is applied brake pressure, in bar.
- $N$ is wheel speed, in rpm.



## Dependencies

To enable the mapped brake parameters, select Mapped for the Brake Type parameter.

## Vertical

Nominal normal force, FNOMIN - Force
2000 (default) | scalar
Nominal rated wheel load along wheel-fixed $z$-axis, in N .

## Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

Nominal rated load scaling factor, lam_Fzo - Factor
1 (default) | scalar
Nominal rated load scaling factor, dimensionless. Used to scale the normal for specific applications and load conditions.

## Dependencies

To enable this parameter, set Longitudinal Force to Magic Formula pure longitudinal slip.
Wheel and unsprung mass, $\mathbf{m}$ - Mass
10 (default) | scalar
Wheel and unsprung mass, in kg. Used in the vertical motion calculations.

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Initial deflection, zo - Deflection
0 (default) | scalar
Initial axle displacement along wheel-fixed $z$-axis, in m .

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Initial velocity, zdoto - Velocity
0 (default) | scalar
Initial axle velocity along wheel-fixed $z$-axis, in m .

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Gravitational acceleration, $\mathbf{g}$ - Gravity
9.81 (default) | scalar

Gravitational acceleration, in $\mathrm{m} / \mathrm{s}^{\wedge} 2$.

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Ground displacement, Gndz - Displacement
0 (default) | scalar
Ground displacement, Grndz , along negative wheel-fixed $z$-axis, in m .


## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

## Mapped Stiffness and Damping

Vertical deflection breakpoints, zFz - Breakpoints
[0.01 .1] (default)|vector
Vector of sidewall deflection breakpoints corresponding to the force table, in m .

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Pressure breakpoints, pFz - Breakpoints
[10000 1000000] (default) | vector
Vector of pressure data points corresponding to the force table, in Pa.

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Force due to deflection, Fzz - Force
[0 le3 le4; 0 le4 le5] (default)|vector
Force due to sidewall deflection and pressure along wheel-fixed $z$-axis, in N .

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

## Vertical velocity breakpoints, zdotFz - Breakpoints

[-20 0 20] (default) |scalar
Vector of sidewall velocity breakpoints corresponding to the force due to velocity table, in $m$.

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

## Force due to velocity, Fzzdot - Force

[500 0 -500;250 0 -250] (default) |array
Force due to sidewall velocity and pressure along wheel-fixed $z$-axis, in N .

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

## Simulation Setup

Minimum normal force, FZMIN - Minimum normal force
0 (default) | scalar
Minimum normal force, in N. Used with all vertical force calculations.
Maximum normal force, FZMAX - Maximum normal force 10000 (default) | scalar

Maximum normal force, in N. Used with all vertical force calculations.
Max allowable slip ratio (absolute), kappamax - Ratio
1.5 (default) | scalar

Maximum allowable absolute slip ratio, dimensionless.
Velocity tolerance used to handle low velocity situations, VXLOW - Tolerance
1 (default) | scalar
Velocity tolerance used to handle low-velocity situations, in m/s.
Minimum ambient temperature, TMIN - Minimum ambient temperature
0 (default) | scalar
Minimum ambient temperature, $T_{\text {MIN }}$, in K .

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.
Maximum ambient temperature, TMAX - Maximum ambient temperature
400 (default) | scalar
Maximum ambient temperature, $T_{M A X}$, in K .

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.

## Version History

Introduced in R2017a

## References

[1] Highway Tire Committee. Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. Standard J2452_199906. Warrendale, PA: SAE International, June 1999.
[2] Pacejka, H. B. Tire and Vehicle Dynamics. 3rd ed. Oxford, United Kingdom: SAE and ButterworthHeinemann, 2012.
[3] Schmid, Steven R., Bernard J. Hamrock, and Bo O. Jacobson. "Chapter 18: Brakes and Clutches." Fundamentals of Machine Elements, SI Version. 3rd ed. Boca Raton, FL: CRC Press, 2014.
[4] Shigley, Joseph E., and Larry Mitchel. Mechanical Engineering Design. 4th ed. New York, NY: McGraw Hill, 1983.
[5] ISO 28580:2018. Passenger car, truck and bus tyre rolling resistance measurement method -Single point test and correlation of measurement results. ISO (International Organization for Standardization), 2018.

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

## See Also

Drive Cycle Source | Longitudinal Driver | Combined Slip Wheel 2DOF

## Combined Slip Wheel 2DOF

Combined slip 2DOF wheel with disc, drum, or mapped brake


## Libraries:

Vehicle Dynamics Blockset / Wheels and Tires

## Description

Combined Slip Wheel 2DOF incorporates two degrees of freedom (DOF's) of wheel motion, and 6 DOF's of tire forcing, in combined longitudinal and lateral slip conditions.

- Wheel motion: Rotation about spin axis, and vertical displacement.
- Tire forces and moments: Fx, Fy, and Fz; Mx, My, and Mz.

It models the tire using the Magic Formula. ${ }^{[1]}$ and ${ }^{[2]}$ Set the Magic Formula coefficients by either importing your own file (in MF 6.X format), or selecting one of the resident datasets from the Global Center for Automotive Performance Simulation (GCAPS).

Use this block in simulations like the following.

- Vehicle braking and acceleration, including rolling resistance.
- Vehicle ride motions, including effects of suspension modes.
- Maneuvers with combined lateral and longitudinal slip, such as lateral vehicle motion and yaw stability.

Use the Tire type parameter to either import a tire coefficient file or select a resident one. These are known generically as ".tir" files. Manufacturers and testing agencies commonly use these to communicate tire data.

Goal	Action
Import your own external file containing Magic Formula coefficients, and use them to drive the empirical equations modeling the tire ${ }^{1 \text { and } 2}$. The file you import can be a .mat, .tir, or .txt type, and must contain parameter names corresponding to those in the tire block.	Update the block parameters with fitting coefficients from a file:   Set Tire type to External file.   On the Wheel and Tire Parameters > External tire source pane, select Select file.   3 Select the tire coefficient file.   4 Select Update mask values from file. In the dialog box that prompts you for confirmation, click OK. The block updates the parameters.   5 Select Apply.
Select one of the Magic Formula coefficient sets resident in the block to drive the empirical equations modeling the tire ${ }^{1}$ and 2 . These fitted tire data sets are provided by the Global Center for Automotive Performance Simulation (GCAPS).	Update the applicable block parameters with GCAPS fitted tire data:   1 Set Tire type to the tire that you want to implement. Options include:   - Light passenger car 205/60R15   - Mid-size passenger car 235/45R18   - Performance car 225/40R19   - SUV 265/50R20   - Light truck 275/65R18   - Commercial truck 295/75R22.5   2 Select Update applicable Tire Parameters with tire type values. On the Tire Parameters tab, the block updates the applicable parameters, including Wheel width, Rim radius, and Wheel mass.   3 Select Apply.

Use the Brake Type parameter to select the brake.

Action	Brake Type Setting
No braking	None
Implement brake that converts the   brake cylinder pressure into a   braking force	Disc
Implement simplex drum brake that   converts the applied force and brake   geometry into a net braking torque	Drum
Implement lookup table that is a   function of the wheel speed and   applied brake pressure	Mapped

## Rotational Wheel Dynamics

The block calculates the inertial response of the wheel subject to:

- Axle losses
- Brake and drive torque
- Tire rolling resistance
- Ground contact through the tire-road interface

To implement the Magic Formula, the block uses these equations from the cited references:

Calculation	Equations
Longitudinal force	Tire and Vehicle Dynamics ${ }^{2}$ equations 4.E9 through 4.E57
Lateral force - pure   sideslip	Tire and Vehicle Dynamics ${ }^{2}$ equations 4.E19 through 4.E30
Lateral force - combined   slip	Tire and Vehicle Dynamics ${ }^{2}$ equations 4.E58 through 4.E67
Vertical dynamics	Tire and Vehicle Dynamics ${ }^{2}$ equations 4.E68, 4.E1, 4.E2a, and 4.E2b
Overturning couple	Tire and Vehicle Dynamics ${ }^{2}$ equation 4.E69   Rolling resistance   - An improved Magic Formula/Swift tyre model that can handle inflation   - Tire and Vehicle Dynamics ${ }^{2}$ equation 4.E70   Aligning moment   Aligning torque -   combined slipTire and Vehicle Dynamics ${ }^{2}$ equation 4.E31 through 4.E49   If you clear Include turn slip, the block sets some of these equations to 1.

The input torque is the summation of the applied axle torque, braking torque, and moment arising from the combined tire torque.

$$
T_{i}=T_{a}-T_{b}+T_{d}
$$

For the moment arising from the combined tire torque, the block implements tractive wheel forces and rolling resistance with first-order dynamics. The rolling resistance has a time constant parameterized in terms of a relaxation length.

$$
T_{d}(s)=\frac{1}{\frac{L_{e}}{|\omega| R_{e}} s+1}+\left(F_{\chi} R_{e}+M_{y}\right)
$$

Braking torque is based on an idealized dry clutch friction model (if brakes are selected). Depending on the lockup condition, the block implements these friction and dynamic models:

If	Lockup   Conditio   n	Friction Model	Dynamic Model
$\omega \neq 0$   or   $T_{S}<\left\|T_{i}+T_{f}-\omega b\right\|$	Unlocke   d	$T_{f}=T_{k}$,   where   $T_{k}=F_{c} R_{e f f} \mu_{k} \tanh \left[4\left(-\omega_{d}\right)\right]$   $T_{S}=F_{c} R_{e f f} \mu_{s}$   $R_{e f f}=\frac{2\left(R_{o} 3-R_{i} 3\right)}{3\left(R_{o}^{2}-R_{i} 2\right)}$	$\dot{\omega} J=-\omega b+T_{i}+T_{o}$
$\omega=0$   and   $T_{S} \geq\left\|T_{i}+T_{f}-\omega b\right\|$	Locked	$T_{f}=T_{s}$	$\omega=0$

The equations use these variables.

$\omega$	Wheel angular velocity
$a$	Velocity independent force component
$b$	Linear velocity force component
$c$	Quadratic velocity force component
$L_{e}$	Tire relaxation length
$J$	Moment of inertia
$M_{y}$	Rolling resistance torque
$T_{a}$	Applied axle torque about wheel spin axis
$T_{b}$	Braking torque
$T_{d}$	Combined tire torque
$T_{f}$	Frictional torque
$T_{i}$	Net input torque
$T_{k}$	Kinetic frictional torque
$T_{o}$	Net output torque
$T_{s}$	Static frictional torque
$F_{c}$	Applied clutch force
$F_{x}$	Longitudinal force developed by the tire road interface due to slip
$R_{e f f}$	Effective clutch radius
$R_{o}$	Annular disk outer radius
$R_{i}$	Annular disk inner radius
$R_{e}$	Effective tire radius while under load and for a given pressure
$V_{x}$	Longitudinal axle velocity
$F_{z}$	Vehicle normal force
$\alpha$	Tire pressure exponent
$\beta$	Normal force exponent


$p_{i}$	Tire pressure
$\mu_{s}$	Coefficient of static friction
$\mu_{k}$	Coefficient of kinetic friction

## Tire and Wheel Coordinate Systems

To resolve the forces and moments, the block uses the Z-Up orientation of the tire and wheel coordinate systems.

- Tire coordinate system axes $\left(X_{T}, Y_{T}, Z_{T}\right)$ are fixed in a reference frame attached to the tire. The origin is at the tire contact with the ground.
- Wheel coordinate system axes ( $X_{W}, Y_{W}, Z_{W}$ ) are fixed in a reference frame attached to the wheel. The origin is at the wheel center.


## Z-Up Orientation ${ }^{1}$



## Brakes

## Disc

If you specify the Brake Type parameter as Disc, the block implements a disc brake. This figure shows the side and front views of a disc brake.

[^1]

A disc brake converts brake cylinder pressure from the brake cylinder into force. The disc brake applies the force at the brake pad mean radius.

The block uses these equations to calculate brake torque for the disc brake.

$$
\begin{aligned}
& T= \begin{cases}\frac{\mu P_{\pi B} B_{a} 2 R_{m} N_{\text {pads }}}{4} & \text { when } N \neq 0 \\
\frac{\mu_{\text {static } P \pi B_{a} 2 R_{m} N_{\text {pads }}}^{4}}{2} & \text { when } N=0\end{cases} \\
& R m=\frac{R o+R i}{2}
\end{aligned}
$$

The equations use these variables.

Variable	Value
$T$	Brake torque
$P$	Applied brake pressure
$N$	Wheel speed
$N_{\text {pads }}$	Number of brake pads in disc brake assembly
$\mu_{\text {static }}$	Disc pad-rotor coefficient of static friction
$\mu$	Disc pad-rotor coefficient of kinetic friction
$B_{a}$	Brake actuator bore diameter
$R_{m}$	Mean radius of brake pad force application on brake rotor


Variable	Value
$R_{o}$	Outer radius of brake pad
$R_{i}$	Inner radius of brake pad

## Drum

If you specify the Brake Type parameter as Drum, the block implements a static (steady-state) simplex drum brake. A simplex drum brake consists of a single two-sided hydraulic actuator and two brake shoes. The brake shoes do not share a common hinge pin.

The simplex drum brake model uses the applied force and brake geometry to calculate a net torque for each brake shoe. The drum model assumes that the actuators and shoe geometry are symmetrical for both sides, allowing a single set of geometry and friction parameters to be used for both shoes.

The block implements equations that are derived from these equations in Fundamentals of Machine Elements.

$$
\begin{aligned}
& T_{\text {rshoe }}=\left(\frac{\pi \mu c r\left(\cos \theta_{2}-\cos \theta_{1}\right) B_{a}{ }^{2}}{2 \mu\left(2 r\left(\cos \theta_{2}-\cos \theta_{1}\right)+a\left(\cos ^{2} \theta_{2}-\cos ^{2} \theta_{1}\right)\right)+\operatorname{ar}\left(2 \theta_{1}-2 \theta_{2}+\sin 2 \theta_{2}-\sin 2 \theta_{1}\right)}\right) P \\
& T_{\text {lshoe }}=\left(\frac{\pi \mu c r\left(\cos \theta_{2}-\cos \theta_{1}\right) B_{a} 2}{-2 \mu\left(2 r\left(\cos \theta_{2}-\cos \theta_{1}\right)+a\left(\cos ^{2} \theta_{2}-\cos ^{2} \theta_{1}\right)\right)+\operatorname{ar}\left(2 \theta_{1}-2 \theta_{2}+\sin 2 \theta_{2}-\sin 2 \theta_{1}\right)}\right) P \\
& T= \begin{cases}T_{\text {rshoe }}+T_{\text {lshoe }} & \text { when } N \neq 0 \\
\left(T_{\text {rshoe }}+T_{\text {lshoe }}\right) \frac{\mu_{\text {static }}}{\mu} & \text { when } N=0\end{cases}
\end{aligned}
$$



The equations use these variables.

Variable	Value
$T$	Brake torque
$P$	Applied brake pressure
$N$	Wheel speed
$\mu_{\text {static }}$	Disc pad-rotor coefficient of static friction
$\mu$	Disc pad-rotor coefficient of kinetic friction
$T_{\text {rshoe }}$	Right shoe brake torque
$T_{\text {lshoe }}$	Left shoe brake torque
$a$	Distance from drum center to shoe hinge pin center
$c$	Distance from shoe hinge pin center to brake actuator connection on brake shoe
$r$	Drum internal radius
$B_{a}$	Brake actuator bore diameter
$\Theta_{1}$	Angle from shoe hinge pin center to start of brake pad material on shoe
$\Theta_{2}$	Angle from shoe hinge pin center to end of brake pad material on shoe
Mapped	

If you specify the Brake Type parameter as Mapped, the block uses a lookup table to determine the brake torque.

$$
T=\left\{\begin{array}{lr}
f_{\text {brake }}(P, N) & \text { when } N \neq 0 \\
\left(\frac{\mu_{\text {static }}}{\mu}\right) f_{\text {brake }}(P, N) & \text { when } N=0
\end{array}\right.
$$

The equations use these variables.

Variable	Value
$T$	Brake torque
$f_{\text {brake }}(P, N)$	Brake torque lookup table
$P$	Applied brake pressure
$N$	Wheel speed
$\mu_{\text {static }}$	Friction coefficient of drum pad-face interface under static conditions
$\mu$	Friction coefficient of disc pad-rotor interface

The lookup table for the brake torque, $f_{\text {brake }}(P, N)$, is a function of applied brake pressure and wheel speed, where:

- $T$ is brake torque, in $\mathrm{N} \cdot \mathrm{m}$.
- $P$ is applied brake pressure, in bar.
- $N$ is wheel speed, in rpm.



## Ports

## Input

BrkPrs - Brake pressure
scalar | N-by-1 vector
Brake pressure, in Pa.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

## Dependencies

To enable this port, set the Brake Type parameter, to one of these types:

- Disc
- Drum
- Mapped

AxITrq - Axle torque
scalar | $N$-by-1 vector
Axle torque, $T_{a}$, about wheel spin axis, in $\mathrm{N} \cdot \mathrm{m}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Vx - Longitudinal velocity
scalar | $N$-by-1 vector
Axle longitudinal velocity, $V_{x}$, along tire-fixed $x$-axis, in $\mathrm{m} / \mathrm{s}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.
$\mathbf{V y}$ - Lateral velocity
scalar | $N$-by-1 vector
Axle lateral velocity, $V_{y}$, along tire-fixed $y$-axis, in $\mathrm{m} / \mathrm{s}$.

Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Camber - Inclination angle
scalar | $N$-by-1 vector
Camber angle, $\gamma$, or inclination angle, $\varepsilon$, in rad.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

YawRate - Tire angular velocity
scalar | $N$-by- 1 vector
Tire angular velocity, $r$, about the tire-fixed $z$-axis (yaw rate), in rad/s.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Prs - Tire inflation pressure
scalar | $N$-by- 1 vector
Tire inflation pressure, $p_{i}$, in Pa.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Gnd - Ground displacement
scalar | $N$-by-1 vector
Ground displacement along tire-fixed $z$-axis, in m . Positive input produces wheel lift.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Fext - Axle force applied to tire
scalar | N-by-1 vector
Axle force applied to tire, $F_{\text {ext }}$, along vehicle-fixed $z$-axis (positive input compresses the tire), in N .
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

ScaleFctrs - Scale factors
27-by-N array
Magic Formula scale factor array. Array dimensions are 27 by the number of wheels, $N$.
The Magic Formula equations use scale factors to account for static or simulation run-time variations. Nominally, most are set to 1.

Array Element	Variable	Scale Factor
ScaleFctrs(1,1)	lam_Fzo	Nominal load
ScaleFctrs(2,1)	lam_mux	Longitudinal peak friction coefficient


Array Element	Variable	Scale Factor
ScaleFctrs(3,1)	lam_muy	Lateral peak friction coefficient
ScaleFctrs (4,1)	lam_muV	Slip speed, Vs, decaying friction
ScaleFctrs $(5,1)$	lam_Kxkappa	Brake slip stiffness
ScaleFctrs (6,1)	lam_Kyalpha	Cornering stiffness
ScaleFctrs(7,1)	lam_Cx	Longitudinal shape factor
ScaleFctrs $(8,1)$	lam_Cy	Lateral shape factor
ScaleFctrs (9,1)	lam_Ex	Longitudinal curvature factor
ScaleFctrs(10,1)	lam_Ey	Lateral curvature factor
ScaleFctrs(11,1)	lam_Hx	Longitudinal horizontal shift
ScaleFctrs(12,1)	lam_Hy	Lateral horizontal shift
ScaleFctrs(13,1)	lam_Vx	Longitudinal vertical shift
ScaleFctrs(14,1)	lam_Vy	Lateral vertical shift
ScaleFctrs(15,1)	lam_Kygamma	Camber force stiffness
ScaleFctrs(16,1)	lam_Kzgamma	Camber torque stiffness
ScaleFctrs(17,1)	lam_t	Pneumatic trail (effecting aligning torque stiffness)
ScaleFctrs(18,1)	lam_Mr	Residual torque
ScaleFctrs $(19,1)$	lam_xalpha	Alpha influence on Fx (kappa)
ScaleFctrs(20,1)	lam_ykappa	Kappa influence on Fy (alpha)
ScaleFctrs $(21,1)$	lam_Vykappa	Induced ply steer Fy
ScaleFctrs(22,1)	lam_s	Moment arm of FX
ScaleFctrs $(23,1)$	lam_Cz	Radial tire stiffness
ScaleFctrs $(24,1)$	lam_Mx	Overturning couple stiffness
ScaleFctrs $(25,1)$	lam_VMx	Overturning couple vertical shift
ScaleFctrs $(26,1)$	lam_My	Rolling resistance moment
ScaleFctrs $(27,1)$	lam_Mphi	Parking torque Mz

## Output

## Info - Block data

bus
Block data, returned as a bus signal containing these block values.

Signal	Description	Units
AxlTrq	Axle torque about wheel-fixed $y$-axis	$\mathrm{N} \cdot \mathrm{m}$
Omega	Wheel angular velocity about wheel-fixed $y$-axis	$\mathrm{rad} / \mathrm{s}$
Fx	Longitudinal vehicle force along tire-fixed $x$-axis	N
Fy	Lateral vehicle force along tire-fixed $y$-axis	N


Signal	Description	Units
Fz	Vertical vehicle force along tire-fixed $z$-axis	N
Mx	Overturning moment about tire-fixed $x$-axis	$\mathrm{N} \cdot \mathrm{m}$
My	Rolling resistance torque about tire-fixed $y$-axis	$\mathrm{N} \cdot \mathrm{m}$
Mz	Aligning moment about tire-fixed $z$-axis	$\mathrm{N} \cdot \mathrm{m}$
Vx	Vehicle longitudinal velocity along tire-fixed $x$-axis	$\mathrm{m} / \mathrm{s}$
Vy	Vehicle lateral velocity along tire-fixed $y$-axis	$\mathrm{m} / \mathrm{s}$
Re	Loaded effective radius	m
Kappa	Longitudinal slip ratio	NA
Alpha	Side slip angle	rad
a	Contact patch half length	m
b	Contact patch half width	m
Gamma	Camber angle	rad
psidot		
rate $)$		

Omega - Wheel angular velocity
scalar | N-by-1 vector
Wheel angular velocity, $\omega$, about wheel-fixed $y$-axis, in rad/s.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Fx - Longitudinal axle force
scalar | $N$-by-1 vector
Longitudinal force acting on axle, $F_{x}$, along tire-fixed $x$-axis, in N. Positive force acts to move the vehicle forward.

Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

## Fy - Lateral axle force

scalar | $N$-by-1 vector
Lateral force acting on axle, $F_{y}$, along tire-fixed $y$-axis, in N .

Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Fz - Vertical axle force
scalar | $N$-by-1 vector
Vertical force acting on axle, $F_{z}$, along tire-fixed $z$-axis, in N .
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Mx - Overturning moment
scalar | $N$-by-1 vector
Longitudinal moment acting on axle, $M_{x}$, about tire-fixed $x$-axis, in $\mathrm{N} \cdot \mathrm{m}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

My - Rolling resistive moment
scalar | N-by-1 vector
Lateral moment acting on axle, $M_{y}$, about tire-fixed $y$-axis, in $\mathrm{N} \cdot \mathrm{m}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.
$\mathbf{M z}$ - Aligning moment
scalar | $N$-by-1 vector
Vertical moment acting on axle, $M_{z}$, about tire-fixed $z$-axis, in $\mathrm{N} \cdot \mathrm{m}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

## Parameters

## Block Options

Tire Type - Select type

```
External file (default)| Light passenger car 205/60R15|Mid-size passenger car
235/45R18|Performance car 225/40R19|SUV 265/50R20|Light truck 275/65R18|
Commercial truck 295/75R22.5
```

Use the Tire type parameter to either import a tire coefficient file or select a resident one. These are known generically as ".tir" files. Manufacturers and testing agencies commonly use these to communicate tire data.

Goal	Action
Import your own external file containing Magic Formula coefficients, and use them to drive the empirical equations modeling the tire ${ }^{1 \text { and } 2}$. The file you import can be a .mat, .tir, or .txt type, and must contain parameter names corresponding to those in the tire block.	Update the block parameters with fitting coefficients from a file:   1 Set Tire type to External file.   2 On the Wheel and Tire Parameters > External tire source pane, select Select file.   3 Select the tire coefficient file.   4 Select Update mask values from file. In the dialog box that prompts you for confirmation, click OK. The block updates the parameters.   5 Select Apply.
Select one of the Magic Formula coefficient sets resident in the block to drive the empirical equations modeling the tire ${ }^{1 \text { and } 2}$. These fitted tire data sets are provided by the Global Center for Automotive Performance Simulation (GCAPS).	Update the applicable block parameters with GCAPS fitted tire data:   1 Set Tire type to the tire that you want to implement. Options include:   - Light passenger car 205/60R15   - Mid-size passenger car 235/45R18   - Performance car 225/40R19   - SUV 265/50R20   - Light truck 275/65R18   - Commercial truck 295/75R22.5   2 Select Update applicable Tire Parameters with tire type values. On the Tire Parameters tab, the block updates the applicable parameters, including Wheel width, Rim radius, and Wheel mass.   3 Select Apply.

Brake type - Brake type
None | Disc| Drum | Mapped
Use the Brake Type parameter to select the brake.

Action	Brake Type Setting
No braking	None
Implement brake that converts the   brake cylinder pressure into a   braking force	Disc
Implement simplex drum brake that   converts the applied force and brake   geometry into a net braking torque	Drum
Implement lookup table that is a   function of the wheel speed and   applied brake pressure	Mapped

## Vertical Motion - Vertical motion model <br> Magic Formula (default) | None

Type of vertical motion. By default, the block uses the Magic Formula to calculate the vertical motion of the tire.

Ply steer - Include ply steer
on (default) | off
Select to include ply steer in the Magic Formula equations.
By default, the blocks include ply steer and turn slip in the Magic Formula equations. The equations are fit to flat-belt test data and predict a number of tire effects, including ply steer and turn slip. Consider removing the effects if your:

- Test data does not include ply steer or turn slip data.
- Analysis does not require ply steer or turn slip effects.

If you clear Ply steer, the block internally sets these parameters to 0 :

- Vertical shift of overturning moment, QSX1
- Combined slip Fx shift factor reduction, RHX1
- Efy curvature constant camber dependency, PEY3
- SHY horizontal shift at FZNOM, PHY1
- SHY variation with load, PHY2
- Svy/Fz vertical shift at FZNOM, PVY1
- Svy/Fz variation with load, PVY2
- Fy shift reduction with slip angle, RBY3
- Slip ratio side force Svyk/Muy*Fz at FZNOM, RVY1
- Side force Svyk/Muy*Fz variation with load, RVY2
- Bpt slope variation with camber, QBZ4
- Dpt peak trail variation with camber, QDZ3
- Dmr peak residual torque, QDZ6
- Dmr peak residual torque variation with load, QDZ7
- Ept variation with sign of alpha-t, QEZ4
- Sht horizontal trail shift at FZNOM, QHZ1
- Sht variation with load, QHZ2
- Nominal value of s/R0: effect of Fx on Mz, SSZ1

Turn slip - Include turn slip
on (default) | off
Select to include ply steer in Magic Formula equations.
By default, the blocks include ply steer and turn slip in the Magic Formula equations. The equations are fit to flat-belt test data and predict a number of tire effects, including ply steer and turn slip. Consider removing the effects if your:

- Test data does not include ply steer or turn slip data.
- Analysis does not require ply steer or turn slip effects.

If you clear Turn slip, the block internally:

- Sets the Magic Formula turn slip equations to 1. Specifically, equations 4.E77, 4.E79, 4.E81, 4.E83, 4.E84, 4.E92, 4.E102, 4.E101, and 4.E105.².
- Uses Magic Formula terms that effect horizontal shift.
- Uses Magic Formula small turn slip values in 4.E27².


## Brake

Static friction coefficient, mu_static - Static friction coefficient
0.3 (default) | scalar | $N$-by-1 vector

Static friction coefficient, specified as a scalar or $N$-by- 1 vector, dimensionless. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other brake parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Brake Type to Disc, Drum, or Mapped

## Kinetic friction coefficient, mu_kinetic - Kinetic friction

## 0.2 (default) | scalar | $N$-by-1 vector

Kinematic friction coefficient, specified as a scalar or $N$-by-1 vector, dimensionless. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other brake parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Brake Type to Disc, Drum, or Mapped

## Disc

## Disc brake actuator bore, disc_abore - Bore distance

0.05 (default) | scalar | $N$-by-1 vector

Disc brake actuator bore, specified as a scalar or $N$-by- 1 vector, in $m$. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other brake parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Brake Type to Disc.
Brake pad mean radius, Rm - Radius
0.177 (default) | scalar | $N$-by-1 vector

Brake pad mean radius, specified as a scalar or $N$-by-1 vector, in $m$. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other brake parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Brake Type to Disc.
Number of brake pads, num_pads - Number of brake pads
2 (default) | scalar $\mid N$-by-1 vector
Number of brake pads, specified as a scalar or $N$-by-1 vector, dimensionless. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other brake parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Brake Type to Disc.

## Drum

## Drum brake actuator bore, disc_abore - Bore distance

0.0508 (default) | scalar | $N$-by-1 vector

Drum brake actuator bore, specified as a scalar or $N$-by- 1 vector, in m. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other brake parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Brake Type to Drum.
Shoe pin to drum center distance, drum_a - Shoe pin to drum center distance
0.123 (default) | scalar

Shoe pin to drum center distance, in m.

## Dependencies

To enable this parameter, set Brake Type to Drum.
Shoe pin center to force application point distance, drum_c - Shoe pin center to force application point distance
0.212 (default) | scalar

Shoe pin center to force application point distance, in m.

## Dependencies

To enable this parameter, set Brake Type to Drum.

Drum internal radius, drum_r - Drum internal radius
0.15 (default) | scalar

Drum internal radius, in $m$.

## Dependencies

To enable this parameter, set Brake Type to Drum.
Shoe pin to pad start angle, drum_thetal - Shoe pin to pad start angle
0 (default) | scalar
Shoe pin to pad start angle, in deg.

## Dependencies

To enable this parameter, set Brake Type to Drum.
Shoe pin to pad end angle, drum_theta 2 - Shoe pin to pad end angle 126 (default) | scalar

Shoe pin to pad end angle, in deg.

## Dependencies

To enable this parameter, set Brake Type to Drum.
Mapped
Brake actuator pressure breakpoints, brake_p_bpt - Brake actuator pressure breakpoints vector

Brake actuator pressure breakpoints, in bar.

## Dependencies

To enable this parameter, set Brake Type to Mapped.
Wheel speed breakpoints, brake_n_bpt - Wheel speed breakpoints
vector
Wheel speed breakpoints, in rpm.

## Dependencies

To enable this parameter, set Brake Type to Mapped.
Brake torque map, f_brake_t - Lookup table for brake torque array

The lookup table for the brake torque, $f_{\text {brake }}(P, N)$, is a function of applied brake pressure and wheel speed, where:

- $\quad T$ is brake torque, in $\mathrm{N} \cdot \mathrm{m}$.
- $P$ is applied brake pressure, in bar.
- $N$ is wheel speed, in rpm.



## Dependencies

To enable this parameter, set Brake Type to Mapped.

## Tire

Tire file or object, tireParamSet - Tire file
vdynPassCar.mat (default)|.tir|.txt
Tire file .tir or object containing empirical data to model tire longitudinal and lateral behavior with the Magic Formula. If you provide an .txt file, make sure the file contains names that correspond to the block parameters.

Update the block parameters with fitting coefficients from a file:
1 Set Tire type to External file.
2 On the Wheel and Tire Parameters > External tire source pane, select Select file.
3 Select the tire coefficient file.
4 Select Update mask values from file. In the dialog box that prompts you for confirmation, click OK. The block updates the parameters.
5 Select Apply.

## Simulation

Maximum pressure, PRESMAX - Maximum pressure
1003118 (default) | scalar
Maximum pressure, PRESMAX, in Pa.
Minimum pressure, PRESMIN - Minimum pressure
9982 (default) | scalar
Minimum pressure, PRESMIN, in Pa.

## Maximum normal force, FZMAX - Force

10000 (default) | scalar
Maximum normal force, FZMAX, in N.
Minimum normal force, FZMIN - Force
100 (default) | scalar

Minimum normal force, FZMIN, in N.

## Velocity tolerance used to handle low velocity situations, VXLOW - Tolerance

0.1 (default) | scalar

Velocity tolerance used to handle low velocity situations, VXLOW, in m/s.
Max allowable slip ratio (absolute), KPUMAX - Max allowable slip ratio 0.999 (default) | scalar

Max allowable slip ratio (absolute), KPUMAX, dimensionless.
Minimum allowable slip ratio (absolute), KPUMIN - Minimum allowable slip ratio -0. 999 (default) | scalar

Minimum allowable slip ratio (absolute), KPUMIN, dimensionless.
Max allowable slip angle (absolute), ALPMAX - Max allowable slip angle
1.5708 (default) | scalar

Max allowable slip angle (absolute), ALPMAX, in rad.
Minimum allowable slip angle (absolute), ALPMIN - Minimum allowable slip angle

- 1.5708 (default) | scalar

Minimum allowable slip angle (absolute), ALPMIN, in rad.
Maximum allowable camber angle, CAMMAX - Maximum allowable camber angle 0.173 | scalar

Maximum allowable camber angle CAMMAX, in rad.
Minimum allowable camber angle, CAMMIN - Minimum allowable camber angle -0.173 | scalar

Minimum allowable camber angle, CAMMIN, in rad.
Nominal longitudinal speed, LONGVL - Speed
16.7 (default) | scalar

Nominal longitudinal speed, $L O N G V L$, in $\mathrm{m} / \mathrm{s}$.

## Wheel

Initial rotational velocity, omegao - Initial rotational velocity
scalar | $N$-by-1 vector
Initial rotational velocity, specified as a scalar or $N$-by- 1 vector, in rad/s. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other rotational parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Rotational damping, br - Rotational damping
scalar | N-by-1 vector

Rotational damping, specified as a scalar or $N$-by-1 vector, in $N \cdot m \cdot s / r a d$. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other rotational parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Unloaded radius, UNLOADED_RADIUS - Radius
0.309 (default) | scalar

Unloaded radius, UNLOADED_RADIUS, in m.
Nominal pressure, NOMPRES - Pressure
224006 (default) | scalar
Nominal pressure, NOMPRES, in Pa.
Nominal normal force, FNOMIN - Force
4025 (default) | scalar
Nominal normal force, FNOMIN, in N.
Wheel width, WIDTH - Wheel width
scalar
Wheel width, WIDTH, in m.
Rim radius, RIM_RADIUS - Radius
. 19 (default) | scalar
Rim radius, RIM_RADIUS, in m.

## Inertial

Wheel mass, MASS - Mass
scalar | N-by-1 vector
Wheel mass, specified as a scalar or $N$-by-1 vector, in kg. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other inertial parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Rotational inertia (rolling axis), IYY - Rotational inertia
scalar | N-by-1 vector
Rotational inertia (rolling axis), specified as a scalar or $N$-by- 1 vector, in $\mathrm{kg} \cdot \mathrm{m}^{2}$. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other rotational parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Gravity, GRAVITY - Gravity
scalar
Gravity, GRAVITY, in $\mathrm{m} / \mathrm{s}^{\wedge} 2$.

## Vertical

Initial tire displacement, zo - Displacement
0 (default) | scalar | $N$-by-1 vector
Initial tire displacement, specified as a scalar or $N$-by-1 vector, in m. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other vertical parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Initial wheel vertical velocity (wheel fixed frame), zdoto - Velocity
0 (default) | scalar | $N$-by- 1 vector
Initial wheel vertical velocity, specified as a scalar or $N$-by-1 vector, in $\mathrm{m} / \mathrm{s}$. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other vertical parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Effective rolling radius at low load stiffness, BREFF - Stiffness
8.25094594147963 (default) | scalar

Effective rolling radius at low load stiffness, BREFF, dimensionless.
Effective rolling radius peak value, DREFF - Radius
0.260468730454265 (default) | scalar

Effective rolling radius peak value, $D R E F F$, dimensionless.
Effective rolling radius at high load stiffness, FREFF - Radius
0.0735298544471851 (default) | scalar

Effective rolling radius at high load stiffness, FREFF, dimensionless.
Unloaded to nominal rolling radius ratio, Q_REO - Ratio 1.00866439868088 (default) | scalar

Unloaded to nominal rolling radius ratio, $Q_{-} R E 0$, dimensionless.
Radius rotational speed dependence, Q_V1 - Speed 0.000760413786224011 (default) | scalar

Radius rotational speed dependence, $Q_{-}$V1, dimensionless.
Stiffness rotational speed dependence, Q_V2 - Speed
0.0463384792019201 (default) | scalar

Stiffness rotational speed dependence, $Q_{-} V 2$, dimensionless.
Linear load change with deflection, Q_FZ1 - Load change
0 (default) | scalar
Linear load change with deflection, $Q$ FZ1, dimensionless.

Quadratic load change with deflection, Q_FZ2 - Load change 15.6870832810226 (default) | scalar

Quadratic load change with deflection, Q_FZ2, dimensionless.
Linear load change with deflection and quadratic camber, Q_FZ3 - Load change
0 (default) | scalar
Linear load change with deflection and quadratic camber, $Q_{-} F Z 3$, dimensionless.
Load response to longitudinal force, Q_FCX - Force
0.138643970247602 (default) | scalar

Load response to longitudinal force, $Q_{-} F C X$, dimensionless.
Load response to lateral force, Q_FCY - Force
0.10843499565426 (default) | scalar

Load response to lateral force, $Q_{-} F C Y$, dimensionless.
Vertical stiffness change due to lateral load dependency on lateral stiffness, Q_FCY2 Stiffness
-0. 465763352339538 (default) | scalar
Vertical stiffness change due to lateral load dependency on lateral stiffness, Q_FCY2, dimensionless.

## Stiffness response to pressure, PFZ1 - Stiffness

0.69958166705601 (default) | scalar

Stiffness response to pressure, PFZ1, dimensionless.
Vertical tire stiffness, VERTICAL_STIFFNESS - Stiffness
207885. 061134007 (default) | scalar

Vertical tire stiffness, VERTICAL_STIFFNESS, in N/m.
Vertical tire damping, VERTICAL_DAMPING - Damping
494.649255786991 (default) | scalar

Vertical tire damping, VERTICAL_DAMPING, in N•s/m.
Rim bottoming out offset, BOTTOM_OFFST - Offset
. 01 (default) | scalar
Rim bottoming out offset, BOTTOM_OFFST, in m.
Bottoming out stiffness, BOTTOM_STIFF - Stiffness
2e6 (default) | scalar
Bottoming out stiffness, BOTTOM_STIFF, in N/m.

## Structural

Longitudinal stiffness, LONGITUDINAL_STIFFNESS - Stiffness
scalar

Longitudinal stiffness, LONGITUDINAL_STIFFNESS, in N/m.
Lateral stiffness, LATERAL_STIFFNESS - Stiffness
scalar
Longitudinal stiffness, LATERAL_STIFFNESS, in N/m.
Linear vertical deflection influence on longitudinal stiffness, PCFX1 - Deflection influence scalar

Linear vertical deflection influence on longitudinal stiffness, PCFX1, dimensionless.
Quadratic vertical deflection influence on longitudinal stiffness, PCFX2 - Deflection influence scalar

Quadratic vertical deflection influence on longitudinal stiffness, PCFX2, dimensionless.
Pressure dependency on longitudinal stiffness, PCFX3 - Pressure dependency scalar

Pressure dependency on longitudinal stiffness, $P C F X 3$, dimensionless.
Linear vertical deflection influence on lateral stiffness, PCFY1 - Deflection influence scalar

Linear vertical deflection influence on lateral stiffness, PCFY1, dimensionless.
Quadratic vertical deflection influence on lateral stiffness, PCFY2 - Deflection influence scalar

Quadratic vertical deflection influence on lateral stiffness, PCFY2, dimensionless.
Pressure dependency on longitudinal stiffness, PCFY3 - Pressure dependency scalar

Pressure dependency on longitudinal stiffness, PCFY3, dimensionless.

## Contact Patch

Contact length square root term, Q_RA1 - Length term
scalar
Contact length square root term, $Q_{-} R A 1$, dimensionless.
Contact length linear term, Q_RA2 - Length term

## scalar

Contact length linear term, Q_RA2, dimensionless.
Contact width root term, Q_RB1 - Width term
scalar
Contact width root term, $Q_{-} R B 1$, dimensionless.
Contact width linear term, Q_RB2 - Width term scalar

Contact width linear term, $Q_{-} R B 2$, dimensionless.
Longitudinal
Cfx shape factor, PCX1 - Shape factor
scalar
Shape factor, $C_{f x}, P C X 1$, dimensionless.
Longitudinal friction at nominal normal load, PDX1 - Friction scalar

Longitudinal friction at nominal normal load, PDX1, dimensionless.
Frictional variation with load, PDX2 - Friction variation scalar

Frictional variation with load, $P D X 2$, dimensionless.
Frictional variation with camber, PDX3 - Friction variation scalar

Frictional variation with camber, $P D X 3$, in $1 / \mathrm{rad}^{\wedge} 2$.
Longitudinal curvature at nominal normal load, PEX1 - Curvature scalar

Longitudinal curvature at nominal normal load, PEX1, dimensionless.
Variation of curvature factor with load, PEX2 - Curvature variation scalar

Variation of curvature factor with load, PEX2, dimensionless.
Variation of curvature factor with square of load, PEX3 - Curvature variation scalar

Variation of curvature factor with square of load, PEX3, dimensionless.
Longitudinal curvature factor with slip, PEX4 - Curvature scalar

Longitudinal curvature factor with slip, PEX4, dimensionless.
Longitudinal slip stiffness at nominal normal load, PKX1 - Stiffness
scalar
Longitudinal slip stiffness at nominal normal load, PKX1, dimensionless.
Variation of slip stiffness with load, PKX2 - Stiffness variation scalar

Variation of slip stiffness with load, $P K X 2$, dimensionless.
Slip stiffness exponent factor, PKX3 - Slip stiffness
scalar

Slip stiffness exponent factor, PKX3, dimensionless.
Horizontal shift in slip ratio at nominal normal load, PHX1 - Slip ratio shift scalar

Horizontal shift in slip ratio at nominal normal load, PHX1, dimensionless.
Variation of horizontal slip ratio with load, PHX2 - Slip variation scalar

Variation of horizontal slip ratio with load, PHX2, dimensionless.
Vertical shift in load at nominal normal load, PVX1 - Load shift scalar

Vertical shift in load at nominal normal load, PVX1, dimensionless.
Variation of vertical shift with load, PVX2 - Load variation
scalar
Variation of vertical shift with load, PVX2, dimensionless.
Linear variation of longitudinal slip stiffness with tire pressure, PPX1 - Stiffness variation scalar

Linear variation of longitudinal slip stiffness with tire pressure, PPX1, dimensionless.
Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2 - Stiffness variation scalar

Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2, dimensionless.
Linear variation of peak longitudinal friction with tire pressure, PPX3 - Friction variation scalar

Linear variation of peak longitudinal friction with tire pressure, $P P X 3$, dimensionless.
Quadratic variation of peak longitudinal friction with tire pressure, PPX4 - Friction variation scalar

Quadratic variation of peak longitudinal friction with tire pressure, PPX4, dimensionless.
Combined slip Fx slope factor reduction, RBX1 - Combined slip longitudinal force slope factor reduction
scalar
Combined slip longitudinal force, $F_{x}$, slope factor reduction, $R B X 1$, dimensionless.
Slip ratio Fx slope reduction variation, RBX2 - Slip ratio longitudinal force slope reduction variation
scalar
Slip ratio longitudinal force, $F_{x}$, slope reduction variation, $R B X 2$, dimensionless.

Camber influence on combined slip Fx stiffness, RBX3 - Camber influence on combined slip longitudinal force stiffness
scalar
Camber influence on combined slip longitudinal force, $F_{x}$, stiffness, $R B X 3$, dimensionless.
Shape factor for combined slip Fx reduction, RCX1 - Shape factor for combined slip longitudinal force reduction
scalar
Shape factor for combined slip longitudinal force, $F_{x}$, reduction, $R C X 1$, dimensionless.
Combined Fx curvature factor, REX1 - Combined longitudinal force curvature factor scalar

Combined longitudinal force, $F_{x}$, curvature factor, REX1, dimensionless.
Combined Fx curvature factor with load, REX2 - Combined longitudinal force curvature factor scalar

Combined longitudinal force, $F_{x}$, curvature factor with load, REX2, dimensionless.
Combined slip Fx shift factor reduction, RHX1 - Combined slip longitudinal force slip factor scalar

Combined slip longitudinal force, $F_{x}$, shift factor reduction, RHX1, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.

## Overturning

Vertical shift of overturning moment, QSX1 - Overturning moment
scalar
Vertical shift of overturning moment, QSX1, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Overturning moment due to camber, QSX2 - Overturning moment due to camber scalar

Overturning moment due to camber, QSX2, dimensionless.
Overturning moment due to Fy, QSX3 - Overturning moment due to lateral force scalar

Overturning moment due to lateral force, QSX3, dimensionless.
Mx combined lateral force load and camber, QSX4 - Overturning moment scalar

Overturning moment, $M_{x}$, combined lateral force load and camber, QSX4, dimensionless.

Mx load effect due to lateral force and camber, QSX5 - Overturning moment scalar

Overturning moment, $M_{x}$, load effect due to lateral force and camber, QSX5, dimensionless.
Mx load effect due to B-factor, QSX6 - Overturning moment scalar

Overturning moment, $M_{x}$, load effect due to B-factor, QSX6, dimensionless.
Mx due to camber and load, QSX7 - Overturning moment scalar

Overturning moment, $M_{x}$, due to camber and load, QSX7, dimensionless.
Mx due to lateral force and load, QSX8 - Overturning moment scalar

Overturning moment, $M_{x}$, due to lateral force and load, QSX8, dimensionless.
Mx due to B-factor of lateral force and load, QSX9 - Overturning moment scalar

Overturning moment, $M_{x}$, due to B-factor of lateral force and load, QSX9, dimensionless.
Mx due to vertical force and camber, QSX10 - Overturning moment scalar

Overturning moment, $M_{x}$, due to vertical force and camber, QSX10, dimensionless.
Mx due to B-factor of vertical force and camber, QSX11 - Overturning moment scalar

Overturning moment, $M_{x}$, due to B-factor of vertical force and camber, QSX11, dimensionless.
Mx due to squared camber, QSX12 - Overturning moment
scalar
Overturning moment, $M_{x}$, due to squared camber, QSX12, dimensionless.
Mx due to lateral force, QSX13 - Overturning moment
scalar
Overturning moment, $M_{x}$, due to lateral force, QSX13, dimensionless.
Mx due to lateral force with camber, QSX14 - Overturning moment scalar

Overturning moment, $M_{x}$, due to lateral force with camber, QSX14, dimensionless.
Mx due to inflation pressure, PPMX1 - Overturning moment due to pressure scalar

Overturning moment, $M_{x}$, due to inflation pressure, PPMX1, dimensionless.

## Lateral

Cfy shape factor for lateral force, PCY1 - Lateral force shape factor scalar

Shape factor for lateral force, $C_{f y}$, PCY1, dimensionless.
Lateral friction muy, PDY1 - Lateral friction
scalar
Lateral friction, $\mu_{y}$, PDY1, dimensionless.
Lateral friction variation of muy with load, PDY2 - Lateral friction variation scalar

Variation of lateral friction, $\mu_{y}$, with load, PDY2, dimensionless.
Lateral friction variation of muy with squared camber, PDY3 - Lateral friction variation scalar

Variation of lateral friction, $\mu_{y}$, with squared camber, PDY3, dimensionless.
Efy lateral curvature at nominal force FZNOM, PEY1 - Lateral curvature at nominal force scalar

Lateral curvature, $E f_{y}$, at nominal force, $F_{Z N O M}$, PEY1, dimensionless.
Efy curvature variation with load, PEY2 - Lateral curvature variation scalar

Lateral curvature, $E f_{y}$, variation with load, $P E Y 2$, dimensionless.
Efy curvature constant camber dependency, PEY3 - Lateral curvature constant scalar

Lateral curvature, $E f_{y}$, constant camber dependency, PEY3, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Efy curvature variation with camber, PEY4 - Lateral curvature variation scalar

Lateral curvature, $E f_{y}$, variation with camber, PEY4, dimensionless.
Efy curvature variation with camber squared, PEY5 - Lateral curvature variation scalar

Lateral curvature, $E f_{y}$, variation with camber squared, PEY5, dimensionless.
Maximum KFy/FZNOM stiffness, PKY1 - Maximum stiffness scalar

Maximum lateral force stiffness, $K F_{y}$, to nominal force, $F_{Z N O M}$, ratio, $P K Y 1$, dimensionless.

## Load at maximum KFy/FZNOM stiffness, PKY2 - Load scalar

Load at maximum lateral force stiffness, $K F_{y}$, to nominal force, $F_{Z N O M}$, ratio, $P K Y 2$, dimensionless.
KFy/FZNOM stiffness variation with camber, PKY3 - Stiffness variation scalar

Lateral force stiffness, $K F_{y}$, to nominal force, $F_{Z N O M}$, stiffness variation with camber, $P K Y 3$, dimensionless.

KFy curvature, PKY4 - Lateral force stiffness curvature scalar

Lateral force stiffness, $K F_{y}$ curvature, $P K Y 4$, dimensionless.
Variation of peak stiffness with squared camber, PKY5 - Stiffness variation scalar

Variation of peak stiffness with squared camber, PKY5, dimensionless.
Fy camber stiffness factor, PKY6 - Lateral force camber stiffness factor scalar

Lateral force, $F_{y}$, camber stiffness factor, PKY6, dimensionless.
Camber stiffness vertical load dependency, PKY7 - Stiffness scalar

Camber stiffness vertical load dependency, PKY7, dimensionless.
SHY horizontal shift at FZNOM, PHY1 - Horizontal shift at nominal force scalar

Horizontal shift, $S_{H Y}$, at nominal force, $F_{Z N O M}$, PHY1, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
SHY variation with load, PHY2 - Horizontal shift variation
scalar
Horizontal shift, $S_{H Y}$, variation with load, $P H Y 2$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Svy/Fz vertical shift at FZNOM, PVY1 - Vertical shift at nominal force scalar

Vertical shift, $S_{v y}$, at nominal force, $F_{Z N O M}, P V Y 1$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.

Svy/Fz variation with load, PVY2 - Vertical shift variation with load scalar

Vertical shift, $S_{v y}$, variation with load, $P V Y 2$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Svy/Fz variation with camber, PVY3 - Vertical shift variation with camber scalar

Vertical shift, $S_{v y}$, variation with camber, $P V Y 3$, dimensionless.
Svy/Fz variation with load and camber, PVY4 - Vertical shift variation with load and camber scalar

Vertical shift, $S_{v y}$, variation with load and camber, $P V Y 4$, dimensionless.
Cornering stiffness variation with inflation pressure, PPY1 - Stiffness variation with pressure scalar

Cornering stiffness variation with inflation pressure, PPY1, dimensionless.
Cornering stiffness variation with inflation pressure induced nominal load dependency, PPY2 - Stiffness variation with pressure
scalar
Cornering stiffness variation with inflation pressure induced nominal load dependency, PPY2, dimensionless.

Linear inflation pressure on peak lateral friction, PPY3 - Pressure
scalar
Linear inflation pressure on peak lateral friction, $P P Y 3$, dimensionless.
Quadratic inflation pressure on peak lateral friction, PPY4 - Pressure
scalar
Quadratic inflation pressure on peak lateral friction, PPY4, dimensionless.
Inflation pressure effect on camber stiffness, PPY5 - Pressure scalar

Inflation pressure effect on camber stiffness, PPY5, dimensionless.
Combined Fy reduction slope factor, RBY1 - Combined lateral force reduction slope factor scalar

Combined lateral force, $F_{y}$, reduction slope factor, RBY1, dimensionless.
Fy slope reduction with slip angle, RBY2 - Lateral force slope reduction with slip angle scalar

Lateral force, $F_{y}$, slope reduction with slip angle, RBY2, dimensionless.

Fy shift reduction with slip angle, RBY3 - Lateral force shift reduction with slip angle scalar

Lateral force, $F_{y}$, shift reduction with slip angle, RBY3, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Fy combined stiffness variation from camber, RBY4 - Lateral force combined stiffness variation from camber
scalar
Lateral force, $F_{y}$, combined stiffness variation from camber, $R B Y 4$, dimensionless.
Fy combined reduction shape factor, RCY1 - Lateral force combined reduction shape factor scalar

Lateral force, $F_{y}$, combined reduction shape factor, RCY1, dimensionless.
Fy combined curvature factor, REY1 - Lateral force combined curvature factor scalar

Lateral force, $F_{y}$ combined curvature factor, REY1, dimensionless.
Fy combined curvature factor with load, REY2 - Lateral force combined curvature factor with load
scalar
Lateral force, $F_{y}$, combined curvature factor with load, REY2, dimensionless.
Fy combined reduction shift factor, RHY1 - Lateral force combined reduction shift factor scalar

Lateral force, $F_{y}$, combined reduction shift factor, RHY1, dimensionless.
Fy combined reduction shift factor with load, RHY2 - Lateral force combined reduction shift factor with load scalar

Lateral force, $F_{y}$, combined reduction shift factor with load, RHY2, dimensionless.
Slip ratio side force Svyk/Muy*Fz at FZNOM, RVY1 - Slip ratio slide force at nominal force scalar

Slip ratio side force at nominal force, $F_{Z N O M}, R V Y 1$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Side force Svyk/Muy*Fz variation with load, RVY2 - Side force variation with load scalar

Side force variation with load, RVY2, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Side force Svyk/Muy*Fz variation with camber, RVY3 - Side force variation with camber scalar

Side force variation with camber, $R V Y 3$, dimensionless.
Side force Svyk/Muy*Fz variation with slip angle, RVY4 - Side force variation with slip angle scalar

Side force variation with slip angle, $R V Y 4$, dimensionless.
Side force Svyk/Muy*Fz variation with slip ratio, RVY5 - Side force variation with slip ratio scalar

Side force variation with slip ratio, RVY5, dimensionless.
Side force Svyk/Muy*Fz variation with slip ratio arctangent, RVY6 - Side force variation with slip ratio arctangent
scalar
Side force variation with slip ratio arctangent, RVY6, dimensionless.

## Rolling

Torque resistance coefficient, QSY1 - Torque resistance
scalar
Torque resistance coefficient, QSY1, dimensionless.
Torque resistance due to Fx, QSY2 - Torque resistance due to longitudinal force scalar

Torque resistance due to longitudinal force, $F_{x}$, QSY2, dimensionless.
Torque resistance due to speed, QSY3 - Torque resistance due to speed scalar

Torque resistance due to speed, QSY3, dimensionless.
Torque resistance due to speed^4, QSY4 - Torque resistance due to speed scalar

Torque resistance due to speed^4, QSY4, dimensionless.
Torque resistance due to square of camber, QSY5 - Torque resistance due to camber scalar

Torque resistance due to square of camber, QSY5, dimensionless.
Torque resistance due to square of camber and load, QSY6 - Torque resistance due to camber and load
scalar

Torque resistance due to square of camber and load, QSY6, dimensionless.
Torque resistance due to load, QSY7 - Torque resistance due to load scalar

Torque resistance due to load, QSY7, dimensionless.
Torque resistance due to pressure, QSY8 - Torque resistance due to pressure scalar

Torque resistance due to pressure, QSY8, dimensionless.

## Aligning

Trail slope factor for trail Bpt at FZNOM, QBZ1 - Trail slope factor at nominal force scalar

Trail slope factor for trail $B p t$ at nominal force, $F_{\text {ZNOM }}, Q B Z 1$, dimensionless.
Bpt slope variation with load, QBZ2 - Slope variation with load scalar

Slope variation with load, QBZ2, dimensionless.
Bpt slope variation with square of load, QBZ3 - Slope variation with load scalar

Slope variation with square of load, $Q B Z 3$, dimensionless.
Bpt slope variation with camber, QBZ4 - Slope variation with camber scalar

Slope variation with camber, QBZ4, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Bpt slope variation with absolute value of camber, QBZ5 - Slope variation with camber scalar

Slope variation with absolute value of camber, QBZ5, dimensionless.
Bpt slope variation with square of camber, QBZ6 - Slope variation with camber scalar

Slope variation with square of camber, QBZ6, dimensionless.
Br of Mzr slope scaling factor, QBZ9 - Slope scaling factor scalar

Slope scaling factor, QBZ9, dimensionless.
Br of Mzr cornering stiffness factor, QBZ10 - Cornering stiffness factor
0 (default) | scalar
$B r$ of $M z r$ cornering stiffness factor, $Q B Z 10$, dimensionless.

Cpt pneumatic trail shape factor, QCZ1 - Pneumatic trail shape factor scalar

Pneumatic trail shape factor, $C_{p t}, Q C Z 1$, dimensionless.
Dpt peak trail, QDZ1 - Peak trail
scalar
Peak trail, $D_{p t}$, QDZ1, dimensionless.
Dpt peak trail variation with load, QDZ2 - Peak trail variation with load scalar

Peak trail, $D_{p t}$, variation with load, $Q D Z 2$, dimensionless.
Dpt peak trail variation with camber, QDZ3 - Peak trail variation with camber scalar

Peak trail, $D_{p t}$, variation with camber, $Q D Z 3$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Dpt peak trail variation with square of camber, QDZ4 - Peak trail variation with camber scalar

Peak trail, $D_{p t}$, variation with square of camber, $Q D Z 4$, dimensionless.
Dmr peak residual torque, QDZ6 - Peak residual torque
scalar
Peak residual torque, $D_{m r}$, QDZ6, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Dmr peak residual torque variation with load, QDZ7 - Peak residual torque variation with load scalar

Peak residual torque, $D_{m r}$, variation with load, $Q D Z 7$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Dmr peak residual torque variation with camber, QDZ8 - Peak residual torque variation with camber
scalar
Peak residual torque, $D_{m r}$, variation with camber, QDZ8, dimensionless.
Dmr peak residual torque variation with camber and load, QDZ9 - Peak residual torque variation with camber and load scalar

Peak residual torque, $D_{m r}$, variation with camber and load, QDZ9, dimensionless.
Dmr peak residual torque variation with square of camber, QDZ10 - Peak residual torque variation with camber
scalar
Peak residual torque, $D_{m r}$, variation with square of camber, $Q D Z 10$, dimensionless.
Dmr peak residual torque variation with square of load, QDZ11 - Peak residual torque variation with load
scalar
Peak residual torque, $D_{m r}$, variation with square of load, $Q D Z 11$, dimensionless.
Ept trail curvature at FZNOM, QEZ1 - Trail curvature at nominal force scalar

Trail curvature, $E_{p t}$, at nominal force, $F_{Z N O M}, Q E Z 1$, dimensionless.
Ept variation with load, QEZ2 - Trail curvature variation with load scalar

Trail curvature, $E_{p t}$ variation with load, QEZ2, dimensionless.
Ept variation with square of load, QEZ3 - Trail curvature variation with load scalar

Trail curvature, $E_{p t}$ variation with square of load, $Q E Z 3$, dimensionless.
Ept variation with sign of alpha-t, QEZ4 - Trail curvature variation scalar

Trail curvature, $E_{p t}$ variation with sign of alpha-t, QEZ4, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.

## Ept variation with sign of alpha-t and camber, QEZ5 - Variation

scalar
Trail curvature, $E_{p t}$ variation with sign of alpha-t and camber, $Q E Z 5$, dimensionless.
Sht horizontal trail shift at FZNOM, QHZ1 - Horizontal trail shift at nominal load scalar

Horizontal trail shift, $S h_{t}$, at nominal load, $F_{Z N O M}, Q H Z 1$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Sht variation with load, QHZ2 - Horizontal trail shift variation with load scalar

Horizontal trail shift, $S h_{t}$, variation with load, $Q H Z 2$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Sht variation with camber, QHZ3 - Horizontal trail shift variation with camber scalar

Horizontal trail shift, $S h_{t}$, variation with camber, $Q H Z 3$, dimensionless.
Sht variation with load and camber, QHZ4 - Horizontal trail shift variation with load and camber scalar

Horizontal trail shift, $S h_{t}$, variation with load and camber, $Q H Z 4$, dimensionless.
Inflation pressure influence on trail length, PPZ1 - Pressure influence on trail length scalar

Inflation pressure influence on trail length, PPZ1, dimensionless.
Inflation pressure influence on residual aligning torque, PPZ2 - Pressure influence on aligning torque
scalar
Inflation pressure influence on residual aligning torque, PPZ2, dimensionless.
Nominal value of s/R0: effect of Fx on Mz, SSZ1 - Effect of longitudinal force on aligning torque scalar

Nominal value of s/R0: effect of longitudinal force, $F_{x}$, on aligning torque, $M_{z}$, SSZ1, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
s/R0 variation with lateral to nominal force ratio, SSZ2 - Variation with lateral to nominal force ratio
scalar
Variation with lateral to nominal force ratio, SSZ2, dimensionless.
s/R0 variation with camber, SSZ3 - Variation with camber
scalar
Variation with camber, SSZ3, dimensionless.
s/R0 variation with camber and load, SSZ4 - Variation with camber and load scalar

Variation with camber and load, SSZ4, dimensionless.

## Turnslip

Fx peak reduction due to spin, PDXP1 - Longitudinal force peak reduction due to spin scalar

Longitudinal force, $F_{x}$, peak reduction due to spin, $P D X P 1$, dimensionless.

Fx peak reduction due to spin with varying load, PDXP2 - Longitudinal force peak reduction due to spin
scalar
Longitudinal force, $F_{x}$, peak reduction due to spin with varying load, $P D X P 2$, dimensionless.
Fx peak reduction due to spin with slip ratio, PDXP3 - Longitudinal force peak reduction due to spin
scalar
Longitudinal force, $F_{x}$, peak reduction due to spin with slip ratio, $P D X P 3$, dimensionless.
Cornering stiffness reduction due to spin, PKYP1 - Stiffness reduction due to spin scalar

Cornering stiffness reduction due to spin, PKYP1, dimensionless.
Fy peak reduction due to spin, PDYP1 - Lateral force peak reduction due to spin scalar

Lateral force, $F_{y}$, peak reduction due to spin, PDYP1, dimensionless.
Fy peak reduction due to spin with varying load, PDYP2 - Lateral force peak reduction due to spin
scalar
Lateral force, $F_{y}$, peak reduction due to spin with varying load, $P D Y P 2$, dimensionless.
Fy peak reduction due to spin with slip angle, PDYP3 - Lateral force peak reduction due to spin scalar

Lateral force, $F_{y}$, peak reduction due to spin with slip angle, PDYP3, dimensionless.
Fy peak reduction due to square root of spin, PDYP4 - Lateral force peak reduction due to spin scalar

Lateral force, $F_{y}$, peak reduction due to square root of spin, PDYP4, dimensionless.
Fy vs. slip angle response lateral shift limit, PHYP1 - Lateral force versus slip angle response scalar

Lateral force, $F_{y}$, versus slip angle response lateral shift limit, PHYP1, dimensionless.
Fy vs. slip angle response max lateral shift limit, PHYP2 - Lateral force versus slip angle response scalar

Lateral force, $F_{y}$, versus slip angle response max lateral shift limit, PHYP2, dimensionless.
Fy vs. slip angle response max lateral shift limit with load, PHYP3 - Lateral force versus slip angle response scalar

Lateral force, $F_{y}$, versus slip angle response max lateral shift limit with load, PHYP3, dimensionless.

Fy vs. slip angle response lateral shift curvature factor, PHYP4 - Lateral force versus slip angle response
scalar
Lateral force, $F_{y}$, versus slip angle response lateral shift curvature factor, PHYP4, dimensionless.
Camber stiffness reduction due to spin, PECP1 - Camber stiffness reduction scalar

Camber stiffness reduction due to spin, PECP1, dimensionless.
Camber stiffness reduction due to spin with load, PECP2 - Camber stiffness reduction scalar

Camber stiffness reduction due to spin with load, PECP2, dimensionless.
Turn slip pneumatic trail reduction factor, QDTP1 - Turn slip pneumatic trail reduction factor scalar

Turn slip pneumatic trail reduction factor, QDTP1, dimensionless.
Turn moment for constant turning and zero longitudinal speed, QCRP1 - Turn moment for constant turning
scalar
Turn moment for constant turning and zero longitudinal speed, QCRP1, dimensionless.
Turn slip moment increase with spin at 90deg slip angle, QCRP2 - Turn slip moment scalar

Turn slip moment increase with spin at 90-degree slip angle, QCRP2, dimensionless.
Residual spin torque reduction from side slip, QBRP1 - Residual spin torque reduction scalar

Residual spin torque reduction from side slip, QBRP1, dimensionless.
Turn slip moment peak magnitude, QDRP1 - Turn slip moment peak magnitude scalar

Turn slip moment peak magnitude, $Q D R P 1$, dimensionless.
Turn slip moment curvature, QDRP2 - Turn slip moment curvature scalar

Turn slip moment curvature, QDRP2, dimensionless.

## Version History

Introduced in R2018a
R2022b: Specify Brake and Tire Parameters for Each Wheel
Behavior changed in R2022b

Starting from R2022b, you can to use the Combined Slip Wheel 2DOF block to specify brake and tire characteristics for each wheel on your vehicle. Specifically, the block allows $N$-by- 1 vectors for these parameters:

- Static friction coefficient, mu_static
- Kinetic friction coefficient, mu_kinetic
- Disc brake actuator bore, disc_abore
- Brake pad mean radius, Rm
- Number of brake pads, num_pads
- Drum brake actuator bore, disc_abore
- Initial rotational velocity, omegao
- Rotational damping, br
- Wheel mass, MASS
- Rotational inertia (rolling axis), IYY
- Initial tire displacement, zo
- Initial wheel vertical velocity (wheel fixed frame), zdoto
$N$ is the number of wheels and must match the input signal dimensions.


## R2022b: New Ply steer and Turn slip Parameters

Behavior changed in R2022b
Starting from R2022b, the Combined Slip Wheel 2DOF block includes Ply steer and Turn slip parameters. To remove ply steer and turn slip from the Magic Formula implementation of these blocks, clear the Ply steer and Turn slip parameters.

## R2023a: New Vertical Motion Parameter

Behavior changed in R2023a
Starting from R2023a, the Combined Slip Wheel 2DOF block includes the Vertical Motion parameter. By default, the Combined Slip Wheel 2DOF block uses the Magic Formula to calculate the vertical motion of the tire.

## References

[1] Besselink, Igo, Antoine J. M. Schmeitz, and Hans B. Pacejka, "An improved Magic Formula/Swift tyre model that can handle inflation pressure changes," Vehicle System Dynamics International Journal of Vehicle Mechanics and Mobility 48, sup. 1 (2010): 337-52, https:// doi.org/10.1080/00423111003748088.
[2] Pacejka, H. B. Tire and Vehicle Dynamics. 3rd ed. Oxford, United Kingdom: SAE and ButterworthHeinemann, 2012.
[3] Schmid, Steven R., Bernard J. Hamrock, and Bo O. Jacobson. Fundamentals of Machine Elements, SI Version. 3rd ed. Boca Raton: CRC Press, 2014.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink $\circledR_{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

## See Also

Combined Slip Wheel 2DOF CPI | Combined Slip Wheel 2DOF STI | Fiala Wheel 2DOF | Longitudinal Wheel | Dugoff Wheel 2DOF

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"

## Fiala Wheel 2DOF

Fiala wheel 2DOF wheel with disc, drum, or mapped brake


## Libraries:

Vehicle Dynamics Blockset / Wheels and Tires

## Description

The Fiala Wheel 2DOF block implements a simplified tire with lateral and longitudinal slip capability based on the E. Fiala model ${ }^{[1]}$. The block uses a translational friction model to calculate the forces and moments during combined longitudinal and lateral slip, requiring fewer parameters than the Combined Slip Wheel 2DOF block. If you do not have the tire coefficients needed by the Magic Formula, consider using this block for studies that do not involve extensive nonlinear combined lateral slip or lateral dynamics. If your study does require nonlinear combined slip or lateral dynamics, consider using the Combined Slip Wheel 2DOF block.

The block determines the wheel rotation rate, vertical motion, and forces and moments in all six degrees-of-freedom (DOFs) based on the driveline torque, brake pressure, road height, wheel camber angle, and inflation pressure. You can use this block for these types of analyses:

- Driveline and vehicle simulations that require low frequency tire-road and braking forces for vehicle acceleration, braking, and wheel rolling resistance calculations with minimal tire parameters.
- Wheel interaction with an idealized road surface.
- Ride and handling maneuvers for vehicles undergoing mild combined slip. For this analysis, you can connect the block to driveline and chassis components such as differentials, suspension, and vehicle body systems.
- Yaw stability. For this analyses, you can connect this block to more detailed braking system models.
- Tire stiffness and unsprung mass interactions with ground variations, load transfer, or chassis motion using the block vertical DOF.

The block integrates rotational wheel, vertical mass, and braking dynamics models. For the slipdependent tire forces and moments, the block implements the Fiala tire model.

Use the Brake Type parameter to select the brake.

Action	Brake Type Setting
No braking	None


Action	Brake Type Setting
Implement brake that converts the   brake cylinder pressure into a   braking force	Disc
Implement simplex drum brake that   converts the applied force and brake   geometry into a net braking torque	Drum
Implement lookup table that is a   function of the wheel speed and   applied brake pressure	Mapped

To calculate the rolling resistance torque, specify one of these Rolling Resistance parameters.

Setting	Block Implementation
None	None
Pressure and velocity	Method in Stepwise Coastdown Methodology for Measuring   Tire Rolling Resistance. The rolling resistance is a function of   tire pressure, normal force, and velocity.
ISO 28580	Method specified in ISO 28580:2018, Passenger car, truck   and bus tyre rolling resistance measurement method   Single point test and correlation of measurement results.
Magic Formula	Magic formula equations from 4.E70 in Tire and Vehicle   Dynamics. The magic formula is an empirical equation based   on fitting coefficients.
Mapped torque	Lookup table that is a function of the normal force and spin   axis longitudinal velocity.

To calculate vertical motion, specify one of these Vertical Motion parameters.

Setting	Block Implementation
None	Block passes the applied chassis forces directly through to   the rolling resistance and longitudinal force calculations.
Mapped stiffness and damping	Vertical motion depends on wheel stiffness and damping.   Stiffness is a function of tire sidewall displacement and   pressure. Damping is a function of tire sidewall velocity and   pressure.

## Rotational Wheel Dynamics

The block calculates the inertial response of the wheel subject to:

- Axle losses
- Brake and drive torque
- Tire rolling resistance
- Ground contact through the tire-road interface

The input torque is the summation of the applied axle torque, braking torque, and moment arising from the combined tire torque.

$$
T_{i}=T_{a}-T_{b}+T_{d}
$$

For the moment arising from the combined tire torque, the block implements tractive wheel forces and rolling resistance with first-order dynamics. The rolling resistance has a time constant parameterized in terms of a relaxation length.

$$
T_{d}(s)=\frac{1}{\frac{L_{e}}{|\omega| R_{e}} s+1}+\left(F_{\chi} R_{e}+M_{y}\right)
$$

To calculate the rolling resistance torque, you can specify one of these Rolling Resistance parameters.

Setting	Block Implementation
None	Block sets rolling resistance, $M_{y}$, to zero.
Pressure and   velocity	Block uses the method in SAE Stepwise Coastdown Methodology for Measuring   Tire Rolling Resistance. The rolling resistance is a function of tire pressure,   normal force, and velocity, specifically,      $M_{y}=R_{e}\left\{a+b\left\|V_{x}\right\|+c V_{\chi}{ }^{2}\right\}\left\{F_{z} \beta p_{i} \alpha\right\} \tanh \left(4 V_{\chi}\right)$
IS0 28580	Block uses the method specified in ISO 28580:2018, Passenger car, truck and   bus tyre rolling resistance measurement method - Single point test and   correlation of measurement results. The method accounts for normal load,   parasitic loss, and thermal corrections from test conditions, specifically,
$\quad M_{y}=R_{e}\left(\frac{F_{z} C_{r}}{1+K_{t}\left(T_{a m b}-T_{\text {meas }}\right)}-F_{p l}\right)$ tanh( $\omega$ )	

If the brakes are enabled, the block determines the braking locked or unlocked condition based on an idealized dry clutch friction model. Based on the lock-up condition, the block implements these friction and dynamic models.

If	Lock-Up   Condition	Friction Model	Dynamic Model
$\omega \neq 0$	Unlocked	$T_{f}=T_{k}$,	$\dot{\omega} J=-\omega b+T_{i}+T_{o}$
or	where		
$T_{S}<\left\|T_{i}+T_{f}-\omega b\right\|$		$T_{k}=F_{c} R_{e f f} \mu_{k} \tanh \left[4\left(-\omega_{d}\right)\right]$	
		$T_{S}=F_{c} R_{e f f} \mu_{S}$	
	$R_{e f f}=\frac{2\left(R_{0} 3-R_{i} 3\right)}{3\left(R_{o}{ }^{2}-R_{i} 2\right)}$		


If	Lock-Up   Condition	Friction Model	Dynamic Model
$\omega=0$   and   $T_{S} \geq\left\|T_{i}+T_{f}-\omega b\right\|$	Locked	$T_{f}=T_{S}$	$\omega=0$

The equations use these variables.

Variable	Value
$\omega$	Wheel angular velocity
$a$	Velocity-independent force component
$b$	Linear velocity force component
$c$	Quadratic velocity force component
$L_{e}$	Tire relaxation length
$J$	Moment of inertia
$M_{y}$	Rolling resistance torque
$T_{a}$	Applied axle torque
$T_{b}$	Braking torque
$T_{d}$	Combined tire torque
$T_{f}$	Frictional torque
$T_{i}$	Net input torque
$T_{k}$	Kinetic frictional torque
$T_{o}$	Net output torque
$T_{s}$	Static frictional torque
$F_{c}$	Applied clutch force
$F_{x}$	Longitudinal force developed by the tire road interface due to slip
$R_{e f f}$	Effective clutch radius
$R_{o}$	Annular disk outer radius
$R_{i}$	Annular disk inner radius
$R_{e}$	Effective tire radius while under load and for a given pressure
$V_{x}$	Longitudinal axle velocity
$F_{z}$	Vehicle normal force
$C_{r}$	Rolling resistance constant
$T_{a m b}$	Ambient temperature
$T_{m e a s}$	Measured temperature for rolling resistance constant
$F_{p l}$	Parasitic force loss
$K_{t}$	Thermal correction factor
$\alpha$	Tire pressure exponent
$\beta$	Normal force exponent
$p_{i}$	Tire pressure


Variable	Value
$\mu_{s}$	Coefficient of static friction
$\mu_{k}$	Coefficient of kinetic friction

## Longitudinal Force

The block implements the longitudinal force as a function of wheel slip relative to the road surface using these equations.

Calculation	Equation	
Critical slip	$K^{\prime}$ Critical $=\left\|\frac{\mu F_{z}}{2 C_{K}}\right\|$	
Longitudinal force	$F_{x}=\left\{\begin{array}{l} C_{k} K^{\prime} \\ \tanh \left(4 K^{\prime}\right)\left(\mu\left\|F_{z}\right\|-\left\|\frac{\left(\mu F_{z}\right)^{2}}{4 K^{\prime} C_{K}}\right\|\right) \end{array}\right.$	when $\left\|K^{\prime}\right\| \leq K_{C r i t i c a l ~}^{\prime}$ when $\left\|\kappa^{\prime}\right\|>\kappa^{\prime}$ Critical
Friction coefficient	$\mu=\left(\mu_{s}-\left(\mu_{S}-\mu_{k}\right) K_{k \alpha}\right) \lambda_{\mu}$	
Slip coefficient	$K_{k \alpha}=\sqrt{K^{\prime 2}+\tan ^{2}\left(\alpha^{\prime}\right)}$	

The equations use these variables.

Variable	Value
$K^{\prime}$	Slip state
$F_{\chi}$	Longitudinal force acting on axle along tire-fixed $x$-axis
$C_{K}$	Longitudinal stiffness
$F_{z}$	Vertical contact patch normal force along tire-fixed $z$-axis
$\mu$	Friction coefficient
$\mu_{s}$	Coefficient of static friction
$\mu_{k}$	Coefficient of kinetic friction
$K_{k a}$	Comprehensive slip coefficient
$\alpha^{\prime}$	Slip angle state
$\lambda_{\mu}$	Friction scaling

## Lateral Force

The block implements the lateral force as a function of wheel slip angle state using these equations.

Calculation	Equation
Critical slip angle	$\alpha^{\prime}$ Critical $=\operatorname{atan}\left(\frac{3 \mu\left\|F_{z}\right\|}{C_{a}}\right)$


Calculation	Equation
Lateral force	$F_{y}=\left\{\begin{array}{lc\|}-\tanh \left(4 \alpha^{\prime}\right) \mu\left\|F_{z}\right\| & \text { when }\left\|\alpha^{\prime}\right\|>\alpha^{\prime} \text { Critical } \\ -\tanh \left(4 \alpha^{\prime}\right) \mu\left\|F_{z}\right\|\left(1-\xi^{3}\right)+\gamma C_{\gamma} & \text { when }\left\|\alpha^{\prime}\right\| \leq \alpha^{\prime} \text { Critical }\end{array}\right.$
	$\xi=1-\frac{C_{a}\left\|\tan \left(\alpha^{\prime}\right)\right\|}{3 \mu\left\|F_{z}\right\|}$

The equations use these variables.

Variable	Value
$\alpha^{\prime}$	Slip angle state
$F_{y}$	Lateral force acting on axle along tire-fixed $y$-axis
$F_{z}$	Vertical contact patch normal force along tire-fixed $z$-axis
$C_{\gamma}$	Camber stiffness
$C_{\alpha}$	Lateral stiffness per slip angle
$\mu$	Friction coefficient
Vertical Dynamics	

The block implements these equations for the vertical dynamics.

Calculation	Equation
Vertical response	$\ddot{z} m=F_{z t i r e}+m g-F z$
Tire normal force	$F_{z t i r e}=\rho_{z} k-b \dot{z}$
Vertical sidewall deflection	$\rho_{z}=z_{g n d}-z, z \geq 0$

The equations use these variables.

Variable	Value
$z$	Tire deflection along tire-fixed $z$-axis
$z_{\text {gnd }}$	Ground displacement along tire-fixed $z$-axis
$F_{\text {ztire }}$	Tire normal force along tire-fixed $z$-axis
$F_{z}$	Vertical force acting on axle along tire-fixed $z$-axis
$\rho_{z}$	Vertical sidewall deflection along tire-fixed $z$-axis
$k$	Vertical sidewall stiffness
$b$	Vertical sidewall damping

## Overturning, Aligning, and Scaling

This table summarizes the overturning, aligning, and scaling implementation.

Calculation	Implementation
Overturning moment	The Fiala model does not define an overturning moment. The block   implements this equation, requiring minimal parameters.   $M_{x}=F_{y} R_{e} \cos (\gamma)$
Aligning moment	The block implements the aligning moment as a combination of yaw   rate damping and slip angle state.
	$M_{z}= \begin{cases}\dot{\psi} b_{M_{z}} & \text { when }\left\|\alpha^{\prime}\right\|>\alpha^{\prime} \text { Critical } \\ \tanh \left(4 \alpha^{\prime}\right) w \mu\left\|F_{z}\right\|(1-\xi) \xi^{3}+\dot{\psi} b_{M_{z}} & \text { when }\left\|\alpha^{\prime}\right\| \leq \alpha_{C \text { Critical }}\end{cases}$
	$\xi=1-\frac{C_{a}\left\|\tan \left(\alpha^{\prime}\right)\right\|}{3 \mu\left\|F_{z}\right\|}$

The equations use these variables.

Variable	Value
$M_{x}$	Overturning moment acting on axle about tire-fixed $x$-axis
$M_{z}$	Aligning moment acting on axle about tire-fixed $z$-axis
$R_{e}$	Effective contact patch to wheel carrier radial distance
$\gamma$	Camber angle
$k$	Vertical sidewall stiffness
$b$	Vertical sidewall damping
$\dot{\psi}$	Tire angular velocity about the tire-fixed $z$-axis (yaw rate)
$w$	Tire width
$\alpha^{\prime}$	Slip angle state
$b_{M z}$	Linear yaw rate resistance
$F_{y}$	Lateral force acting on axle along tire-fixed $y$-axis
$C_{\gamma}$	Camber stiffness
$C_{\alpha}$	Lateral stiffness per slip angle
$\mu$	Friction coefficient
$F_{z}$	Vertical contact patch normal force along tire-fixed $z$-axis

## Tire and Wheel Coordinate Systems

To resolve the forces and moments, the block uses the Z-Up orientation of the tire and wheel coordinate systems.

- Tire coordinate system axes $\left(X_{T}, Y_{T}, Z_{T}\right)$ are fixed in a reference frame attached to the tire. The origin is at the tire contact with the ground.
- Wheel coordinate system axes ( $X_{W}, Y_{W}, Z_{W}$ ) are fixed in a reference frame attached to the wheel. The origin is at the wheel center.


## Z-Up Orientation ${ }^{2}$



## Brakes

## Disc

If you specify the Brake Type parameter as Disc, the block implements a disc brake. This figure shows the side and front views of a disc brake.


[^2]A disc brake converts brake cylinder pressure from the brake cylinder into force. The disc brake applies the force at the brake pad mean radius.

The block uses these equations to calculate brake torque for the disc brake.

$$
\begin{aligned}
& T= \begin{cases}\frac{\mu P_{\pi B}{ }^{2} 2 R_{m} N_{\text {pads }}}{4} & \text { when } N \neq 0 \\
\frac{\mu_{\text {static }} P \pi B_{a} 2 R_{m} N_{\text {pads }}}{4} & \text { when } N=0\end{cases} \\
& R m=\frac{R o+R i}{2}
\end{aligned}
$$

The equations use these variables.

Variable	Value
$T$	Brake torque
$P$	Applied brake pressure
$N$	Wheel speed
$N_{\text {pads }}$	Number of brake pads in disc brake assembly
$\mu_{\text {static }}$	Disc pad-rotor coefficient of static friction
$\mu$	Disc pad-rotor coefficient of kinetic friction
$B_{a}$	Brake actuator bore diameter
$R_{m}$	Mean radius of brake pad force application on brake rotor
$R_{o}$	Outer radius of brake pad
$R_{i}$	Inner radius of brake pad

## Drum

If you specify the Brake Type parameter as Drum, the block implements a static (steady-state) simplex drum brake. A simplex drum brake consists of a single two-sided hydraulic actuator and two brake shoes. The brake shoes do not share a common hinge pin.

The simplex drum brake model uses the applied force and brake geometry to calculate a net torque for each brake shoe. The drum model assumes that the actuators and shoe geometry are symmetrical for both sides, allowing a single set of geometry and friction parameters to be used for both shoes.

The block implements equations that are derived from these equations in Fundamentals of Machine Elements.

$$
\begin{aligned}
& T_{\text {rshoe }}=\left(\frac{\pi \mu c r\left(\cos \theta_{2}-\cos \theta_{1}\right) B_{a} 2}{2 \mu\left(2 r\left(\cos \theta_{2}-\cos \theta_{1}\right)+a\left(\cos ^{2} \theta_{2}-\cos ^{2} \theta_{1}\right)\right)+a r\left(2 \theta_{1}-2 \theta_{2}+\sin 2 \theta_{2}-\sin 2 \theta_{1}\right)}\right) P \\
& T_{\text {lshoe }}=\left(\frac{\pi \mu c r\left(\cos \theta_{2}-\cos \theta_{1}\right) B_{a}^{2}}{-2 \mu\left(2 r\left(\cos \theta_{2}-\cos \theta_{1}\right)+a\left(\cos ^{2} \theta_{2}-\cos ^{2} \theta_{1}\right)\right)+\operatorname{ar}\left(2 \theta_{1}-2 \theta_{2}+\sin 2 \theta_{2}-\sin 2 \theta_{1}\right)}\right) P \\
& T=\left\{\begin{array}{l}
T_{\text {rshoe }}+T_{\text {lshoe }} \\
\left(T_{\text {rshoe }}+T_{\text {lshoe }}\right) \frac{\mu_{\text {static }}}{\mu} \\
\text { when } N \neq 0
\end{array}\right. \\
& \text { when } N=0
\end{aligned}
$$



The equations use these variables.

Variable	Value
$T$	Brake torque
$P$	Applied brake pressure
$N$	Wheel speed
$\mu_{\text {static }}$	Disc pad-rotor coefficient of static friction
$\mu$	Disc pad-rotor coefficient of kinetic friction
$T_{\text {rshoe }}$	Right shoe brake torque
$T_{\text {lshoe }}$	Left shoe brake torque
$a$	Distance from drum center to shoe hinge pin center
$c$	Distance from shoe hinge pin center to brake actuator connection on brake shoe
$r$	Drum internal radius
$B_{a}$	Brake actuator bore diameter
$\Theta_{1}$	Angle from shoe hinge pin center to start of brake pad material on shoe
$\Theta_{2}$	Angle from shoe hinge pin center to end of brake pad material on shoe

## Mapped

If you specify the Brake Type parameter as Mapped, the block uses a lookup table to determine the brake torque.

$$
T=\left\{\begin{array}{lr}
f_{\text {brake }}(P, N) & \text { when } N \neq 0 \\
\left(\frac{\mu_{\text {static }}}{\mu}\right) f_{\text {brake }}(P, N) & \text { when } N=0
\end{array}\right.
$$

The equations use these variables.

Variable	Value
$T$	Brake torque
$f_{\text {brake }}(P, N)$	Brake torque lookup table
$P$	Applied brake pressure
$N$	Wheel speed
$\mu_{\text {static }}$	Friction coefficient of drum pad-face interface under static conditions
$\mu$	Friction coefficient of disc pad-rotor interface

The lookup table for the brake torque, $f_{\text {brake }}(P, N)$, is a function of applied brake pressure and wheel speed, where:

- $T$ is brake torque, in $\mathrm{N} \cdot \mathrm{m}$.
- $P$ is applied brake pressure, in bar.
- $N$ is wheel speed, in rpm.



## Ports

## Input

BrkPrs - Brake pressure
scalar | N-by-1 vector
Brake pressure, in Pa.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

## Dependencies

To enable this port, set the Brake Type parameter, to one of these types:

- Disc
- Drum
- Mapped

AxITrq - Axle torque
scalar | N-by-1 vector

Axle torque, $T_{a}$, about wheel spin axis, in $\mathrm{N} \cdot \mathrm{m}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Vx - Longitudinal velocity
scalar | $N$-by-1 vector
Axle longitudinal velocity, $V_{x}$, along tire-fixed $x$-axis, in $\mathrm{m} / \mathrm{s}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.
$\mathbf{V y}$ - Lateral velocity
scalar | $N$-by- 1 vector
Axle lateral velocity, $V_{y}$, along tire-fixed $y$-axis, in $\mathrm{m} / \mathrm{s}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Camber - Inclination angle
scalar | N-by-1 vector
Camber angle, $\gamma$, or inclination angle, $\varepsilon$, in rad.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

YawRate - Tire angular velocity
scalar | $N$-by-1 vector
Tire angular velocity, $r$, about the tire-fixed $z$-axis (yaw rate), in rad/s.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Prs - Tire inflation pressure
scalar | $N$-by- 1 vector
Tire inflation pressure, $p_{i}$, in Pa.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Gnd - Ground displacement
scalar | $N$-by-1 vector
Ground displacement along tire-fixed $z$-axis, in m . Positive input produces wheel lift.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Fext - Axle force applied to tire
scalar | $N$-by- 1 vector

Axle force applied to tire, $F_{\text {ext }}$, along vehicle-fixed $z$-axis (positive input compresses the tire), in N .
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

ScaleFctrs - Scale factor
scalar | $N$-by- 1 vector
Scale factor to account for variations in the coefficient of friction.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

## Output

Info - Block data
bus
Block data, returned as a bus signal containing these block values.

Signal	Description	Units
AxlTrq	Axle torque about wheel-fixed $y$-axis	$\mathrm{N} \cdot \mathrm{m}$
Omega	Wheel angular velocity about wheel-fixed $y$-axis	$\mathrm{rad} / \mathrm{s}$
Fx	Longitudinal vehicle force along tire-fixed $x$-axis	N
Fy	Lateral vehicle force along tire-fixed $y$-axis	N
Fz	Vertical vehicle force along tire-fixed $z$-axis	N
Mx	Overturning moment about tire-fixed $x$-axis	$\mathrm{N} \cdot \mathrm{m}$
My	Rolling resistance torque about tire-fixed $y$-axis	$\mathrm{N} \cdot \mathrm{m}$
Mz	Aligning moment about tire-fixed $z$-axis	$\mathrm{N} \cdot \mathrm{m}$
Vx	Vehicle longitudinal velocity along tire-fixed $x$-axis	$\mathrm{m} / \mathrm{s}$
Vy	Vehicle lateral velocity along tire-fixed $y$-axis	$\mathrm{m} / \mathrm{s}$
Re	Loaded effective radius	m
Kappa	Longitudinal slip ratio	NA
Alpha	Side slip angle	rad
a	Contact patch half length	m
b	Contact patch half width	m
Gamma	Camber angle	rad
psidot	Tire angular velocity about the tire-fixed $z$-axis $($ yaw   rate)	$\mathrm{rad} / \mathrm{s}$
BrkTrq	Brake torque about the vehicle-fixed $y$-axis	$\mathrm{N} \cdot \mathrm{m}$
BrkPrs	Brake pressure	Pa
z	Axle vertical displacement along tire-fixed $z$-axis	m
zdot	Axle vertical velocity along tire-fixed $z$-axis	$\mathrm{m} / \mathrm{s}$


Signal	Description	Units
Gnd	Ground displacement along tire-fixed $z$-axis (positive   input produces wheel lift)	m
GndFz	Vertical sidewall force on ground along tire-fixed $z$-axis	N
Prs	Tire inflation pressure	Pa

Omega - Wheel angular velocity
scalar | $N$-by-1 vector
Wheel angular velocity, $\omega$, about wheel-fixed $y$-axis, in rad/s.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Fx - Longitudinal axle force
scalar | $N$-by- 1 vector
Longitudinal force acting on axle, $F_{x}$, along tire-fixed $x$-axis, in $N$. Positive force acts to move the vehicle forward.

Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

## Fy - Lateral axle force

scalar | $N$-by-1 vector
Lateral force acting on axle, $F_{y}$, along tire-fixed $y$-axis, in N .
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Fz - Vertical axle force
scalar | $N$-by-1 vector
Vertical force acting on axle, $F_{z}$, along tire-fixed $z$-axis, in N .
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Mx - Overturning moment
scalar | $N$-by- 1 vector
Longitudinal moment acting on axle, $M_{x}$, about tire-fixed $x$-axis, in $\mathrm{N} \cdot \mathrm{m}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

My - Rolling resistive moment
scalar | $N$-by-1 vector
Lateral moment acting on axle, $M_{y}$, about tire-fixed $y$-axis, in $\mathrm{N} \cdot \mathrm{m}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Mz - Aligning moment
scalar | $N$-by-1 vector
Vertical moment acting on axle, $M_{z}$, about tire-fixed $z$-axis, in $\mathrm{N} \cdot \mathrm{m}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

## Parameters

## Block Options

Brake type - Brake type
None | Disc | Drum | Mapped
Use the Brake Type parameter to select the brake.

Action	Brake Type Setting
No braking	None
Implement brake that converts the   brake cylinder pressure into a   braking force	Disc
Implement simplex drum brake that   converts the applied force and brake   geometry into a net braking torque	Drum
Implement lookup table that is a   function of the wheel speed and   applied brake pressure	Mapped

Rolling Resistance - Rolling resistance torque
None (default) | Pressure and velocity | ISO 28580|Magic Formula|Mapped torque
To calculate the rolling resistance torque, specify one of these Rolling Resistance parameters.

Setting	Block Implementation
None	None
Pressure and velocity	Method in Stepwise Coastdown Methodology for Measuring   Tire Rolling Resistance. The rolling resistance is a function of   tire pressure, normal force, and velocity.
ISO 28580	Method specified in ISO 28580:2018, Passenger car, truck   and bus tyre rolling resistance measurement method -   Single point test and correlation of measurement results.
Magic Formula	Magic formula equations from 4.E70 in Tire and Vehicle   Dynamics. The magic formula is an empirical equation based   on fitting coefficients.
Mapped torque	Lookup table that is a function of the normal force and spin   axis longitudinal velocity.

## Dependencies

Each Rolling Resistance setting enables additional parameters.

Setting	Parameters Enabled
Pressure and velocity	- Velocity independent force coefficient, aMy   - Linear velocity force component, bMy   - Quadratic velocity force component, cMy   - Tire pressure exponent, alphaMy   - Normal force exponent, betaMy
ISO 28580	- Parasitic losses force, Fpl   - Rolling resistance constant, $\mathbf{C r}$   - Thermal correction factor, Kt   - Measured temperature, Tmeas   - Parasitic losses force, Fpl   - Ambient temperature, Tamb
Magic Formula	Rolling resistance torque coefficient, QSY   Longitudinal force rolling resistance coefficient, QSY2   Linear rotational speed rolling resistance coefficient, QSY3   Quartic rotational speed rolling resistance coefficient, QSY4   Camber squared rolling resistance torque, QSY5   Load based camber squared rolling resistance torque, QSY6   Normal load rolling resistance coefficient, QSY7   Pressure load rolling resistance coefficient, QSY8   Rolling resistance scaling factor, lam_My
Mapped torque	Spin axis velocity breakpoints, VxMy   Normal force breakpoints, FzMy   Rolling resistance torque map, MyMap

## Vertical Motion - Vertical Motion

None (default) | Mapped stiffness and damping
To calculate vertical motion, specify one of these Vertical Motion parameters.

Setting	Block Implementation
None	Block passes the applied chassis forces directly through to   the rolling resistance and longitudinal force calculations.
Mapped stiffness and damping	Vertical motion depends on wheel stiffness and damping.   Stiffness is a function of tire sidewall displacement and   pressure. Damping is a function of tire sidewall velocity and   pressure.

## Dependencies

Setting Vertical Motion to Mapped stiffness and damping enables these parameters:

Setting	Parameters Enabled
Mapped stiffness and damping	- Wheel mass, MASS   - Initial tire displacement, zo   - Initial velocity, zdoto   - Initial wheel vertical velocity (wheel fixed frame), zdoto   - Vertical deflection breakpoints, $\mathbf{z F z}$   - Pressure breakpoints, pFz   - Force due to deflection, Fzz   - Vertical velocity breakpoints, zdotFz   - Force due to velocity, Fzzdot

## Longitudinal and Lateral

Longitudinal stiffness, Ckappa - Longitudinal stiffness
1e7 (default) | scalar | $N$-by-1 vector
Longitudinal stiffness, $C_{K}$, specified as a scalar or $N$-by-1 vector, in N. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other longitudinal and lateral parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Lateral stiffness per slip angle, Calpha - Lateral stiffness
4.5 e 4 (default) | scalar | $N$-by-1 vector

Lateral stiffness per slip angle, $C_{\alpha}$, specified as a scalar or $N$-by- 1 vector, in $N /$ rad. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other longitudinal and lateral parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Camber stiffness, Cgamma - Camber stiffness

1e3 (default) | scalar | $N$-by-1 vector
Camber stiffness, $C_{\gamma}$, specified as a scalar or $N$-by- 1 vector, in $\mathrm{N} /$ rad. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other longitudinal and lateral parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Kinematic friction, muMin - Kinematic friction
0.8 (default) | scalar | $N$-by-1 vector

Kinematic friction, $\mu_{k}$, specified as a scalar or $N$-by- 1 vector, dimensionless. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other longitudinal and lateral parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Static friction, muMax - Static friction
1 (default) | scalar | $N$-by- 1 vector
Static friction, $\mu_{s}$, specified as a scalar or $N$-by- 1 vector, dimensionless. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other longitudinal and lateral parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Longitudinal relaxation length, Lrelx - Longitudinal relaxation length
0.05 (default) | scalar | $N$-by-1 vector

Longitudinal relaxation length, $L_{\text {relx }}$, specified as a scalar or $N$-by- 1 vector, in $m$. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other longitudinal and lateral parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Lateral relaxation length, Lrely - Lateral relaxation length
0.15 (default) | scalar | $N$-by-1 vector

Lateral relaxation length, $L_{\text {rely }}$, in $\mathrm{m} / \mathrm{rad}$.
Lateral relaxation length, $L_{\text {rely }}$, specified as a scalar or $N$-by-1 vector, in m/rad. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other longitudinal and lateral parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Rolling

Rotational damping, br - Rotational damping
scalar | $N$-by- 1 vector
Rotational damping, specified as a scalar or $N$-by-1 vector, in $N \cdot m \cdot s / r a d$. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other rotational parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Rotational inertia (rolling axis), IYY - Rotational inertia
scalar | N-by-1 vector

Rotational inertia (rolling axis), specified as a scalar or $N$-by-1 vector, in $\mathrm{kg} \cdot \mathrm{m}^{2}$. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other rotational parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Initial rotational velocity, omegao - Initial rotational velocity
scalar | $N$-by-1 vector
Initial rotational velocity, specified as a scalar or $N$-by-1 vector, in rad/s. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other rotational parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Unloaded radius, UNLOADED_RADIUS - Unloaded radius
0.309384029954441 (default) $\mid$ scalar

Unloaded radius, in m.

## Pressure and Velocity

Velocity independent force coefficient, $\mathbf{a M y}$ - Velocity-independent force coefficient
8e-4 (default) | scalar
Velocity-independent force coefficient, $a$, in $\mathrm{s} / \mathrm{m}$.

## Dependencies

To enable this parameter, set Rolling Resistance to Pressure and velocity.
Linear velocity force component, bMy - Linear velocity force component
0.001 (default) | scalar

Linear velocity force component, $b$, in $\mathrm{s} / \mathrm{m}$.

## Dependencies

To enable this parameter, set Rolling Resistance to Pressure and velocity.
Quadratic velocity force component, cMy - Quadratic velocity force component 1.6e-4 (default) | scalar

Quadratic velocity force component, $c$, in $\mathrm{s}^{\wedge} 2 / \mathrm{m}^{\wedge} 2$.

## Dependencies

To enable this parameter, set Rolling Resistance to Pressure and velocity.
Tire pressure exponent, alphaMy - Tire pressure exponent

- 0.003 (default) | scalar

Tire pressure exponent, $\alpha$, dimensionless.
Dependencies
To enable this parameter, set Rolling Resistance to Pressure and velocity.

Normal force exponent, betaMy - Normal force exponent

### 0.97 (default) | scalar

Normal force exponent, $\beta$, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Pressure and velocity.
ISO 28580
Parasitic losses force, FpI - Parasitic force loss
10 (default) | scalar
Parasitic force loss, $F_{p l}$ in N.

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.
Rolling resistance constant, $\mathbf{C r}$ - Rolling resistance constant
1e-3 (default) | scalar
Rolling resistance constant, $C_{r}$, in $\mathrm{N} / \mathrm{kN}$. ISO 28580 specifies the rolling resistance unit as one newton of tractive resistance for every kilonewtons of normal load.

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.
Thermal correction factor, $\mathbf{K t}$ - Thermal correction factor
0.008 (default) | scalar

Thermal correction factor, $K_{t}$, in $1 /$ degC.

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.
Measured temperature, Tmeas - Temperature during testing
298.15 (default) | scalar

Measured ambient temperature, $T_{\text {meas }}$, near tire during tire testing, in K.

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.
Ambient temperature, Tamb - Temperature in application environment 298.15 (default) | scalar

Measured ambient temperature, $T_{\text {amb }}$, near tire in application environment, in K. For example, the measured ambient temperature is the ambient temperature near the tire when the vehicle is on the road.

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.

Input ambient temperature - Option to input ambient temperature
off (default) | on
Select to create input port Tamb to input the measured ambient temperature.
The measured ambient temperature, $T_{a m b}$, is the temperature near tire in application environment, in K. For example, the measured ambient temperature is the ambient temperature near the tire when the vehicle is on the road.

## Dependencies

To enable this parameter, set Rolling Resistance to IS0 28580.

## Magic Formula

Rolling resistance torque coefficient, QSY1 - Torque coefficient

### 0.007 (default) | scalar

Rolling resistance torque coefficient, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Longitudinal force rolling resistance coefficient, QSY2 - Force resistance coefficient
0 (default) | scalar
Longitudinal force rolling resistance coefficient, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Linear rotational speed rolling resistance coefficient, QSY3 - Linear speed coefficient 0.0015 (default) | scalar

Linear rotational speed rolling resistance coefficient, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Quartic rotational speed rolling resistance coefficient, QSY4 - Quartic speed coefficient 8.5e-05 (default) | scalar

Quartic rotational speed rolling resistance coefficient, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Camber squared rolling resistance torque, QSY5 - Camber resistance torque
0 (default) | scalar
Camber squared rolling resistance torque, in $1 / \mathrm{rad}^{\wedge} 2$.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.

Load based camber squared rolling resistance torque, QSY6 - Load resistance torque 0 (default) | scalar

Load based camber squared rolling resistance torque, in $1 / \mathrm{rad}^{\wedge} 2$.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Normal load rolling resistance coefficient, QSY7 - Normal resistance coefficient 0.9 (default) | scalar

Normal load rolling resistance coefficient, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Pressure load rolling resistance coefficient, QSY8 - Pressure resistance coefficient
-0.4 (default) | scalar
Pressure load rolling resistance coefficient, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Rolling resistance scaling factor, lam_My - Scaling factor
1 (default) | scalar
Rolling resistance scaling factor, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.

## Mapped

Spin axis velocity breakpoints, $\mathbf{V x M y}$ - Spin axis velocity breakpoints
-20:1:20 (default) | vector
Spin axis velocity breakpoints, in $\mathrm{m} / \mathrm{s}$.

## Dependencies

To enable this parameter, set Rolling Resistance to Mapped torque.
Normal force breakpoints, FzMy - Normal force breakpoints
0:200:1e4 (default) | vector
Normal force breakpoints, in N.

## Dependencies

To enable this parameter, set Rolling Resistance to Mapped torque.
Rolling resistance torque map, MyMap - Rolling resistance torque map array

Rolling resistance torque versus axle speed and normal force, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this parameter, set Rolling Resistance to Mapped torque.

## Aligning

Wheel width, WIDTH - Wheel width
scalar
Wheel width, WIDTH, in m .
Linear yaw rate resistance, bMz - Linear yaw rate resistance
0 | scalar
Linear yaw rate resistance, $b_{M z}$, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.

## Brake

Static friction coefficient, mu_static - Static friction coefficient
0.3 (default) | scalar | $N$-by-1 vector

Static friction coefficient, specified as a scalar or $N$-by-1 vector, dimensionless. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other brake parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Brake Type to Disc, Drum, or Mapped
Kinetic friction coefficient, mu_kinetic - Kinetic friction

## 0.2 (default) | scalar | $N$-by-1 vector

Kinematic friction coefficient, specified as a scalar or $N$-by-1 vector, dimensionless. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other brake parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Brake Type to Disc, Drum, or Mapped
Disc
Disc brake actuator bore, disc_abore - Bore distance
0.05 (default) | scalar | $N$-by-1 vector

Disc brake actuator bore, specified as a scalar or $N$-by-1 vector, in m . If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other brake parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Brake Type to Disc.
Brake pad mean radius, Rm - Radius
0.177 (default) | scalar | N-by-1 vector

Brake pad mean radius, specified as a scalar or $N$-by-1 vector, in $m$. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other brake parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Brake Type to Disc.
Number of brake pads, num_pads - Number of brake pads
2 (default) | scalar $\mid N$-by-1 vector
Number of brake pads, specified as a scalar or $N$-by-1 vector, dimensionless. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other brake parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Brake Type to Disc.

## Drum

## Drum brake actuator bore, disc_abore - Bore distance 0.0508 (default) | scalar | $N$-by-1 vector

Drum brake actuator bore, specified as a scalar or $N$-by-1 vector, in m. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other brake parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Brake Type to Drum.
Shoe pin to drum center distance, drum_a - Shoe pin to drum center distance
0.123 (default) | scalar

Shoe pin to drum center distance, in $m$.

## Dependencies

To enable this parameter, set Brake Type to Drum.
Shoe pin center to force application point distance, drum_c - Shoe pin center to force application point distance
0.212 (default) | scalar

Shoe pin center to force application point distance, in $m$.

## Dependencies

To enable this parameter, set Brake Type to Drum.
Drum internal radius, drum_r - Drum internal radius
0.15 (default) | scalar

Drum internal radius, in $m$.

## Dependencies

To enable this parameter, set Brake Type to Drum.
Shoe pin to pad start angle, drum_thetal - Shoe pin to pad start angle 0 (default) | scalar

Shoe pin to pad start angle, in deg.
Dependencies
To enable this parameter, set Brake Type to Drum.
Shoe pin to pad end angle, drum_theta2 - Shoe pin to pad end angle
126 (default) | scalar
Shoe pin to pad end angle, in deg.

## Dependencies

To enable this parameter, set Brake Type to Drum.
Mapped
Brake actuator pressure breakpoints, brake_p_bpt - Brake actuator pressure breakpoints vector

Brake actuator pressure breakpoints, in bar.

## Dependencies

To enable this parameter, set Brake Type to Mapped.
Wheel speed breakpoints, brake_n_bpt - Wheel speed breakpoints
vector
Wheel speed breakpoints, in rpm.

## Dependencies

To enable this parameter, set Brake Type to Mapped.
Brake torque map, f_brake_t - Lookup table for brake torque array

The lookup table for the brake torque, $f_{\text {brake }}(P, N)$, is a function of applied brake pressure and wheel speed, where:

- $T$ is brake torque, in $\mathrm{N} \cdot \mathrm{m}$.
- $\quad P$ is applied brake pressure, in bar.
- $N$ is wheel speed, in rpm.



## Dependencies

To enable this parameter, set Brake Type to Mapped.

## Vertical

Wheel mass, m - Wheel mass
9.46491996974568 (default) | scalar | $N$-by-1 vector

Wheel mass, specified as a scalar or $N$-by- 1 vector, in kg. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other vertical parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Initial tire deflection, zo - Initial tire deflection
0 (default) | scalar $\mid N$-by- 1 vector
Initial tire displacement, specified as a scalar or $N$-by-1 vector, in m. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other vertical parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Initial wheel vertical velocity (wheel fixed frame), zdoto - Initial wheel velocity
0 (default) | scalar $\mid N$-by- 1 vector
Initial wheel vertical velocity, specified as a scalar or $N$-by-1 vector, in $\mathrm{m} / \mathrm{s}$. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other vertical parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Gravitational acceleration, GRAVITY - Gravitational acceleration
-9.81 (default) | scalar
Gravitational acceleration, in m/s^2.

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

## Mapped Stiffness and Damping

Vertical deflection breakpoints, zFz - Vertical deflection breakpoints
[0 . 01 .1] (default) | vector
Vector of sidewall deflection breakpoints corresponding to the force table, in m .

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Pressure breakpoints, pFz - Pressure breakpoints
[10000 1000000] (default) | vector
Vector of pressure data points corresponding to the force table, in Pa.

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Force due to deflection, Fzz - Force due to deflection
[0 1e3 1e4; 0 le4 1e5] (default)|vector
Force due to sidewall deflection and pressure along wheel-fixed $z$-axis, in N .

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Vertical velocity breakpoints, zdotFz - Vertical velocity breakpoints
[-20 0 20] (default) | scalar
Vector of sidewall velocity breakpoints corresponding to the force due to velocity table, in m.

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Force due to velocity, Fzzdot - Force due to velocity
[500 0-500;250 0-250] (default) | array
Force due to sidewall velocity and pressure along wheel-fixed $z$-axis, in N .

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

## Simulation

Maximum normal force, FZMAX - Maximum normal force
10000 (default) | scalar
Maximum normal force, in N. Used with all vertical force calculations.
Minimum normal force, FZMIN - Minimum normal force
0 (default) | scalar
Minimum normal force, in N. Used with all vertical force calculations.
Maximum pressure, PRESMAX - Maximum pressure
1003118 (default) | scalar
Maximum pressure, PRESMAX, in Pa.
Minimum pressure, PRESMIN - Minimum pressure
9982 (default) | scalar
Minimum pressure, PRESMIN, in Pa.
Max allowable slip ratio (absolute), KPUMAX - Max allowable slip ratio
0.999 (default) | scalar

Max allowable slip ratio (absolute), KPUMAX, dimensionless.
Minimum allowable slip ratio (absolute), KPUMIN - Minimum allowable slip ratio
-0.999 (default) | scalar
Minimum allowable slip ratio (absolute), KPUMIN, dimensionless.
Max allowable slip angle (absolute), ALPMAX - Max allowable slip angle
1.5708 (default) | scalar

Max allowable slip angle (absolute), ALPMAX, in rad.
Minimum allowable slip angle (absolute), ALPMIN - Minimum allowable slip angle - 1.5708 (default) | scalar

Minimum allowable slip angle (absolute), ALPMIN, in rad.
Maximum allowable camber angle, CAMMAX - Maximum allowable camber angle 0.173 | scalar

Maximum allowable camber angle CAMMAX, in rad.
Minimum allowable camber angle, CAMMIN - Minimum allowable camber angle -0.173 | scalar

Minimum allowable camber angle, CAMMIN, in rad.

Minimum ambient temperature, TMIN - Minimum ambient temperature 0 (default) | scalar

Minimum ambient temperature, $T_{\text {MIN }}$, in K .

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.
Maximum ambient temperature, TMAX - Maximum ambient temperature 400 (default) | scalar

Maximum ambient temperature, $T_{\text {MAX }}$, in K .

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.

## Version History

Introduced in R2019a

## R2022b: Specify Brake and Tire Parameters for Each Wheel

Behavior changed in R2022b
Starting from R2022b, you can to use the Fiala Wheel 2DOF block to specify brake and tire characteristics for each wheel on your vehicle. Specifically, the block allows $N$-by- 1 vectors for these parameters:

- Static friction coefficient, mu_static
- Kinetic friction coefficient, mu_kinetic
- Disc brake actuator bore, disc_abore
- Brake pad mean radius, Rm
- Number of brake pads, num_pads
- Drum brake actuator bore, disc_abore
- Initial rotational velocity, omegao
- Rotational damping, br
- Wheel mass, m
- Rotational inertia (rolling axis), IYY
- Initial tire displacement, zo
- Initial wheel vertical velocity (wheel fixed frame), zdoto
- Longitudinal stiffness, Ckappa
- Lateral stiffness per slip angle, Calpha
- Camber stiffness, Cgamma
- Kinematic friction, muMin
- Static friction, muMax
- Longitudinal relaxation length, Lrelx
- Lateral relaxation length, Lrely
$N$ is the number of wheels and must match the input signal dimensions.


## References

[1] Fiala, E. "Seitenkrafte am Rollenden Luftreifen." VDI Zeitschrift, V.D.I.. Vol 96, 1954.
[2] Highway Tire Committee. Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. Standard J2452_199906. Warrendale, PA: SAE International, June 1999.
[3] ISO 28580:2018. Passenger car, truck and bus tyre rolling resistance measurement method Single point test and correlation of measurement results. ISO (International Organization for Standardization), 2018.
[4] Pacejka, H. B. Tire and Vehicle Dynamics. 3rd ed. Oxford, UK: SAE and Butterworth-Heinemann, 2012.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

## See Also

Combined Slip Wheel 2DOF | Combined Slip Wheel 2DOF CPI | Combined Slip Wheel 2DOF STI | Longitudinal Wheel | Dugoff Wheel 2DOF

Topics
"Coordinate Systems in Vehicle Dynamics Blockset"

## Combined Slip Wheel CPI

Combined slip wheel compliant with CPI Tydex standard


## Libraries:

Vehicle Dynamics Blockset / Wheels and Tires

## Description

The Combined Slip Wheel CPI block implements the longitudinal and lateral behavior of a wheel characterized by the Magic Formula ${ }^{1,2}$ that complies with the contact point interface (CPI) Tyre Data Exchange Format (TYDEX) ${ }^{3}$ standard. You can import your own tire data or use fitted tire data sets provided by the Global Center for Automotive Performance Simulation (GCAPS). Use the block in driveline and vehicle simulations where low-frequency tire-road interactions are required to determine vehicle acceleration, braking, and wheel-rolling resistance. The block is suitable for applications that require combined lateral slip, for example, in lateral motion and yaw stability studies.

Based on the wheel rotational velocity, longitudinal and lateral velocity, wheel camber angle, and inflation pressure, the block determines the vertical motion, forces, and moments in all six degrees of freedom (DOF). Use the vertical DOF to study tire-suspension resonances from road profiles or chassis motion.

Use the Tire type parameter to select the source of the tire data.

Goal	Action
Implement the Magic Formula using   empirical equations   use fitting coefficients that equations   correspond to the block parameters.	Update the block parameters with fitting coefficients from a   file:
	1Set Tire type to External file.    $\mathbf{2}$ On the External tire source pane, Click Select file.   $\mathbf{3}$ Select the tire coefficient file.   $\mathbf{4}$ Click Update mask values from file. In the dialog box   that prompts you for confirmation, click OK. The block    updates the parameters.
	$\mathbf{5} \quad$ Click Apply.


Goal	Action
Implement fitted tire data sets provided by the Global Center for Automotive Performance Simulation (GCAPS).	Update the applicable block parameters with GCAPS fitted tire data:   1 Set Tire type to the tire that you want to implement. Options include:   - Light passenger car 205/60R15   - Mid-size passenger car 235/45R18   - Performance car 225/40R19   - SUV 265/50R20   - Light truck 275/65R18   - Commercial truck 295/75R22.5   2 Click Update applicable Tire Parameters with tire type values. On the Tire Parameters tab, the block updates the applicable parameters, including Wheel width, Rim radius, and Wheel mass.   Click Apply.

## Rotational Wheel Dynamics

The block calculates the inertial response of the wheel subject to:

- Axle losses
- Tire rolling resistance
- Ground contact through the tire-road interface

To implement the Magic Formula, the block uses these equations from the cited references:

Calculation	Equations
Longitudinal force	Tire and Vehicle Dynamics ${ }^{2}$ equations 4.E9 through 4.E57
Lateral force - pure   sideslip	Tire and Vehicle Dynamics ${ }^{2}$ equations 4.E19 through 4.E30
Lateral force - combined   slip	Tire and Vehicle Dynamics ${ }^{2}$ equations 4.E58 through 4.E67
Vertical dynamics	Tire and Vehicle Dynamics ${ }^{2}$ equations 4.E68, 4.E1, 4.E2a, and 4.E2b
Overturning couple	Tire and Vehicle Dynamics ${ }^{2}$ equation 4.E69
Rolling resistance	- An improved Magic Formula/Swift tyre model that can handle inflation $_{\text {pressure changes }{ }^{1} \text { equation 6.1.2 }}$   Tire and Vehicle Dynamics ${ }^{2}$ equation 4.E70
Aligning moment    Aligning torque - Tire and Vehicle Dynamics ${ }^{2}$ equation 4.E31 through 4.E49Tire and Vehicle Dynamics ${ }^{2}$ equation 4.E71 through 4.E78   If you clear Include turn slip, the block sets some of these equations to 1.	

## CPI Tire Coordinate System

The block uses tire coordinate system axes $\left(X_{T}, Y_{T}, Z_{T}\right)$ that are fixed in a reference frame attached to the tire. The origin is at the tire contact with the ground.

The CPI tire coordinate system is shown in red.

Note The CPI tire coordinate system (red) is equivalent to the TYDEX wheel-axis coordinate system.

3


Axis	Description
$X_{T}$	$X_{T}$ and $Y_{T}$ are parallel to the road plane. The intersection of the wheel plane and   the road plane define the orientation of the $X_{T}$ axis.
$Y_{T}$	$Y_{T}$ is the projection of the wheel spin axis on the ground.
$Z_{T}$	$Z_{T}$ points upward.

## Ports

## Input

Omega - Rotational velocity
scalar | N-by-1 vector
Tire rotational velocity, $\omega$, about wheel spin axis, in rad/s.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

3 Reprinted with permission Copyright © 2008 SAE International. Further distribution of this material is not permitted without prior permission from SAE.

Vx - Longitudinal velocity
scalar | $N$-by-1 vector
Axle longitudinal velocity, $V_{x}$, along tire-fixed $x$-axis, in $\mathrm{m} / \mathrm{s}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.
$\mathbf{V y}$ - Lateral velocity
scalar | $N$-by-1 vector
Axle lateral velocity, $V_{y}$, along tire-fixed $y$-axis, in $\mathrm{m} / \mathrm{s}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Camber - Inclination angle
scalar | $N$-by-1 vector
Camber angle, $\gamma$, or inclination angle, $\varepsilon$, in rad.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

YawRate - Tire angular velocity
scalar | $N$-by-1 vector
Tire angular velocity, $r$, about the tire-fixed $z$-axis (yaw rate), in rad/s.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Fext - Axle force applied to tire scalar | $N$-by-1 vector

Axle force applied to tire, $F_{\text {ext }}$, along vehicle-fixed $z$-axis (positive input compresses the tire), in N .
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

## ScaleFctrs - Road friction scale factors

2-by-N array
Magic formula road friction scale factor array. Array dimensions are 2 by the number of wheels, $N$.
The Magic Formula equations use scale factors to account for static or simulation run-time variations. Nominally, most are set to 1 .

Array Element	Variable	Scale Factor
ScaleFctrs $(1,1)$	lam_mux	Longitudinal peak friction coefficient
ScaleFctrs $(2,1)$	lam_muy	Lateral peak friction coefficient

Prs - Tire inflation pressure scalar | N-by-1 vector

Tire inflation pressure, $p_{i}$, in Pa.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

## Dependencies

To create this port, select Input tire pressure.

## Output

## Info - Block data

bus
Block data, returned as a bus signal containing these block values.

Signal	Description	Units
Omega	Wheel angular velocity about wheel-fixed $y$-axis	$\mathrm{rad} / \mathrm{s}$
Fx	Longitudinal vehicle force along tire-fixed $x$-axis	N
Fy	Lateral vehicle force along tire-fixed $y$-axis	N
Fz	Vertical vehicle force along tire-fixed $z$-axis	N
Mx	Overturning moment about tire-fixed $x$-axis	$\mathrm{N} \cdot \mathrm{m}$
My	Rolling resistance torque about tire-fixed $y$-axis	$\mathrm{N} \cdot \mathrm{m}$
Mz	Aligning moment about tire-fixed $z$-axis	$\mathrm{N} \cdot \mathrm{m}$
Vx	Vehicle longitudinal velocity along tire-fixed $x$-axis	$\mathrm{m} / \mathrm{s}$
Vy	Vehicle lateral velocity along tire-fixed $y$-axis	$\mathrm{m} / \mathrm{s}$
Re	Loaded effective radius	m
Kappa	Longitudinal slip ratio	NA
Alpha	Side slip angle	rad
a	Contact patch half length	m
b	Contact patch half width	m
Gamma	Camber angle	rad
psidot	Tire angular velocity about the tire-fixed $z$-axis (yaw   rate)	$\mathrm{rad} / \mathrm{s}$
rhoz	Axle vertical displacement along tire-fixed $z$-axis	m
FNormal	Vertical sidewall force on ground along tire-fixed $z$-axis	N
Prs	Tire inflation pressure	Pa

## Fx - Longitudinal axle force

scalar | N-by-1 vector
Longitudinal force acting on axle, $F_{x}$, along tire-fixed $x$-axis, in N. Positive force acts to move the vehicle forward.

Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Fy - Lateral axle force
scalar | $N$-by-1 vector
Lateral force acting on axle, $F_{y}$, along tire-fixed $y$-axis, in $N$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Fz - Vertical axle force
scalar $\mid N$-by-1 vector
Vertical force acting on axle, $F_{z}$, along tire-fixed $z$-axis, in N .
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Mx - Overturning moment
scalar | $N$-by-1 vector
Longitudinal moment acting on axle, $M_{x}$, about tire-fixed $x$-axis, in $\mathrm{N} \cdot \mathrm{m}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

My - Rolling resistive moment
scalar | $N$-by-1 vector
Lateral moment acting on axle, $M_{y}$, about tire-fixed $y$-axis, in $\mathrm{N} \cdot \mathrm{m}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Mz - Aligning moment
scalar | $N$-by-1 vector
Vertical moment acting on axle, $M_{z}$, about tire-fixed $z$-axis, in $\mathrm{N} \cdot \mathrm{m}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

## Parameters

## Block Options

Tire type - Type
External file (default)| Light passenger car 205/60R15|Mid-size passenger car 235/45R18|Performance car 225/40R19|SUV 265/50R20|Light truck 275/65R18| Commercial truck 295/75R22.5

Use the Tire type parameter to select the source of the tire data.

Goal	Action
Implement the Magic Formula using empirical equations ${ }^{1,2}$. The equations use fitting coefficients that correspond to the block parameters.	Update the block parameters with fitting coefficients from a file:   Set Tire type to External file.   On the External tire source pane, Click Select file.   Select the tire coefficient file.   Click Update mask values from file. In the dialog box that prompts you for confirmation, click $\mathbf{O K}$. The block updates the parameters.   5 Click Apply.
Implement fitted tire data sets provided by the Global Center for Automotive Performance Simulation (GCAPS).	Update the applicable block parameters with GCAPS fitted tire data:   1 Set Tire type to the tire that you want to implement. Options include:   - Light passenger car 205/60R15   - Mid-size passenger car 235/45R18   - Performance car 225/40R19   - SUV 265/50R20   - Light truck 275/65R18   - Commercial truck 295/75R22.5   2 Click Update applicable Tire Parameters with tire type values. On the Tire Parameters tab, the block updates the applicable parameters, including Wheel width, Rim radius, and Wheel mass.   3 Click Apply.

## Tire file or object, tireParamSet - Tire file

.mat|.tir|.txt
Tire file .tir or object containing empirical data to model tire longitudinal and lateral behavior with the Magic Formula. If you provide an .txt file, make sure the file contains names that correspond to the block parameters.

Update the block parameters with fitting coefficients from a file:

- Set Tire type to External file.
- On the External tire source pane, select Select file.
- Select the tire coefficient file.
- Select Update mask values from file. In the dialog box that prompts you for confirmation, click $\mathbf{O K}$. The block updates the parameters.
- Select Apply.

Tire side - Select tire side
Right (default) | Left | Symmetric

Specify the tire side.
Tire pressure - Pressure 220000 (default) | scalar

Tire inflation pressure, $p$, in Pa.

## Dependencies

To enable this parameter, clear Input tire pressure.
Ply steer - Include ply steer
on (default) | off
Select to include ply steer in the Magic Formula equations.
By default, the blocks include ply steer and turn slip in the Magic Formula equations. The equations are fit to flat-belt test data and predict a number of tire effects, including ply steer and turn slip. Consider removing the effects if your:

- Test data does not include ply steer or turn slip data.
- Analysis does not require ply steer or turn slip effects.

If you clear Ply steer, the block internally sets these parameters to 0 :

- Vertical shift of overturning moment, QSX1
- Combined slip Fx shift factor reduction, RHX1
- Efy curvature constant camber dependency, PEY3
- SHY horizontal shift at FZNOM, PHY1
- SHY variation with load, PHY2
- Svy/Fz vertical shift at FZNOM, PVY1
- Svy/Fz variation with load, PVY2
- Fy shift reduction with slip angle, RBY3
- Slip ratio side force Svyk/Muy*Fz at FZNOM, RVY1
- Side force Svyk/Muy*Fz variation with load, RVY2
- Bpt slope variation with camber, QBZ4
- Dpt peak trail variation with camber, QDZ3
- Dmr peak residual torque, QDZ6
- Dmr peak residual torque variation with load, QDZ7
- Ept variation with sign of alpha-t, QEZ4
- Sht horizontal trail shift at FZNOM, QHZ1
- Sht variation with load, QHZ2
- Nominal value of s/R0: effect of Fx on Mz, SSZ1

Turn slip - Include turn slip
on (default) | off
Select to include ply steer in Magic Formula equations.

By default, the blocks include ply steer and turn slip in the Magic Formula equations. The equations are fit to flat-belt test data and predict a number of tire effects, including ply steer and turn slip. Consider removing the effects if your:

- Test data does not include ply steer or turn slip data.
- Analysis does not require ply steer or turn slip effects.

If you clear Turn slip, the block internally:

- Sets the Magic Formula turn slip equations to 1. Specifically, equations 4.E77, 4.E79, 4.E81, 4.E83, 4.E84, 4.E92, 4.E102, 4.E101, and 4.E105. ${ }^{2}$.
- Uses Magic Formula terms that effect horizontal shift.
- Uses Magic Formula small turn slip values in 4.E27².


## Simulation

Maximum pressure, PRESMAX - Maximum pressure 1003118 (default) | scalar

Maximum pressure, PRESMAX, in Pa.
Minimum pressure, PRESMIN - Minimum pressure
9982 (default) | scalar
Minimum pressure, PRESMIN, in Pa.
Maximum normal force, FZMAX - Force
scalar
Maximum normal force, FZMAX, in N.
Minimum normal force, FZMIN - Force
scalar
Minimum normal force, FZMIN, in N.
Velocity tolerance used to handle low velocity situations, VXLOW - Tolerance
scalar
Velocity tolerance used to handle low-velocity situations, VXLOW, in m/s.
Max allowable slip ratio (absolute), KPUMAX - Max allowable slip ratio
0.999 (default) | scalar

Max allowable slip ratio (absolute), KPUMAX, dimensionless.
Minimum allowable slip ratio (absolute), KPUMIN - Minimum allowable slip ratio -0. 999 (default) | scalar

Minimum allowable slip ratio (absolute), KPUMIN, dimensionless.
Max allowable slip angle (absolute), ALPMAX - Max allowable slip angle 1.5708 (default) | scalar

Max allowable slip angle (absolute), $A L P M A X$, in rad.

Minimum allowable slip angle (absolute), ALPMIN - Minimum allowable slip angle - 1.5708 (default) | scalar

Minimum allowable slip angle (absolute), ALPMIN, in rad.
Maximum allowable camber angle, CAMMAX - Maximum allowable camber angle 0.173 | scalar

Maximum allowable camber angle $C A M M A X$, in rad.
Minimum allowable camber angle, CAMMIN - Minimum allowable camber angle -0. 173 | scalar

Minimum allowable camber angle, CAMMIN, in rad.
Nominal longitudinal speed, LONGVL - Speed scalar

Nominal longitudinal speed, $L O N G V L$, in $\mathrm{m} / \mathrm{s}$.
Default tyre side, tyreside - Side
'Right' (default)|char
Default tyre side, tyreside, dimensionless.
Wheel
Initial rotational velocity, omegao - Velocity
scalar
Initial rotational velocity, specified as a scalar, in rad/s.
Rotational damping, br - Damping
scalar
Rotational damping, specified as a scalar, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Unloaded radius, UNLOADED_RADIUS - Radius
scalar
Unloaded radius, UNLOADED_RADIUS, in m .
Nominal pressure, NOMPRES - Pressure
scalar
Nominal pressure, NOMPRES, in Pa.
Nominal normal force, FNOMIN - Force scalar

Nominal normal force, FNOMIN, in N.
Wheel width, WIDTH - Width
scalar
Wheel width, WIDTH, in m.

## Rim radius, RIM_RADIUS - Radius

scalar
Rim radius, RIM_RADIUS, in m.
Nominal aspect ratio, ASPECT_RATIO - Ratio
scalar
Nominal aspect ratio, ASPECT_RATIO, dimensionless.
Inertial
Wheel mass, MASS - Mass
scalar
Wheel mass, specified as a scalar, in kg.
Rotational inertia (rolling axis), IYY - Inertia
scalar
Rotational inertia (rolling axis), specified as a scalar, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.
Gravity, GRAVITY - Gravity
scalar
Gravity, GRAVITY, in m/s^2.

## Vertical

Initial tire displacement, zo - Displacement scalar

Initial tire displacement, $z o$, in m .
Initial wheel vertical velocity (wheel fixed frame), zdoto - Velocity scalar

Initial wheel vertical velocity (wheel fixed frame), $z$ doto, in $\mathrm{m} / \mathrm{s}$.
Effective rolling radius at low load stiffness, BREFF - Stiffness
scalar
Effective rolling radius at low load stiffness, BREFF, dimensionless.
Effective rolling radius peak value, DREFF - Radius
scalar
Effective rolling radius peak value, $D R E F F$, dimensionless.
Effective rolling radius at high load stiffness, FREFF - Radius scalar

Effective rolling radius at high load stiffness, FREFF, dimensionless.
Unloaded to nominal rolling radius ratio, Q_REO - Ratio scalar

Unloaded to nominal rolling radius ratio, $Q_{-} R E 0$, dimensionless.
Radius rotational speed dependence, Q_V1 - Speed scalar

Radius rotational speed dependence, $Q_{-}$V1, dimensionless.
Stiffness rotational speed dependence, Q_V2 - Speed scalar

Stiffness rotational speed dependence, $Q_{-} V 2$, dimensionless.
Linear load change with deflection, Q_FZ1 - Load change scalar

Linear load change with deflection, $Q_{-} F Z 1$, dimensionless.
Quadratic load change with deflection, Q_FZ2 - Load change scalar

Quadratic load change with deflection, Q_FZ2, dimensionless.
Linear load change with deflection and quadratic camber, Q_FZ3 - Load change scalar

Linear load change with deflection and quadratic camber, $Q_{-} F Z 3$, dimensionless.
Load response to longitudinal force, Q_FCX - Force scalar

Load response to longitudinal force, $Q_{-} F C X$, dimensionless.
Load response to lateral force, Q_FCY - Force scalar

Load response to lateral force, $Q_{-} F C Y$, dimensionless.
Vertical stiffness change due to lateral load dependency on lateral stiffness, Q_FCY2 Stiffness
scalar
Vertical stiffness change due to lateral load dependency on lateral stiffness, Q_FCY2, dimensionless.
Stiffness response to pressure, PFZ1 - Stiffness
scalar
Stiffness response to pressure, PFZ1, dimensionless.

## Vertical tire stiffness, VERTICAL_STIFFNESS - Stiffness

scalar
Vertical tire stiffness, VERTICAL_STIFFNESS, in N/m.

## Vertical tire damping, VERTICAL_DAMPING - Damping scalar

Vertical tire damping, VERTICAL_DAMPING, in $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}$.
Rim bottoming out offset, BOTTOM_OFFST - Offset scalar

Rim bottoming out offset, BOTTOM_OFFST, in m.

## Bottoming out stiffness, BOTTOM_STIFF - Stiffness

 scalarBottoming out stiffness, BOTTOM_STIFF, in N/m.
Linear load dependent camber angle influence on vertical stiffness, Q_CAM1 - Stiffness scalar

Linear load dependent camber angle influence on vertical stiffness, Q_CAM1, dimensionless.
Quadratic load dependent camber angle influence on vertical stiffness, Q_CAM2 - Stiffness scalar

Quadratic load dependent camber angle influence on vertical stiffness, $Q_{-} C A M 2$, dimensionless.
Linear load and camber angle dependent reduction on vertical stiffness, Q_CAM3 - Stiffness scalar

Linear load and camber angle dependent reduction on vertical stiffness, $Q_{-} C A M 3$, dimensionless.

## Structural

Longitudinal stiffness, LONGITUDINAL_STIFFNESS - Stiffness
scalar
Longitudinal stiffness, LONGITUDINAL_STIFFNESS, in N/m.
Lateral stiffness, LATERAL_STIF FNESS - Stiffness
scalar
Longitudinal stiffness, LATERAL_STIFFNESS, in N/m.
Linear vertical deflection influence on longitudinal stiffness, PCFX1 - Deflection influence scalar

Linear vertical deflection influence on longitudinal stiffness, PCFX1, dimensionless.
Quadratic vertical deflection influence on longitudinal stiffness, PCFX2 - Deflection influence scalar

Quadratic vertical deflection influence on longitudinal stiffness, PCFX2, dimensionless.
Pressure dependency on longitudinal stiffness, PCFX3 - Pressure dependency scalar

Pressure dependency on longitudinal stiffness, PCFX3, dimensionless.
Linear vertical deflection influence on lateral stiffness, PCFY1 - Deflection influence scalar

Linear vertical deflection influence on lateral stiffness, PCFY1, dimensionless.
Quadratic vertical deflection influence on lateral stiffness, PCFY2 - Deflection influence scalar

Quadratic vertical deflection influence on lateral stiffness, PCFY2, dimensionless.
Pressure dependency on longitudinal stiffness, PCFY3 - Pressure dependency scalar

Pressure dependency on longitudinal stiffness, PCFY3, dimensionless.

## Contact Patch

Contact length square root term, Q_RA1 - Length term

## scalar

Contact length square root term, $Q _$RA1, dimensionless.
Contact length linear term, Q_RA2 - Length term
scalar
Contact length linear term, Q_RA2, dimensionless.
Contact width root term, Q_RB1 - Width term
scalar
Contact width root term, Q_RB1, dimensionless.
Contact width linear term, Q_RB2 - Width term
scalar
Contact width linear term, $Q_{-} R B 2$, dimensionless.

## Longitudinal

Cfx shape factor, PCX1 - Shape factor
scalar
Shape factor, $C_{f x}, P C X 1$, dimensionless.
Longitudinal friction at nominal normal load, PDX1 - Friction scalar

Longitudinal friction at nominal normal load, PDX1, dimensionless.
Frictional variation with load, PDX2 - Friction variation scalar

Frictional variation with load, $P D X 2$, dimensionless.
Frictional variation with camber, PDX3 - Friction variation scalar

Frictional variation with camber, $P D X 3$, in $1 / \mathrm{rad}^{\wedge} 2$.

## Longitudinal curvature at nominal normal load, PEX1 - Curvature

 scalarLongitudinal curvature at nominal normal load, PEX1, dimensionless.
Variation of curvature factor with load, PEX2 - Curvature variation scalar

Variation of curvature factor with load, PEX2, dimensionless.
Variation of curvature factor with square of load, PEX3 - Curvature variation scalar

Variation of curvature factor with square of load, PEX3, dimensionless.
Longitudinal curvature factor with slip, PEX4 - Curvature scalar

Longitudinal curvature factor with slip, PEX4, dimensionless.
Longitudinal slip stiffness at nominal normal load, PKX1 - Stiffness
scalar
Longitudinal slip stiffness at nominal normal load, PKX1, dimensionless.
Variation of slip stiffness with load, PKX2 - Stiffness variation
scalar
Variation of slip stiffness with load, $P K X 2$, dimensionless.
Slip stiffness exponent factor, PKX3 - Slip stiffness
scalar
Slip stiffness exponent factor, $P K X 3$, dimensionless.
Horizontal shift in slip ratio at nominal normal load, PHX1 - Slip ratio shift scalar

Horizontal shift in slip ratio at nominal normal load, PHX1, dimensionless.
Variation of horizontal slip ratio with load, PHX2 - Slip variation scalar

Variation of horizontal slip ratio with load, PHX2, dimensionless.
Vertical shift in load at nominal normal load, PVX1 - Load shift scalar

Vertical shift in load at nominal normal load, PVX1, dimensionless.
Variation of vertical shift with load, PVX2 - Load variation scalar

Variation of vertical shift with load, $P V X 2$, dimensionless.

Linear variation of longitudinal slip stiffness with tire pressure, PPX1 - Stiffness variation scalar

Linear variation of longitudinal slip stiffness with tire pressure, $P$ PX1, dimensionless.
Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2 - Stiffness variation scalar

Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2, dimensionless.
Linear variation of peak longitudinal friction with tire pressure, PPX3 - Friction variation scalar

Linear variation of peak longitudinal friction with tire pressure, $\operatorname{PPX} 3$, dimensionless.
Quadratic variation of peak longitudinal friction with tire pressure, PPX4 - Friction variation scalar

Quadratic variation of peak longitudinal friction with tire pressure, PPX4, dimensionless.
Combined slip Fx slope factor reduction, RBX1 - Combined slip longitudinal force slope factor reduction
scalar
Combined slip longitudinal force, $F_{x}$, slope factor reduction, $R B X 1$, dimensionless.
Slip ratio Fx slope reduction variation, RBX2 - Slip ratio longitudinal force slope reduction variation
scalar
Slip ratio longitudinal force, $F_{x}$, slope reduction variation, $R B X 2$, dimensionless.
Camber influence on combined slip Fx stiffness, RBX3 - Camber influence on combined slip longitudinal force stiffness
scalar
Camber influence on combined slip longitudinal force, $F_{x}$, stiffness, $R B X 3$, dimensionless.
Shape factor for combined slip Fx reduction, RCX1 - Shape factor for combined slip longitudinal force reduction
scalar
Shape factor for combined slip longitudinal force, $F_{x}$, reduction, RCX1, dimensionless.
Combined Fx curvature factor, REX1 - Combined longitudinal force curvature factor scalar

Combined longitudinal force, $F_{x}$, curvature factor, REX1, dimensionless.
Combined Fx curvature factor with load, REX2 - Combined longitudinal force curvature factor scalar

Combined longitudinal force, $F_{x}$, curvature factor with load, REX2, dimensionless.
Combined slip Fx shift factor reduction, RHX1 - Combined slip longitudinal force slip factor scalar

Combined slip longitudinal force, $F_{x}$, shift factor reduction, RHX1, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.

## Overturning

Vertical shift of overturning moment, QSX1 - Overturning moment scalar

Vertical shift of overturning moment, QSX1, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Overturning moment due to camber, QSX2 - Overturning moment due to camber scalar

Overturning moment due to camber, QSX2, dimensionless.
Overturning moment due to Fy, QSX3 - Overturning moment due to lateral force scalar

Overturning moment due to lateral force, QSX3, dimensionless.
Mx combined lateral force load and camber, QSX4 - Overturning moment scalar

Overturning moment, $M_{x}$, combined lateral force load and camber, QSX4, dimensionless.
Mx load effect due to lateral force and camber, QSX5 - Overturning moment scalar

Overturning moment, $M_{x}$, load effect due to lateral force and camber, QSX5, dimensionless.
Mx load effect due to B-factor, QSX6 - Overturning moment scalar

Overturning moment, $M_{x}$, load effect due to B-factor, QSX6, dimensionless.
Mx due to camber and load, QSX7 - Overturning moment scalar

Overturning moment, $M_{x}$, due to camber and load, QSX7, dimensionless.
Mx due to lateral force and load, QSX8 - Overturning moment scalar

Overturning moment, $M_{x}$, due to lateral force and load, QSX8, dimensionless.
Mx due to B-factor of lateral force and load, QSX9 - Overturning moment scalar

Overturning moment, $M_{x}$, due to B-factor of lateral force and load, QSX9, dimensionless.

## Mx due to vertical force and camber, QSX10 - Overturning moment scalar

Overturning moment, $M_{x}$, due to vertical force and camber, QSX10, dimensionless.
Mx due to B-factor of vertical force and camber, QSX11 - Overturning moment scalar

Overturning moment, $M_{x}$, due to B-factor of vertical force and camber, QSX11, dimensionless.
Mx due to squared camber, QSX12 - Overturning moment
scalar
Overturning moment, $M_{x}$, due to squared camber, QSX12, dimensionless.
Mx due to lateral force, QSX13 - Overturning moment
scalar
Overturning moment, $M_{x}$, due to lateral force, QSX13, dimensionless.
Mx due to lateral force with camber, QSX14 - Overturning moment scalar

Overturning moment, $M_{x}$, due to lateral force with camber, QSX14, dimensionless.
Mx due to inflation pressure, PPMX1 - Overturning moment due to pressure scalar

Overturning moment, $M_{x}$, due to inflation pressure, PPMX1, dimensionless.

## Lateral

Cfy shape factor for lateral force, PCY1 - Lateral force shape factor scalar

Shape factor for lateral force, $C_{f y}$, PCY1, dimensionless.
Lateral friction muy, PDY1 - Lateral friction
scalar
Lateral friction, $\mu_{y}$, PDY1, dimensionless.
Lateral friction variation of muy with load, PDY2 - Lateral friction variation scalar

Variation of lateral friction, $\mu_{y}$, with load, PDY2, dimensionless.
Lateral friction variation of muy with squared camber, PDY3 - Lateral friction variation scalar

Variation of lateral friction, $\mu_{y}$, with squared camber, PDY3, dimensionless.
Efy lateral curvature at nominal force FZNOM, PEY1 - Lateral curvature at nominal force scalar

Lateral curvature, $E f_{y}$, at nominal force, $F_{Z N O M}$, PEY1, dimensionless.

Efy curvature variation with load, PEY2 - Lateral curvature variation scalar

Lateral curvature, $E f_{y}$, variation with load, PEY2, dimensionless.
Efy curvature constant camber dependency, PEY3 - Lateral curvature constant scalar

Lateral curvature, $E f_{y}$, constant camber dependency, PEY3, dimensionless.
Dependencies
If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Efy curvature variation with camber, PEY4 - Lateral curvature variation scalar

Lateral curvature, $E f_{y}$, variation with camber, PEY4, dimensionless.
Efy curvature variation with camber squared, PEY5 - Lateral curvature variation scalar

Lateral curvature, $E f_{y}$, variation with camber squared, $P E Y 5$, dimensionless.
Maximum KFy/FZNOM stiffness, PKY1 - Maximum stiffness

## scalar

Maximum lateral force stiffness, $K F_{y}$, to nominal force, $F_{Z N O M}$, ratio, $P K Y 1$, dimensionless.
Load at maximum KFy/FZNOM stiffness, PKY2 - Load
scalar
Load at maximum lateral force stiffness, $K F_{y}$, to nominal force, $F_{Z N O M}$, ratio, $P K Y 2$, dimensionless.
KFy/FZNOM stiffness variation with camber, PKY3 - Stiffness variation scalar

Lateral force stiffness, $K F_{y}$, to nominal force, $F_{Z N O M}$, stiffness variation with camber, $P K Y 3$, dimensionless.

KFy curvature, PKY4 - Lateral force stiffness curvature scalar

Lateral force stiffness, $K F_{y}$ curvature, $P K Y 4$, dimensionless.
Variation of peak stiffness with squared camber, PKY5 - Stiffness variation scalar

Variation of peak stiffness with squared camber, PKY5, dimensionless.
Fy camber stiffness factor, PKY6 - Lateral force camber stiffness factor scalar

Lateral force, $F_{y}$, camber stiffness factor, $P K Y 6$, dimensionless.
Camber stiffness vertical load dependency, PKY7 - Stiffness
scalar

Camber stiffness vertical load dependency, PKY7, dimensionless.
SHY horizontal shift at FZNOM, PHY1 - Horizontal shift at nominal force scalar

Horizontal shift, $S_{H Y}$, at nominal force, $F_{Z N O M}$, PHY1, dimensionless.
Dependencies
If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
SHY variation with load, PHY2 - Horizontal shift variation
scalar
Horizontal shift, $S_{H Y}$, variation with load, PHY2, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Svy/Fz vertical shift at FZNOM, PVY1 - Vertical shift at nominal force scalar

Vertical shift, $S_{v y}$, at nominal force, $F_{Z N O M}, P V Y 1$, dimensionless.
Dependencies
If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Svy/Fz variation with load, PVY2 - Vertical shift variation with load scalar

Vertical shift, $S_{v y}$, variation with load, $P V Y 2$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Svy/Fz variation with camber, PVY3 - Vertical shift variation with camber scalar

Vertical shift, $S_{v y}$, variation with camber, $P V Y 3$, dimensionless.
Svy/Fz variation with load and camber, PVY4 - Vertical shift variation with load and camber scalar

Vertical shift, $S_{v y}$, variation with load and camber, $P V Y 4$, dimensionless.
Cornering stiffness variation with inflation pressure, PPY1 - Stiffness variation with pressure scalar

Cornering stiffness variation with inflation pressure, PPY1, dimensionless.
Cornering stiffness variation with inflation pressure induced nominal load dependency, PPY2 - Stiffness variation with pressure scalar

Cornering stiffness variation with inflation pressure induced nominal load dependency, PPY2, dimensionless.

## Linear inflation pressure on peak lateral friction, PPY3 - Pressure scalar

Linear inflation pressure on peak lateral friction, $P P Y 3$, dimensionless.
Quadratic inflation pressure on peak lateral friction, PPY4 - Pressure scalar

Quadratic inflation pressure on peak lateral friction, PPY4, dimensionless.
Inflation pressure effect on camber stiffness, PPY5 - Pressure scalar

Inflation pressure effect on camber stiffness, PPY5, dimensionless.
Combined Fy reduction slope factor, RBY1 - Combined lateral force reduction slope factor scalar

Combined lateral force, $F_{y}$, reduction slope factor, RBY1, dimensionless.
Fy slope reduction with slip angle, RBY2 - Lateral force slope reduction with slip angle scalar

Lateral force, $F_{y}$, slope reduction with slip angle, RBY2, dimensionless.
Fy shift reduction with slip angle, RBY3 - Lateral force shift reduction with slip angle scalar

Lateral force, $F_{y}$, shift reduction with slip angle, RBY3, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Fy combined stiffness variation from camber, RBY4 - Lateral force combined stiffness variation from camber
scalar
Lateral force, $F_{y}$, combined stiffness variation from camber, RBY4, dimensionless.
Fy combined reduction shape factor, RCY1 - Lateral force combined reduction shape factor scalar

Lateral force, $F_{y}$, combined reduction shape factor, RCY1, dimensionless.
Fy combined curvature factor, REY1 - Lateral force combined curvature factor scalar

Lateral force, $F_{y}$, combined curvature factor, REY1, dimensionless.
Fy combined curvature factor with load, REY2 - Lateral force combined curvature factor with load
scalar

Lateral force, $F_{y}$, combined curvature factor with load, REY2, dimensionless.
Fy combined reduction shift factor, RHY1 - Lateral force combined reduction shift factor scalar

Lateral force, $F_{y}$, combined reduction shift factor, RHY1, dimensionless.
Fy combined reduction shift factor with load, RHY2 - Lateral force combined reduction shift factor with load
scalar
Lateral force, $F_{y}$, combined reduction shift factor with load, RHY2, dimensionless.
Slip ratio side force Svyk/Muy*Fz at FZNOM, RVY1 - Slip ratio slide force at nominal force scalar

Slip ratio side force at nominal force, $F_{\text {ZNOM }}, R V Y 1$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Side force Svyk/Muy*Fz variation with load, RVY2 - Side force variation with load scalar

Side force variation with load, RVY2, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Side force Svyk/Muy*Fz variation with camber, RVY3 - Side force variation with camber scalar

Side force variation with camber, $R V Y 3$, dimensionless.
Side force Svyk/Muy*Fz variation with slip angle, RVY4 - Side force variation with slip angle scalar

Side force variation with slip angle, $R V Y 4$, dimensionless.
Side force Svyk/Muy*Fz variation with slip ratio, RVY5 - Side force variation with slip ratio scalar

Side force variation with slip ratio, $R V Y 5$, dimensionless.
Side force Svyk/Muy*Fz variation with slip ratio arctangent, RVY6 - Side force variation with slip ratio arctangent scalar

Side force variation with slip ratio arctangent, $R V Y 6$, dimensionless.

## Rolling

Torque resistance coefficient, QSY1 - Torque resistance scalar

Torque resistance coefficient, QSY1, dimensionless.
Torque resistance due to Fx, QSY2 - Torque resistance due to longitudinal force scalar

Torque resistance due to longitudinal force, $F_{x}$, QSY2, dimensionless.
Torque resistance due to speed, QSY3 - Torque resistance due to speed scalar

Torque resistance due to speed, QSY3, dimensionless.
Torque resistance due to speed^4, QSY4 - Torque resistance due to speed scalar

Torque resistance due to speed^ ${ }^{\wedge}$, $Q S Y 4$, dimensionless.
Torque resistance due to square of camber, QSY5 - Torque resistance due to camber scalar

Torque resistance due to square of camber, QSY5, dimensionless.
Torque resistance due to square of camber and load, QSY6 - Torque resistance due to camber and load
scalar
Torque resistance due to square of camber and load, QSY6, dimensionless.
Torque resistance due to load, QSY7 - Torque resistance due to load scalar

Torque resistance due to load, QSY7, dimensionless.
Torque resistance due to pressure, QSY8 - Torque resistance due to pressure scalar

Torque resistance due to pressure, QSY8, dimensionless.
Aligning
Trail slope factor for trail Bpt at FZNOM, QBZ1 - Trail slope factor at nominal force scalar

Trail slope factor for trail $B p t$ at nominal force, $F_{\text {ZNOM }}, Q B Z 1$, dimensionless.
Bpt slope variation with load, QBZ2 - Slope variation with load
scalar
Slope variation with load, QBZ2, dimensionless.
Bpt slope variation with square of load, QBZ3 - Slope variation with load scalar

Slope variation with square of load, $Q B Z 3$, dimensionless.

Bpt slope variation with camber, QBZ4 - Slope variation with camber scalar

Slope variation with camber, QBZ4, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Bpt slope variation with absolute value of camber, QBZ5 - Slope variation with camber scalar

Slope variation with absolute value of camber, QBZ5, dimensionless.
Bpt slope variation with square of camber, QBZ6 - Slope variation with camber scalar

Slope variation with square of camber, QBZ6, dimensionless.
Br of Mzr slope scaling factor, QBZ9 - Slope scaling factor scalar

Slope scaling factor, QBZ9, dimensionless.
Br of Mzr cornering stiffness factor, QBZ10 - Cornering stiffness factor
0 (default) | scalar
$B r$ of $M z r$ cornering stiffness factor, $Q B Z 10$, dimensionless.
Cpt pneumatic trail shape factor, QCZ1 - Pneumatic trail shape factor scalar

Pneumatic trail shape factor, $C_{p t}$, $Q C Z 1$, dimensionless.
Dpt peak trail, QDZ1 - Peak trail
scalar
Peak trail, $D_{p t}$ QDZ1, dimensionless.
Dpt peak trail variation with load, QDZ2 - Peak trail variation with load scalar

Peak trail, $D_{p t}$, variation with load, QDZ2, dimensionless.
Dpt peak trail variation with camber, QDZ3 - Peak trail variation with camber scalar

Peak trail, $D_{p t}$, variation with camber, $Q D Z 3$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Dpt peak trail variation with square of camber, QDZ4 - Peak trail variation with camber scalar

Peak trail, $D_{p t}$, variation with square of camber, $Q D Z 4$, dimensionless.

Dmr peak residual torque, QDZ6 - Peak residual torque scalar

Peak residual torque, $D_{m r}, Q D Z 6$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Dmr peak residual torque variation with load, QDZ7 - Peak residual torque variation with load scalar

Peak residual torque, $D_{m r}$, variation with load, $Q D Z 7$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Dmr peak residual torque variation with camber, QDZ8 - Peak residual torque variation with camber
scalar
Peak residual torque, $D_{m r}$, variation with camber, $Q D Z 8$, dimensionless.
Dmr peak residual torque variation with camber and load, QDZ9 - Peak residual torque variation with camber and load scalar

Peak residual torque, $D_{m r}$, variation with camber and load, $Q D Z 9$, dimensionless.
Dmr peak residual torque variation with square of camber, QDZ10 - Peak residual torque variation with camber scalar

Peak residual torque, $D_{m r}$, variation with square of camber, $Q D Z 10$, dimensionless.
Dmr peak residual torque variation with square of load, QDZ11 - Peak residual torque variation with load scalar

Peak residual torque, $D_{m r}$, variation with square of load, $Q D Z 11$, dimensionless.
Ept trail curvature at FZNOM, QEZ1 - Trail curvature at nominal force scalar

Trail curvature, $E_{p t}$, at nominal force, $F_{Z N O M}, Q E Z 1$, dimensionless.
Ept variation with load, QEZ2 - Trail curvature variation with load scalar

Trail curvature, $E_{p t}$ variation with load, QEZ2, dimensionless.
Ept variation with square of load, QEZ3 - Trail curvature variation with load scalar

Trail curvature, $E_{p t}$ variation with square of load, $Q E Z 3$, dimensionless.

## Ept variation with sign of alpha-t, QEZ4 - Trail curvature variation <br> scalar

Trail curvature, $E_{p t}$ variation with sign of alpha-t, QEZ4, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.

## Ept variation with sign of alpha-t and camber, QEZ5 - Variation <br> scalar

Trail curvature, $E_{p t}$ variation with sign of alpha-t and camber, $Q E Z 5$, dimensionless.
Sht horizontal trail shift at FZNOM, QHZ1 - Horizontal trail shift at nominal load scalar

Horizontal trail shift, $S h_{t}$, at nominal load, $F_{\text {ZNOM }}, Q H Z 1$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Sht variation with load, QHZ2 - Horizontal trail shift variation with load

## scalar

Horizontal trail shift, $S h_{t}$, variation with load, $Q H Z 2$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Sht variation with camber, QHZ3 - Horizontal trail shift variation with camber scalar

Horizontal trail shift, $S h_{t}$, variation with camber, $Q H Z 3$, dimensionless.
Sht variation with load and camber, QHZ4 - Horizontal trail shift variation with load and camber scalar

Horizontal trail shift, $S h_{t}$, variation with load and camber, QHZ4, dimensionless.
Inflation pressure influence on trail length, PPZ1 - Pressure influence on trail length scalar

Inflation pressure influence on trail length, PPZ1, dimensionless.
Inflation pressure influence on residual aligning torque, PPZ2 - Pressure influence on aligning torque
scalar
Inflation pressure influence on residual aligning torque, $P$ PZZ2, dimensionless.
Nominal value of s/R0: effect of Fx on Mz, SSZ1 - Effect of longitudinal force on aligning torque scalar

Nominal value of $\mathrm{s} / \mathrm{R} 0$ : effect of longitudinal force, $F_{x}$, on aligning torque, $M_{z}$, SSZ1, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
s/R0 variation with lateral to nominal force ratio, SSZ2 - Variation with lateral to nominal force ratio
scalar
Variation with lateral to nominal force ratio, SSZ2, dimensionless.
s/R0 variation with camber, SSZ3 - Variation with camber
scalar
Variation with camber, SSZ3, dimensionless.
s/R0 variation with camber and load, SSZ4 - Variation with camber and load

## scalar

Variation with camber and load, SSZ4, dimensionless.

## Turnslip

Fx peak reduction due to spin, PDXP1 - Longitudinal force peak reduction due to spin scalar

Longitudinal force, $F_{x}$, peak reduction due to spin, $P D X P 1$, dimensionless.
Fx peak reduction due to spin with varying load, PDXP2 - Longitudinal force peak reduction due to spin
scalar
Longitudinal force, $F_{x}$, peak reduction due to spin with varying load, $P D X P 2$, dimensionless.
Fx peak reduction due to spin with slip ratio, PDXP3 - Longitudinal force peak reduction due to spin
scalar
Longitudinal force, $F_{x}$, peak reduction due to spin with slip ratio, PDXP3, dimensionless.
Cornering stiffness reduction due to spin, PKYP1 - Stiffness reduction due to spin scalar

Cornering stiffness reduction due to spin, PKYP1, dimensionless.
Fy peak reduction due to spin, PDYP1 - Lateral force peak reduction due to spin scalar

Lateral force, $F_{y}$, peak reduction due to spin, PDYP1, dimensionless.
Fy peak reduction due to spin with varying load, PDYP2 - Lateral force peak reduction due to spin scalar

Lateral force, $F_{y}$, peak reduction due to spin with varying load, $P D Y P 2$, dimensionless.

Fy peak reduction due to spin with slip angle, PDYP3 - Lateral force peak reduction due to spin scalar

Lateral force, $F_{y}$, peak reduction due to spin with slip angle, PDYP3, dimensionless.
Fy peak reduction due to square root of spin, PDYP4 - Lateral force peak reduction due to spin scalar

Lateral force, $F_{y}$, peak reduction due to square root of spin, PDYP4, dimensionless.
Fy vs. slip angle response lateral shift limit, PHYP1 - Lateral force versus slip angle response scalar

Lateral force, $F_{y}$, versus slip angle response lateral shift limit, PHYP1, dimensionless.
Fy vs. slip angle response max lateral shift limit, PHYP2 - Lateral force versus slip angle response
scalar
Lateral force, $F_{y}$, versus slip angle response max lateral shift limit, PHYP2, dimensionless.
Fy vs. slip angle response max lateral shift limit with load, PHYP3 - Lateral force versus slip angle response
scalar
Lateral force, $F_{y}$, versus slip angle response max lateral shift limit with load, PHYP3, dimensionless.
Fy vs. slip angle response lateral shift curvature factor, PHYP4 - Lateral force versus slip angle response
scalar
Lateral force, $F_{y}$, versus slip angle response lateral shift curvature factor, PHYP4, dimensionless.
Camber stiffness reduction due to spin, PECP1 - Camber stiffness reduction scalar

Camber stiffness reduction due to spin, PECP1, dimensionless.
Camber stiffness reduction due to spin with load, PECP2 - Camber stiffness reduction scalar

Camber stiffness reduction due to spin with load, PECP2, dimensionless.
Turn slip pneumatic trail reduction factor, QDTP1 - Turn slip pneumatic trail reduction factor scalar

Turn slip pneumatic trail reduction factor, QDTP1, dimensionless.
Turn moment for constant turning and zero longitudinal speed, QCRP1 - Turn moment for constant turning scalar

Turn moment for constant turning and zero longitudinal speed, QCRP1, dimensionless.
Turn slip moment increase with spin at 90deg slip angle, QCRP2 - Turn slip moment scalar

Turn slip moment increase with spin at 90-degree slip angle, QCRP2, dimensionless.
Residual spin torque reduction from side slip, QBRP1 - Residual spin torque reduction scalar

Residual spin torque reduction from side slip, QBRP1, dimensionless.
Turn slip moment peak magnitude, QDRP1 - Turn slip moment peak magnitude scalar

Turn slip moment peak magnitude, $Q D R P 1$, dimensionless.
Turn slip moment curvature, QDRP2 - Turn slip moment curvature
scalar
Turn slip moment curvature, QDRP2, dimensionless.

## Version History

Introduced in R2021b
R2022b: New Ply steer and Turn slip Parameters
Behavior changed in R2022b
Starting from R2022b, the Combined Slip Wheel CPI block includes Ply steer and Turn slip parameters. To remove ply steer and turn slip from the Magic Formula implementation of these blocks, clear the Ply steer and Turn slip parameters.

## References

[1] Besselink, Igo, Antoine J. M. Schmeitz, and Hans B. Pacejka, "An improved Magic Formula/Swift tyre model that can handle inflation pressure changes," Vehicle System Dynamics International Journal of Vehicle Mechanics and Mobility 48, sup. 1 (2010): 337-52, https:// doi.org/10.1080/00423111003748088.
[2] Pacejka, Hans B. Tire and Vehicle Dynamics. 3rd ed. Oxford, United Kingdom: SAE and Butterworth-Heinemann, 2012.
[3] Bohm, F., and H. P. Willumeit, "Tyre Models for Vehicle Dynamic Analysis: Proceedings of the 2nd International Colloquium on Tyre Models for Vehicle Dynamics Analysis, Held at the Technical University of Berlin, Germany, February 20-21, 1997." Vehicle System Dynamics International Journal of Vehicle Mechanics and Mobility 27, sup. 1, 343-45. https://doi.org/ 0.1080/00423119708969669.
[4] Schmid, Steven R., Bernard J. Hamrock, and Bo O. Jacobson. Fundamentals of Machine Elements, SI Version. 3rd ed. Boca Raton: CRC Press, 2014.

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink $®$ Coder $^{\mathrm{TM}}$.

## See Also

Combined Slip Wheel 2DOF | Combined Slip Wheel 2DOF STI | Fiala Wheel 2DOF | Longitudinal Wheel | Dugoff Wheel 2DOF

Topics
"Coordinate Systems in Vehicle Dynamics Blockset"

## Combined Slip Wheel STI

Combined slip wheel compliant with STI Tydex standard


## Libraries:

Vehicle Dynamics Blockset / Wheels and Tires

## Description

The Combined Slip Wheel STI block implements the longitudinal and lateral behavior of a wheel characterized by the Magic Formula ${ }^{1,2}$ that complies with the standard tire interface (STI) Tyre Data Exchange Format (TYDEX) ${ }^{3}$ standard. You can import your own tire data or use fitted tire data sets provided by the Global Center for Automotive Performance Simulation (GCAPS). Use the block in driveline and vehicle simulations where low-frequency tire road interactions are required to determine vehicle acceleration and wheel-rolling resistance. The block is suitable for applications that require combined lateral slip, for example, in lateral motion and yaw stability studies.

Based on the wheel rotational velocity, longitudinal and lateral velocity, wheel camber angle, and inflation pressure, the block determines the vertical motion, forces, and moments in all six degrees of freedom (DOF). Use the vertical DOF to study tire-suspension resonances from road profiles or chassis motion.

Use the Tire type parameter to select the source of the tire data.

Goal
Implement the Magic Formula using   empirical equations   use fitting coefficients the equations   correspond to the block parameters.

## Action <br> Update the block parameters with fitting coefficients from a file: <br> 1 Set Tire type to External file. <br> 2 On the External tire source pane, Click Select file. <br> 3 Select the tire coefficient file. <br> 4 Click Update mask values from file. In the dialog box that prompts you for confirmation, click OK. The block updates the parameters.

5 Click Apply.

Goal	Action
Implement fitted tire data sets provided by the Global Center for Automotive Performance Simulation (GCAPS).	Update the applicable block parameters with GCAPS fitted tire data:   1 Set Tire type to the tire that you want to implement. Options include:   - Light passenger car 205/60R15   - Mid-size passenger car 235/45R18   - Performance car 225/40R19   - SUV 265/50R20   - Light truck 275/65R18   - Commercial truck 295/75R22.5   2 Click Update applicable Tire Parameters with tire type values. On the Tire Parameters tab, the block updates the applicable parameters, including Wheel width, Rim radius, and Wheel mass.   Click Apply.

## Rotational Wheel Dynamics

The block calculates the inertial response of the wheel subject to:

- Axle losses
- Tire rolling resistance
- Ground contact through the tire-road interface

To implement the Magic Formula, the block uses these equations from the cited references:

Calculation	Equations
Longitudinal force	Tire and Vehicle Dynamics ${ }^{2}$ equations 4.E9 through 4.E57
Lateral force - pure   sideslip	Tire and Vehicle Dynamics ${ }^{2}$ equations 4.E19 through 4.E30
Lateral force - combined   slip	Tire and Vehicle Dynamics ${ }^{2}$ equations 4.E58 through 4.E67
Vertical dynamics	Tire and Vehicle Dynamics ${ }^{2}$ equations 4.E68, 4.E1, 4.E2a, and 4.E2b
Overturning couple	Tire and Vehicle Dynamics ${ }^{2}$ equation 4.E69
Rolling resistance	- An improved Magic Formula/Swift tyre model that can handle inflation $_{\text {pressure changes }{ }^{1} \text { equation 6.1.2 }}$   Tire and Vehicle Dynamics ${ }^{2}$ equation 4.E70
Aligning moment    Aligning torque - Tire and Vehicle Dynamics ${ }^{2}$ equation 4.E31 through 4.E49Tire and Vehicle Dynamics ${ }^{2}$ equation 4.E71 through 4.E78   If you clear Include turn slip, the block sets some of these equations to 1.	

## STI Wheel Coordinate System

The block uses wheel coordinate system axes ( $X_{W}, Y_{W}, Z_{W}$ ) that are fixed in a reference frame attached to the wheel. The origin is at the wheel center.

The STI wheel coordinate system is shown in blue.

Note The STI wheel coordinate system (blue) is equivalent to the TYDEX centre-axis coordinate system.

4


Axis	Description
$X_{W}$	$X_{W}$ and $Y_{W}$ are parallel to the wheel plane:
$Y_{W}$	- $\quad X_{W}$ is parallel to the local road plane.         $Z_{W} \quad Y_{W}$ is parallel to the wheel-spin axis.   $Z_{W}$ points upward.

## Ports

## Input

Xe - Wheel position in inertial reference frame
N -by-3 vector
Wheel position along inertial-fixed $X$-, $Y$-, $Z$-axes, respectively, in m .
Vector is the number of wheels, $N$, by 3.

[^3] without prior permission from SAE.

DCM - Direction cosine matrix
3-by-3 vector
Transformation matrix from the wheel coordinate system to the Earth-fixed inertial coordinate system.

Ang - Rotation angle of the rim
3-by-3 vector
Rotation angle of rim with respect to the wheel center, in rad.
Ve - Wheel velocity in inertial reference frame
N -by-3 vector
Wheel velocity along inertial-fixed $X$-, $Y$-, and $Z$-axes, respectively, in m .
Vector is the number of wheels, $N$, by 3.
Omega - Rotational velocity
N -by-3 vector
Wheel rotational velocity along inertial-fixed $X$-, $Y$-, and $Z$-axes, respectively, in m.
Vector is the number of wheels, $N$, by 3.
OmegaWc - Rim rotational velocity
scalar
Rim rotational velocity, $\omega$, about wheel spin axis, in rad/s.
Road - Wheel position, rotation matrix, velocity
1-by-18 vector
Vector containing wheel position, rotation, and velocity with respect to the Earth-fixed inertial coordinate system.

Vector Element	Description
$\operatorname{Road}(1,1)$	Wheel position along inertial-fixed $X$-, $Y$-, and $Z$-axes,   respectively, in $m$.
$\operatorname{Road}(1,2)$	
$\operatorname{Road}(1,3)$	


Vector Element	Description
$\operatorname{Road}(1,4)$	Transformation matrix from the wheel coordinate system to the   Earth-fixed inertial coordinate system.
$\operatorname{Road}(1,6)$	
$\operatorname{Road}(1,7)$	
$\operatorname{Road}(1,8)$	
$\operatorname{Road}(1,9)$	
$\operatorname{Road}(1,10)$	
$\operatorname{Road}(1,11)$	
$\operatorname{Road}(1,12)$	Wheel velocity along inertial-fixed $X$-, $Y$-, and $Z$-axes,   respectively, in m/s.
$\operatorname{Road}(1,13)$   $\operatorname{Road}(1,15)$	Wheel angular velocity along inertial-fixed $X$-, $Y$-, and $Z$-axes,   respectively, in rad/s.
$\operatorname{Road}(1,16)$	
$\operatorname{Road}(1,17)$	$\operatorname{Road}(1,18)$

ScaleFctrs - Road friction scale factors
2-by-N array
Magic formula road friction scale factor array. Array dimensions are 2 by the number of wheels, $N$.
The Magic Formula equations use scale factors to account for static or simulation run-time variations. Nominally, most are set to 1 .

Array Element	Variable	Scale Factor
ScaleFctrs $(1,1)$	lam_mux	Longitudinal peak friction coefficient
ScaleFctrs $(2,1)$	lam_muy	Lateral peak friction coefficient

Prs - Tire inflation pressure
scalar | N-by-1 vector
Tire inflation pressure, $p_{i}$, in Pa .
Vector is the number of wheels, $N$, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

## Dependencies

To create this port, select Input tire pressure.

## Output

Info - Block data
bus
Block data, returned as a bus signal containing these block values.

Signal		Description	Units
CPI_info	Omega	Wheel angular velocity about wheel-fixed $y$ axis	rad/s
	FX	Longitudinal vehicle force along tire-fixed $x$ axis	N
	Fy	Lateral vehicle force along tire-fixed $y$-axis	N
	Fz	Vertical vehicle force along tire-fixed $z$-axis	N
	Mx	Overturning moment about tire-fixed $x$-axis	$\mathrm{N} \cdot \mathrm{m}$
	My	Rolling resistance torque about tire-fixed $y$ axis	$\mathrm{N} \cdot \mathrm{m}$
	Mz	Aligning moment about tire-fixed $z$-axis	$\mathrm{N} \cdot \mathrm{m}$
	Vx	Vehicle longitudinal velocity along tire-fixed x-axis	$\mathrm{m} / \mathrm{s}$
	Vy	Vehicle lateral velocity along tire-fixed $y$-axis	$\mathrm{m} / \mathrm{s}$
	Re	Loaded effective radius	m
	Kappa	Longitudinal slip ratio	NA
	Alpha	Side slip angle	rad
	a	Contact patch half length	m
	b	Contact patch half width	m
	Gamma	Camber angle	rad
	psidot	Tire angular velocity about the tire-fixed $z$ axis (yaw rate)	rad/s
	rhoz	Axle vertical displacement along tire-fixed $z$ axis	m
	FNormal	Vertical sidewall force on ground along tirefixed $z$-axis	N
	Prs	Tire inflation pressure	Pa
DCM		Transformation matrix from the wheel coordinate system to the Earth-fixed inertial coordinate system	NA
Xe		Wheel position along inertial-fixed $X$-, $Y$-, $Z$ axes, respectively	m
Ang		Rotation angle of the rim with respect to the wheel center	rad
Omega		Tire rotational velocity, $\omega$, about wheel spin axis	rad/s


Signal	Description	Units
Ve	Wheel velocity along inertial-fixed $X-, Y-, Z-$   axes, respectively	$\mathrm{m} / \mathrm{s}$
OmegaWc	Rim rotational velocity, $\omega$, about wheel spin   axis	$\mathrm{rad} / \mathrm{s}$
Road	Vector containing wheel position, rotation,   and velocity with respect to the Earth-fixed   inertial coordinate system	NA

Fwc - Force at wheel center
1-by-3 vector
Force applied at wheel center by tire along wheel-fixed $x$-, $y$-, $z$-axes, respectively, in $N$.
Mwc - Moment at wheel center
1-by-3 vector
Moment applied at wheel center by tire about wheel-fixed $x$-, $y$-, $z$-axes, respectively, in $\mathrm{N} \cdot \mathrm{m}$.

## Parameters

## Block Options

## Tire type - Select type

External file (default)| Light passenger car 205/60R15|Mid-size passenger car 235/45R18|Performance car 225/40R19|SUV 265/50R20|Light truck 275/65R18| Commercial truck 295/75R22.5

Use the Tire type parameter to select the source of the tire data.

Goal	A
Implement the Magic Formula using	Up
empirical equations ${ }^{1,2}$. The equations	
use fitting coefficients that	fil
correspond to the block parameters.	$\mathbf{1}$
	2
	3
	4

## Action

Update the block parameters with fitting coefficients from a file:

1 Set Tire type to External file.
2 On the External tire source pane, Click Select file.
3 Select the tire coefficient file.
4 Click Update mask values from file. In the dialog box that prompts you for confirmation, click OK. The block updates the parameters.
5 Click Apply.

Goal
Implement fitted tire data sets
provided by the Global Center for
Automotive Performance Simulation
(GCAPS).

## Action

Update the applicable block parameters with GCAPS fitted tire data:

1 Set Tire type to the tire that you want to implement. Options include:

- Light passenger car 205/60R15
- Mid-size passenger car 235/45R18
- Performance car 225/40R19
- SUV 265/50R20
- Light truck 275/65R18
- Commercial truck 295/75R22.5

2 Click Update applicable Tire Parameters with tire type values. On the Tire Parameters tab, the block updates the applicable parameters, including Wheel width, Rim radius, and Wheel mass.
3 Click Apply.

Tire file or object, tireParamSet - Tire file
.mat|.tir|.txt
Tire file .tir or object containing empirical data to model tire longitudinal and lateral behavior with the Magic Formula. If you provide an .txt file, make sure the file contains names that correspond to the block parameters.

Update the block parameters with fitting coefficients from a file:
1 Set Tire type to External file.
2 On the External tire source pane, click Select file.
3 Select the tire coefficient file.
4 Click Update mask values from file. In the dialog box that prompts you for confirmation, click OK. The block updates the parameters.
5 Click Apply.
Tire side - Select tire side
Right (default) | Left | Symmetric
Specify the tire side.
Tire pressure - Select tire side
220000 (default) | scalar
Tire inflation pressure, $p$, in Pa.

## Dependencies

To enable this parameter, clear Input tire pressure.
Ply steer - Include ply steer
on (default) | off

Select to include ply steer in the Magic Formula equations.
By default, the blocks include ply steer and turn slip in the Magic Formula equations. The equations are fit to flat-belt test data and predict a number of tire effects, including ply steer and turn slip. Consider removing the effects if your:

- Test data does not include ply steer or turn slip data.
- Analysis does not require ply steer or turn slip effects.

If you clear Ply steer, the block internally sets these parameters to 0 :

- Vertical shift of overturning moment, QSX1
- Combined slip Fx shift factor reduction, RHX1
- Efy curvature constant camber dependency, PEY3
- SHY horizontal shift at FZNOM, PHY1
- SHY variation with load, PHY2
- Svy/Fz vertical shift at FZNOM, PVY1
- Svy/Fz variation with load, PVY2
- Fy shift reduction with slip angle, RBY3
- Slip ratio side force Svyk/Muy*Fz at FZNOM, RVY1
- Side force Suyk/Muy*Fz variation with load, RVY2
- Bpt slope variation with camber, QBZ4
- Dpt peak trail variation with camber, QDZ3
- Dmr peak residual torque, QDZ6
- Dmr peak residual torque variation with load, QDZ7
- Ept variation with sign of alpha-t, QEZ4
- Sht horizontal trail shift at FZNOM, QHZ1
- Sht variation with load, QHZ2
- Nominal value of s/R0: effect of Fx on Mz, SSZ1

Turn slip - Include turn slip
on (default) | off
Select to include ply steer in Magic Formula equations.
By default, the blocks include ply steer and turn slip in the Magic Formula equations. The equations are fit to flat-belt test data and predict a number of tire effects, including ply steer and turn slip. Consider removing the effects if your:

- Test data does not include ply steer or turn slip data.
- Analysis does not require ply steer or turn slip effects.

If you clear Turn slip, the block internally:

- Sets the Magic Formula turn slip equations to 1. Specifically, equations 4.E77, 4.E79, 4.E81, 4.E83, 4.E84, 4.E92, 4.E102, 4.E101, and 4.E105. ${ }^{2}$.
- Uses Magic Formula terms that effect horizontal shift.
- Uses Magic Formula small turn slip values in 4.E27².


## Simulation

Maximum pressure, PRESMAX - Maximum pressure 1003118 (default) | scalar

Maximum pressure, PRESMAX, in Pa.
Minimum pressure, PRESMIN - Minimum pressure
9982 (default) | scalar
Minimum pressure, PRESMIN, in Pa.
Maximum normal force, FZMAX - Force
scalar
Maximum normal force, FZMAX, in N.
Minimum normal force, FZMIN - Force
scalar
Minimum normal force, FZMIN, in N.
Velocity tolerance used to handle low velocity situations, VXLOW - Tolerance scalar

Velocity tolerance used to handle low-velocity situations, VXLOW, in m/s.
Max allowable slip ratio (absolute), KPUMAX - Max allowable slip ratio 0.999 (default) | scalar

Max allowable slip ratio (absolute), KPUMAX, dimensionless.
Minimum allowable slip ratio (absolute), KPUMIN - Minimum allowable slip ratio -0. 999 (default) | scalar

Minimum allowable slip ratio (absolute), KPUMIN, dimensionless.
Max allowable slip angle (absolute), ALPMAX - Max allowable slip angle 1.5708 (default) | scalar

Max allowable slip angle (absolute), ALPMAX, in rad.
Minimum allowable slip angle (absolute), ALPMIN - Minimum allowable slip angle - 1.5708 (default) | scalar

Minimum allowable slip angle (absolute), ALPMIN, in rad.
Maximum allowable camber angle, CAMMAX - Maximum allowable camber angle 0.173 | scalar

Maximum allowable camber angle CAMMAX, in rad.
Minimum allowable camber angle, CAMMIN - Minimum allowable camber angle
-0.173 | scalar

Minimum allowable camber angle, CAMMIN, in rad.
Nominal longitudinal speed, LONGVL - Speed
scalar
Nominal longitudinal speed, $L O N G V L$, in $\mathrm{m} / \mathrm{s}$.
Default tyre side, tyreside - Side
'Right' (default)|char
Default tyre side, tyreside, dimensionless.
Wheel
Initial rotational velocity, omegao - Velocity
scalar
Initial rotational velocity, specified as a scalar, in rad/s.
Rotational damping, br - Damping
scalar
Rotational damping, specified as a scalar, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Unloaded radius, UNLOADED_RADIUS - Radius
scalar
Unloaded radius, UNLOADED_RADIUS, in m.
Nominal pressure, NOMPRES - Pressure
scalar
Nominal pressure, NOMPRES, in Pa.
Nominal normal force, FNOMIN - Force
scalar
Nominal normal force, FNOMIN, in N.
Wheel width, WIDTH - Width
scalar
Wheel width, WIDTH, in m.
Rim radius, RIM_RADIUS - Radius
scalar
Rim radius, RIM_RADIUS, in m.
Nominal aspect ratio, ASPECT_RATIO - Ratio scalar

Nominal aspect ratio, ASPECT_RATIO, dimensionless.

```
Inertial
Wheel mass, MASS - Mass
scalar
```

Wheel mass, specified as a scalar, in kg .
Rotational inertia (rolling axis), IYY - Inertia
scalar
Rotational inertia (rolling axis), specified as a scalar, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.
Gravity, GRAVITY - Gravity
scalar
Gravity, GRAVITY, in m/s^2.

## Vertical

Initial tire displacement, zo - Displacement
scalar
Initial tire displacement, $z o$, in m .
Initial wheel vertical velocity (wheel fixed frame), zdoto - Velocity scalar

Initial wheel vertical velocity (wheel fixed frame), $z$ doto, in $\mathrm{m} / \mathrm{s}$.
Effective rolling radius at low load stiffness, BREFF - Stiffness
scalar
Effective rolling radius at low load stiffness, BREFF, dimensionless.
Effective rolling radius peak value, DREFF - Radius
scalar
Effective rolling radius peak value, $D R E F F$, dimensionless.
Effective rolling radius at high load stiffness, FREFF - Radius
scalar
Effective rolling radius at high load stiffness, FREFF, dimensionless.
Unloaded to nominal rolling radius ratio, Q_REO - Ratio scalar

Unloaded to nominal rolling radius ratio, $Q_{-}$REO, dimensionless.
Radius rotational speed dependence, Q_V1 - Speed scalar

Radius rotational speed dependence, $Q_{-}$V1, dimensionless.
Stiffness rotational speed dependence, Q_V2 - Speed scalar

Stiffness rotational speed dependence, $Q_{-} V 2$, dimensionless.
Linear load change with deflection, Q_FZ1 - Load change scalar

Linear load change with deflection, Q_FZ1, dimensionless.
Quadratic load change with deflection, Q_FZ2 - Load change scalar

Quadratic load change with deflection, Q_FZ2, dimensionless.
Linear load change with deflection and quadratic camber, Q_FZ3 - Load change scalar

Linear load change with deflection and quadratic camber, Q_FZ3, dimensionless.
Load response to longitudinal force, Q_FCX - Force scalar

Load response to longitudinal force, $Q_{-} F C X$, dimensionless.
Load response to lateral force, Q_FCY - Force scalar

Load response to lateral force, $Q_{-} F C Y$, dimensionless.
Vertical stiffness change due to lateral load dependency on lateral stiffness, Q_FCY2 Stiffness
scalar
Vertical stiffness change due to lateral load dependency on lateral stiffness, $Q_{-} F C Y 2$, dimensionless.
Stiffness response to pressure, PFZ1 - Stiffness
scalar
Stiffness response to pressure, PFZ1, dimensionless.
Vertical tire stiffness, VERTICAL_STIFFNESS - Stiffness
scalar
Vertical tire stiffness, VERTICAL_STIFFNESS, in N/m.
Vertical tire damping, VERTICAL_DAMPING - Damping
scalar
Vertical tire damping, VERTICAL_DAMPING, in $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}$.
Rim bottoming out offset, BOTTOM_OFFST - Offset
scalar
Rim bottoming out offset, BOTTOM_OFFST, in m.
Bottoming out stiffness, BOTTOM_STIFF - Stiffness
scalar

Bottoming out stiffness, BOTTOM_STIFF, in N/m.
Linear load dependent camber angle influence on vertical stiffness, Q_CAM1 - Stiffness scalar

Linear load dependent camber angle influence on vertical stiffness, Q_CAM1, dimensionless.
Quadratic load dependent camber angle influence on vertical stiffness, Q_CAM2 - Stiffness scalar

Quadratic load dependent camber angle influence on vertical stiffness, Q_CAM2, dimensionless.
Linear load and camber angle dependent reduction on vertical stiffness, Q_CAM3 - Stiffness scalar

Linear load and camber angle dependent reduction on vertical stiffness, $Q_{-} C A M 3$, dimensionless.

## Structural

Longitudinal stiffness, LONGITUDINAL_STIFFNESS - Stiffness
scalar
Longitudinal stiffness, LONGITUDINAL_STIFFNESS, in N/m.
Lateral stiffness, LATERAL_STIFFNESS - Stiffness
scalar
Longitudinal stiffness, LATERAL_STIFFNESS, in N/m.
Linear vertical deflection influence on longitudinal stiffness, PCFX1 - Deflection influence scalar

Linear vertical deflection influence on longitudinal stiffness, PCFX1, dimensionless.
Quadratic vertical deflection influence on longitudinal stiffness, PCFX2 - Deflection influence scalar

Quadratic vertical deflection influence on longitudinal stiffness, PCFX2, dimensionless.
Pressure dependency on longitudinal stiffness, PCFX3 - Pressure dependency scalar

Pressure dependency on longitudinal stiffness, PCFX3, dimensionless.
Linear vertical deflection influence on lateral stiffness, PCFY1 - Deflection influence scalar

Linear vertical deflection influence on lateral stiffness, PCFY1, dimensionless.
Quadratic vertical deflection influence on lateral stiffness, PCFY2 - Deflection influence scalar

Quadratic vertical deflection influence on lateral stiffness, PCFY2, dimensionless.
Pressure dependency on longitudinal stiffness, PCFY3 - Pressure dependency scalar

Pressure dependency on longitudinal stiffness, PCFY3, dimensionless.

## Contact Patch

Contact length square root term, Q_RA1 - Length term scalar

Contact length square root term, $Q _R A 1$, dimensionless.
Contact length linear term, Q_RA2 - Length term
scalar
Contact length linear term, $Q_{-} R A 2$, dimensionless.
Contact width root term, Q_RB1 - Width term
scalar
Contact width root term, $Q_{-} R B 1$, dimensionless.
Contact width linear term, Q_RB2 - Width term
scalar
Contact width linear term, $Q_{-} R B 2$, dimensionless.

## Longitudinal

Cfx shape factor, PCX1 - Shape factor
scalar
Shape factor, $C_{f x}, P C X 1$, dimensionless.
Longitudinal friction at nominal normal load, PDX1 - Friction
scalar
Longitudinal friction at nominal normal load, PDX1, dimensionless.
Frictional variation with load, PDX2 - Friction variation

## scalar

Frictional variation with load, $P D X 2$, dimensionless.
Frictional variation with camber, PDX3 - Friction variation scalar

Frictional variation with camber, $P D X 3$, in $1 / \mathrm{rad}^{\wedge} 2$.

## Longitudinal curvature at nominal normal load, PEX1 - Curvature scalar

Longitudinal curvature at nominal normal load, PEX1, dimensionless.
Variation of curvature factor with load, PEX2 - Curvature variation scalar

Variation of curvature factor with load, PEX2, dimensionless.

Variation of curvature factor with square of load, PEX3 - Curvature variation scalar

Variation of curvature factor with square of load, PEX3, dimensionless.
Longitudinal curvature factor with slip, PEX4 - Curvature
scalar
Longitudinal curvature factor with slip, PEX4, dimensionless.
Longitudinal slip stiffness at nominal normal load, PKX1 - Stiffness
scalar
Longitudinal slip stiffness at nominal normal load, PKX1, dimensionless.
Variation of slip stiffness with load, PKX2 - Stiffness variation scalar

Variation of slip stiffness with load, $P K X 2$, dimensionless.
Slip stiffness exponent factor, PKX3 - Slip stiffness
scalar
Slip stiffness exponent factor, $P K X 3$, dimensionless.
Horizontal shift in slip ratio at nominal normal load, PHX1 - Slip ratio shift scalar

Horizontal shift in slip ratio at nominal normal load, PHX1, dimensionless.
Variation of horizontal slip ratio with load, PHX2 - Slip variation scalar

Variation of horizontal slip ratio with load, PHX 2 , dimensionless.
Vertical shift in load at nominal normal load, PVX1 - Load shift scalar

Vertical shift in load at nominal normal load, $P V X 1$, dimensionless.
Variation of vertical shift with load, PVX2 - Load variation
scalar
Variation of vertical shift with load, PVX2, dimensionless.
Linear variation of longitudinal slip stiffness with tire pressure, PPX1 - Stiffness variation scalar

Linear variation of longitudinal slip stiffness with tire pressure, PPX1, dimensionless.
Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2 - Stiffness variation scalar

Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2, dimensionless.

Linear variation of peak longitudinal friction with tire pressure, PPX3 - Friction variation scalar

Linear variation of peak longitudinal friction with tire pressure, $P P X 3$, dimensionless.
Quadratic variation of peak longitudinal friction with tire pressure, PPX4 - Friction variation scalar

Quadratic variation of peak longitudinal friction with tire pressure, PPX4, dimensionless.
Combined slip Fx slope factor reduction, RBX1 - Combined slip longitudinal force slope factor reduction
scalar
Combined slip longitudinal force, $F_{x}$, slope factor reduction, $R B X 1$, dimensionless.
Slip ratio Fx slope reduction variation, RBX2 - Slip ratio longitudinal force slope reduction variation
scalar
Slip ratio longitudinal force, $F_{x}$, slope reduction variation, $R B X 2$, dimensionless.
Camber influence on combined slip Fx stiffness, RBX3 - Camber influence on combined slip longitudinal force stiffness
scalar
Camber influence on combined slip longitudinal force, $F_{x}$, stiffness, $R B X 3$, dimensionless.
Shape factor for combined slip Fx reduction, RCX1 - Shape factor for combined slip longitudinal force reduction
scalar
Shape factor for combined slip longitudinal force, $F_{x}$, reduction, $R C X 1$, dimensionless.
Combined Fx curvature factor, REX1 - Combined longitudinal force curvature factor scalar

Combined longitudinal force, $F_{x}$, curvature factor, REX1, dimensionless.
Combined Fx curvature factor with load, REX2 - Combined longitudinal force curvature factor scalar

Combined longitudinal force, $F_{x}$, curvature factor with load, REX2, dimensionless.
Combined slip Fx shift factor reduction, RHX1 - Combined slip longitudinal force slip factor scalar

Combined slip longitudinal force, $F_{x}$, shift factor reduction, RHX1, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.

## Overturning

Vertical shift of overturning moment, QSX1 - Overturning moment scalar

Vertical shift of overturning moment, QSX1, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Overturning moment due to camber, QSX2 - Overturning moment due to camber scalar

Overturning moment due to camber, QSX2, dimensionless.
Overturning moment due to Fy, QSX3 - Overturning moment due to lateral force scalar

Overturning moment due to lateral force, QSX3, dimensionless.
Mx combined lateral force load and camber, QSX4 - Overturning moment scalar

Overturning moment, $M_{x}$, combined lateral force load and camber, QSX4, dimensionless.
Mx load effect due to lateral force and camber, QSX5 - Overturning moment scalar

Overturning moment, $M_{x}$, load effect due to lateral force and camber, QSX5, dimensionless.
Mx load effect due to B-factor, QSX6 - Overturning moment scalar

Overturning moment, $M_{x}$, load effect due to B-factor, QSX6, dimensionless.
Mx due to camber and load, QSX7 - Overturning moment
scalar
Overturning moment, $M_{x}$, due to camber and load, QSX7, dimensionless.
Mx due to lateral force and load, QSX8 - Overturning moment
scalar
Overturning moment, $M_{x}$, due to lateral force and load, QSX8, dimensionless.
Mx due to B-factor of lateral force and load, QSX9 - Overturning moment scalar

Overturning moment, $M_{x}$, due to B-factor of lateral force and load, QSX9, dimensionless.
Mx due to vertical force and camber, QSX10 - Overturning moment scalar

Overturning moment, $M_{x}$, due to vertical force and camber, QSX10, dimensionless.
Mx due to B-factor of vertical force and camber, QSX11 - Overturning moment scalar

Overturning moment, $M_{x}$, due to B-factor of vertical force and camber, QSX11, dimensionless.

Mx due to squared camber, QSX12 - Overturning moment scalar

Overturning moment, $M_{x}$, due to squared camber, QSX12, dimensionless.
Mx due to lateral force, QSX13 - Overturning moment
scalar
Overturning moment, $M_{x}$, due to lateral force, QSX13, dimensionless.
Mx due to lateral force with camber, QSX14 - Overturning moment scalar

Overturning moment, $M_{x}$, due to lateral force with camber, QSX14, dimensionless.
Mx due to inflation pressure, PPMX1 - Overturning moment due to pressure scalar

Overturning moment, $M_{x}$, due to inflation pressure, PPMX1, dimensionless.

## Lateral

Cfy shape factor for lateral force, PCY1 - Lateral force shape factor scalar

Shape factor for lateral force, $C_{f y}, P C Y 1$, dimensionless.
Lateral friction muy, PDY1 - Lateral friction
scalar
Lateral friction, $\mu_{y}$ PDY1, dimensionless.
Lateral friction variation of muy with load, PDY2 - Lateral friction variation scalar

Variation of lateral friction, $\mu_{y}$, with load, PDY2, dimensionless.
Lateral friction variation of muy with squared camber, PDY3 - Lateral friction variation scalar

Variation of lateral friction, $\mu_{y}$, with squared camber, PDY3, dimensionless.
Efy lateral curvature at nominal force FZNOM, PEY1 - Lateral curvature at nominal force scalar

Lateral curvature, $E f_{y}$, at nominal force, $F_{Z N O M}, P E Y 1$, dimensionless.
Efy curvature variation with load, PEY2 - Lateral curvature variation scalar

Lateral curvature, $E f_{y}$, variation with load, $P E Y 2$, dimensionless.
Efy curvature constant camber dependency, PEY3 - Lateral curvature constant scalar

Lateral curvature, $E f_{y}$, constant camber dependency, PEY3, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Efy curvature variation with camber, PEY4 - Lateral curvature variation scalar

Lateral curvature, $E f_{y}$, variation with camber, $P E Y 4$, dimensionless.
Efy curvature variation with camber squared, PEY5 - Lateral curvature variation scalar

Lateral curvature, $E f_{y}$, variation with camber squared, PEY5, dimensionless.
Maximum KFy/FZNOM stiffness, PKY1 - Maximum stiffness scalar

Maximum lateral force stiffness, $K F_{y}$, to nominal force, $F_{Z N O M}$, ratio, $P K Y 1$, dimensionless.
Load at maximum KFy/FZNOM stiffness, PKY2 - Load
scalar
Load at maximum lateral force stiffness, $K F_{y}$, to nominal force, $F_{Z N O M}$, ratio, $P K Y 2$, dimensionless.
KFy/FZNOM stiffness variation with camber, PKY3 - Stiffness variation scalar

Lateral force stiffness, $K F_{y}$, to nominal force, $F_{Z N O M}$, stiffness variation with camber, PKY3, dimensionless.

KFy curvature, PKY4 - Lateral force stiffness curvature scalar

Lateral force stiffness, $K F_{y}$ curvature, $P K Y 4$, dimensionless.
Variation of peak stiffness with squared camber, PKY5 - Stiffness variation scalar

Variation of peak stiffness with squared camber, $P K Y 5$, dimensionless.
Fy camber stiffness factor, PKY6 - Lateral force camber stiffness factor scalar

Lateral force, $F_{y}$, camber stiffness factor, PKY6, dimensionless.
Camber stiffness vertical load dependency, PKY7 - Stiffness
scalar
Camber stiffness vertical load dependency, PKY7, dimensionless.
SHY horizontal shift at FZNOM, PHY1 - Horizontal shift at nominal force scalar

Horizontal shift, $S_{H Y}$, at nominal force, $F_{Z N O M}$, PHY1, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
SHY variation with load, PHY2 - Horizontal shift variation
scalar
Horizontal shift, $S_{H Y}$, variation with load, $P H Y 2$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Svy/Fz vertical shift at FZNOM, PVY1 - Vertical shift at nominal force scalar

Vertical shift, $S_{v y}$, at nominal force, $F_{Z N O M}, P V Y 1$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Svy/Fz variation with load, PVY2 - Vertical shift variation with load scalar

Vertical shift, $S_{v y}$, variation with load, $P V Y 2$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Svy/Fz variation with camber, PVY3 - Vertical shift variation with camber scalar

Vertical shift, $S_{v y}$, variation with camber, PVY3, dimensionless.
Svy/Fz variation with load and camber, PVY4 - Vertical shift variation with load and camber scalar

Vertical shift, $S_{v y}$, variation with load and camber, $P V Y 4$, dimensionless.
Cornering stiffness variation with inflation pressure, PPY1 - Stiffness variation with pressure scalar

Cornering stiffness variation with inflation pressure, PPY1, dimensionless.
Cornering stiffness variation with inflation pressure induced nominal load dependency, PPY2 - Stiffness variation with pressure
scalar
Cornering stiffness variation with inflation pressure induced nominal load dependency, PPY2, dimensionless.

## Linear inflation pressure on peak lateral friction, PPY3 - Pressure

scalar
Linear inflation pressure on peak lateral friction, $P P Y 3$, dimensionless.

## Quadratic inflation pressure on peak lateral friction, PPY4 - Pressure

 scalarQuadratic inflation pressure on peak lateral friction, $P P Y 4$, dimensionless.
Inflation pressure effect on camber stiffness, PPY5 - Pressure scalar

Inflation pressure effect on camber stiffness, PPY5, dimensionless.
Combined Fy reduction slope factor, RBY1 - Combined lateral force reduction slope factor scalar

Combined lateral force, $F_{y}$, reduction slope factor, RBY1, dimensionless.
Fy slope reduction with slip angle, RBY2 - Lateral force slope reduction with slip angle scalar

Lateral force, $F_{y}$, slope reduction with slip angle, $R B Y 2$, dimensionless.
Fy shift reduction with slip angle, RBY3 - Lateral force shift reduction with slip angle scalar

Lateral force, $F_{y}$, shift reduction with slip angle, $R B Y 3$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Fy combined stiffness variation from camber, RBY4 - Lateral force combined stiffness variation from camber
scalar
Lateral force, $F_{y}$, combined stiffness variation from camber, RBY4, dimensionless.
Fy combined reduction shape factor, RCY1 - Lateral force combined reduction shape factor scalar

Lateral force, $F_{y}$, combined reduction shape factor, RCY1, dimensionless.
Fy combined curvature factor, REY1 - Lateral force combined curvature factor scalar

Lateral force, $F_{y}$, combined curvature factor, REY1, dimensionless.
Fy combined curvature factor with load, REY2 - Lateral force combined curvature factor with load scalar

Lateral force, $F_{y}$, combined curvature factor with load, REY2, dimensionless.
Fy combined reduction shift factor, RHY1 - Lateral force combined reduction shift factor scalar

Lateral force, $F_{y}$ combined reduction shift factor, RHY1, dimensionless.

Fy combined reduction shift factor with load, RHY2 - Lateral force combined reduction shift factor with load
scalar
Lateral force, $F_{y}$, combined reduction shift factor with load, RHY2, dimensionless.
Slip ratio side force Svyk/Muy*Fz at FZNOM, RVY1 - Slip ratio slide force at nominal force scalar

Slip ratio side force at nominal force, $F_{Z N O M}, R V Y 1$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Side force Svyk/Muy*Fz variation with load, RVY2 - Side force variation with load scalar

Side force variation with load, RVY2, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Side force Svyk/Muy*Fz variation with camber, RVY3 - Side force variation with camber scalar

Side force variation with camber, $R V Y 3$, dimensionless.
Side force Svyk/Muy*Fz variation with slip angle, RVY4 - Side force variation with slip angle scalar

Side force variation with slip angle, RVY4, dimensionless.
Side force Svyk/Muy*Fz variation with slip ratio, RVY5 - Side force variation with slip ratio scalar

Side force variation with slip ratio, $R V Y 5$, dimensionless.
Side force Svyk/Muy*Fz variation with slip ratio arctangent, RVY6 - Side force variation with slip ratio arctangent
scalar
Side force variation with slip ratio arctangent, RVY6, dimensionless.

## Rolling

Torque resistance coefficient, QSY1 - Torque resistance scalar

Torque resistance coefficient, QSY1, dimensionless.
Torque resistance due to Fx, QSY2 - Torque resistance due to longitudinal force scalar

Torque resistance due to longitudinal force, $F_{x}$, $Q S Y 2$, dimensionless.

Torque resistance due to speed, QSY3 - Torque resistance due to speed scalar

Torque resistance due to speed, QSY3, dimensionless.
Torque resistance due to speed^4, QSY4 - Torque resistance due to speed scalar

Torque resistance due to speed^ ${ }^{\wedge}$, $Q S Y 4$, dimensionless.
Torque resistance due to square of camber, QSY5 - Torque resistance due to camber scalar

Torque resistance due to square of camber, QSY5, dimensionless.
Torque resistance due to square of camber and load, QSY6 - Torque resistance due to camber and load
scalar
Torque resistance due to square of camber and load, QSY6, dimensionless.
Torque resistance due to load, QSY7 - Torque resistance due to load scalar

Torque resistance due to load, QSY7, dimensionless.
Torque resistance due to pressure, QSY8 - Torque resistance due to pressure scalar

Torque resistance due to pressure, QSY8, dimensionless.
Aligning
Trail slope factor for trail Bpt at FZNOM, QBZ1 - Trail slope factor at nominal force scalar

Trail slope factor for trail Bpt at nominal force, $F_{\text {ZNOM }}, Q B Z 1$, dimensionless.
Bpt slope variation with load, QBZ2 - Slope variation with load scalar

Slope variation with load, QBZ2, dimensionless.
Bpt slope variation with square of load, QBZ3 - Slope variation with load scalar

Slope variation with square of load, $Q B Z 3$, dimensionless.
Bpt slope variation with camber, QBZ4 - Slope variation with camber scalar

Slope variation with camber, QBZ4, dimensionless.
Dependencies
If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.

Bpt slope variation with absolute value of camber, QBZ5 - Slope variation with camber scalar

Slope variation with absolute value of camber, QBZ5, dimensionless.
Bpt slope variation with square of camber, QBZ6 - Slope variation with camber scalar

Slope variation with square of camber, QBZ6, dimensionless.
Br of Mzr slope scaling factor, QBZ9 - Slope scaling factor
scalar
Slope scaling factor, QBZ9, dimensionless.
Br of Mzr cornering stiffness factor, QBZ10 - Cornering stiffness factor 0 (default) | scalar
$B r$ of $M z r$ cornering stiffness factor, $Q B Z 10$, dimensionless.
Cpt pneumatic trail shape factor, QCZ1 - Pneumatic trail shape factor scalar

Pneumatic trail shape factor, $C_{p t}$, $Q C Z 1$, dimensionless.
Dpt peak trail, QDZ1 - Peak trail
scalar
Peak trail, $D_{p t}$ QDZ1, dimensionless.
Dpt peak trail variation with load, QDZ2 - Peak trail variation with load scalar

Peak trail, $D_{p t}$, variation with load, $Q D Z 2$, dimensionless.
Dpt peak trail variation with camber, QDZ3 - Peak trail variation with camber scalar

Peak trail, $D_{p t}$, variation with camber, $Q D Z 3$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Dpt peak trail variation with square of camber, QDZ4 - Peak trail variation with camber scalar

Peak trail, $D_{p t}$, variation with square of camber, $Q D Z 4$, dimensionless.
Dmr peak residual torque, QDZ6 - Peak residual torque scalar

Peak residual torque, $D_{m r}$, QDZ6, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.

Dmr peak residual torque variation with load, QDZ7 - Peak residual torque variation with load scalar

Peak residual torque, $D_{m r}$, variation with load, $Q D Z 7$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Dmr peak residual torque variation with camber, QDZ8 - Peak residual torque variation with camber
scalar
Peak residual torque, $D_{m r}$, variation with camber, QDZ8, dimensionless.
Dmr peak residual torque variation with camber and load, QDZ9 - Peak residual torque variation with camber and load
scalar
Peak residual torque, $D_{m r}$, variation with camber and load, $Q D Z 9$, dimensionless.
Dmr peak residual torque variation with square of camber, QDZ10 - Peak residual torque variation with camber
scalar
Peak residual torque, $D_{m r}$, variation with square of camber, QDZ10, dimensionless.
Dmr peak residual torque variation with square of load, QDZ11 - Peak residual torque variation with load
scalar
Peak residual torque, $D_{m r}$, variation with square of load, $Q D Z 11$, dimensionless.
Ept trail curvature at FZNOM, QEZ1 - Trail curvature at nominal force scalar

Trail curvature, $E_{p t}$, at nominal force, $F_{Z N O M}$, QEZ1, dimensionless.
Ept variation with load, QEZ2 - Trail curvature variation with load scalar

Trail curvature, $E_{p t}$ variation with load, $Q E Z 2$, dimensionless.
Ept variation with square of load, QEZ3 - Trail curvature variation with load scalar

Trail curvature, $E_{p t}$ variation with square of load, QEZ3, dimensionless.
Ept variation with sign of alpha-t, QEZ4 - Trail curvature variation scalar

Trail curvature, $E_{p t}$ variation with sign of alpha-t, QEZ4, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.

## Ept variation with sign of alpha-t and camber, QEZ5 - Variation <br> scalar

Trail curvature, $E_{p t}$ variation with sign of alpha-t and camber, $Q E Z 5$, dimensionless.
Sht horizontal trail shift at FZNOM, QHZ1 - Horizontal trail shift at nominal load scalar

Horizontal trail shift, $S h_{t}$, at nominal load, $F_{Z N O M}, Q H Z 1$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Sht variation with load, QHZ2 - Horizontal trail shift variation with load scalar

Horizontal trail shift, $S h_{t}$, variation with load, $Q H Z 2$, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
Sht variation with camber, QHZ3 - Horizontal trail shift variation with camber scalar

Horizontal trail shift, $S h_{t}$, variation with camber, $Q H Z 3$, dimensionless.
Sht variation with load and camber, QHZ4 - Horizontal trail shift variation with load and camber scalar

Horizontal trail shift, $S h_{t}$, variation with load and camber, QHZ4, dimensionless.
Inflation pressure influence on trail length, PPZ1 - Pressure influence on trail length scalar

Inflation pressure influence on trail length, $P P Z 1$, dimensionless.
Inflation pressure influence on residual aligning torque, PPZ2 - Pressure influence on aligning torque
scalar
Inflation pressure influence on residual aligning torque, PPZ2, dimensionless.
Nominal value of s/R0: effect of Fx on Mz, SSZ1 - Effect of longitudinal force on aligning torque scalar

Nominal value of $\mathrm{s} / \mathrm{R} 0$ : effect of longitudinal force, $F_{x}$, on aligning torque, $M_{z}$, SSZ1, dimensionless.

## Dependencies

If you clear Ply steer, the block internally sets this parameter to 0 in the Magic Formula equations.
$\mathbf{s / R 0}$ variation with lateral to nominal force ratio, SSZ2 - Variation with lateral to nominal force ratio
scalar

Variation with lateral to nominal force ratio, SSZ2, dimensionless.
s/R0 variation with camber, SSZ3 - Variation with camber
scalar
Variation with camber, SSZ3, dimensionless.
s/R0 variation with camber and load, SSZ4 - Variation with camber and load scalar

Variation with camber and load, SSZ4, dimensionless.

## Turnslip

Fx peak reduction due to spin, PDXP1 - Longitudinal force peak reduction due to spin scalar

Longitudinal force, $F_{x}$, peak reduction due to spin, PDXP1, dimensionless.
Fx peak reduction due to spin with varying load, PDXP2 - Longitudinal force peak reduction due to spin
scalar
Longitudinal force, $F_{x}$, peak reduction due to spin with varying load, $P D X P 2$, dimensionless.
Fx peak reduction due to spin with slip ratio, PDXP3 - Longitudinal force peak reduction due to spin
scalar
Longitudinal force, $F_{x}$, peak reduction due to spin with slip ratio, PDXP3, dimensionless.
Cornering stiffness reduction due to spin, PKYP1 - Stiffness reduction due to spin scalar

Cornering stiffness reduction due to spin, PKYP1, dimensionless.
Fy peak reduction due to spin, PDYP1 - Lateral force peak reduction due to spin scalar

Lateral force, $F_{y}$, peak reduction due to spin, PDYP1, dimensionless.
Fy peak reduction due to spin with varying load, PDYP2 - Lateral force peak reduction due to spin
scalar
Lateral force, $F_{y}$, peak reduction due to spin with varying load, PDYP2, dimensionless.
Fy peak reduction due to spin with slip angle, PDYP3 - Lateral force peak reduction due to spin scalar

Lateral force, $F_{y}$, peak reduction due to spin with slip angle, PDYP3, dimensionless.
Fy peak reduction due to square root of spin, PDYP4 - Lateral force peak reduction due to spin scalar

Lateral force, $F_{y}$, peak reduction due to square root of spin, PDYP4, dimensionless.

Fy vs. slip angle response lateral shift limit, PHYP1 - Lateral force versus slip angle response scalar

Lateral force, $F_{y}$, versus slip angle response lateral shift limit, PHYP1, dimensionless.
Fy vs. slip angle response max lateral shift limit, PHYP2 - Lateral force versus slip angle response scalar

Lateral force, $F_{y}$, versus slip angle response max lateral shift limit, PHYP2, dimensionless.
Fy vs. slip angle response max lateral shift limit with load, PHYP3 - Lateral force versus slip angle response
scalar
Lateral force, $F_{y}$, versus slip angle response max lateral shift limit with load, PHYP3, dimensionless.
Fy vs. slip angle response lateral shift curvature factor, PHYP4 - Lateral force versus slip angle response
scalar
Lateral force, $F_{y}$, versus slip angle response lateral shift curvature factor, PHYP4, dimensionless.
Camber stiffness reduction due to spin, PECP1 - Camber stiffness reduction scalar

Camber stiffness reduction due to spin, PECP1, dimensionless.
Camber stiffness reduction due to spin with load, PECP2 - Camber stiffness reduction scalar

Camber stiffness reduction due to spin with load, $P E C P 2$, dimensionless.
Turn slip pneumatic trail reduction factor, QDTP1 - Turn slip pneumatic trail reduction factor scalar

Turn slip pneumatic trail reduction factor, QDTP1, dimensionless.
Turn moment for constant turning and zero longitudinal speed, QCRP1 - Turn moment for constant turning scalar

Turn moment for constant turning and zero longitudinal speed, QCRP1, dimensionless.
Turn slip moment increase with spin at 90deg slip angle, QCRP2 - Turn slip moment scalar

Turn slip moment increase with spin at 90 -degree slip angle, QCRP2, dimensionless.
Residual spin torque reduction from side slip, QBRP1 - Residual spin torque reduction scalar

Residual spin torque reduction from side slip, QBRP1, dimensionless.
Turn slip moment peak magnitude, QDRP1 - Turn slip moment peak magnitude scalar

Turn slip moment peak magnitude, QDRP1, dimensionless.
Turn slip moment curvature, QDRP2 - Turn slip moment curvature scalar

Turn slip moment curvature, QDRP2, dimensionless.

## Version History

Introduced in R2021b

## R2022b: New Ply steer and Turn slip Parameters

Behavior changed in R2022b
Starting from R2022b, the Combined Slip Wheel STI block includes Ply steer and Turn slip parameters. To remove ply steer and turn slip from the Magic Formula implementation of these blocks, clear the Ply steer and Turn slip parameters.

## References

[1] Besselink, Igo, Antoine J. M. Schmeitz, and Hans B. Pacejka, "An improved Magic Formula/Swift tyre model that can handle inflation pressure changes," Vehicle System Dynamics International Journal of Vehicle Mechanics and Mobility 48, sup. 1 (2010): 337-52, https:// doi.org/10.1080/00423111003748088.
[2] Pacejka, Hans B. Tire and Vehicle Dynamics. 3rd ed. Oxford, United Kingdom: SAE and Butterworth-Heinemann, 2012.
[3] Bohm, F., and H. P. Willumeit, "Tyre Models for Vehicle Dynamic Analysis: Proceedings of the 2nd International Colloquium on Tyre Models for Vehicle Dynamics Analysis, Held at the Technical University of Berlin, Germany, February 20-21, 1997." Vehicle System Dynamics International Journal of Vehicle Mechanics and Mobility 27, sup. 1, 343-45. https://doi.org/ 0.1080/00423119708969669.
[4] Schmid, Steven R., Bernard J. Hamrock, and Bo O. Jacobson. Fundamentals of Machine Elements, SI Version. 3rd ed. Boca Raton: CRC Press, 2014.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink $\circledR_{\circledR}$ Coder ${ }^{\text {TM }}$.

## See Also

Combined Slip Wheel 2DOF | Combined Slip Wheel 2DOF CPI | Fiala Wheel 2DOF | Longitudinal Wheel \| Dugoff Wheel 2DOF

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"

## Dugoff Wheel 2DOF

Dugoff Wheel 2DOF wheel with disc, drum, or mapped brake


## Libraries:

Vehicle Dynamics Blockset / Wheels and Tires

## Description

The Dugoff Wheel 2DOF block implements a simplified tire with lateral and longitudinal slip capability based on the H. Dugoff model ${ }^{[1]}$. The block uses a translational friction model to calculate the forces and moments during combined longitudinal and lateral slip, requiring fewer parameters than the Combined Slip Wheel 2DOF block. If you do not have the tire coefficients needed by the Magic Formula, consider using this block for studies that do not involve extensive nonlinear combined lateral slip or lateral dynamics. If your study does require nonlinear combined slip or lateral dynamics, consider using the Combined Slip Wheel 2DOF block.

The block determines the wheel rotation rate, vertical motion, and forces and moments in all six degrees-of-freedom (DOFs) based on the driveline torque, brake pressure, road height, wheel camber angle, and inflation pressure. You can use this block for these types of analyses:

- Driveline and vehicle simulations that require low frequency tire-road and braking forces for vehicle acceleration, braking, and wheel rolling resistance calculations with minimal tire parameters.
- Wheel interaction with an idealized road surface.
- Ride and handling maneuvers for vehicles undergoing mild combined slip. For this analysis, you can connect the block to driveline and chassis components such as differentials, suspension, and vehicle body systems.
- Yaw stability. For this analyses, you can connect this block to more detailed braking system models.
- Tire stiffness and unsprung mass interactions with ground variations, load transfer, or chassis motion using the block vertical DOF.

The block integrates rotational wheel, vertical mass, and braking dynamics models.
Use the Tire Type parameter to select slip type.

Action	Tire Type Setting
Calculate longitudinal and lateral   forces under nominal slip conditions	Nominal slip


Action	Tire Type Setting
Calculate longitudinal and lateral   forces with additional correction   factors for a more accurate response   at higher slip ratios	Extended slip

Use the Brake Type parameter to select the brake.

Action	Brake Type Setting
No braking	None
Implement brake that converts the   brake cylinder pressure into a   braking force	Disc
Implement simplex drum brake that   converts the applied force and brake   geometry into a net braking torque	Drum
Implement lookup table that is a   function of the wheel speed and   applied brake pressure	Mapped

To calculate the rolling resistance torque, specify one of these Rolling Resistance parameters.

Setting	Block Implementation
None	None
Pressure and velocity	Method in Stepwise Coastdown Methodology for Measuring   Tire Rolling Resistance. The rolling resistance is a function of   tire pressure, normal force, and velocity.
ISO 28580	Method specified in ISO 28580:2018, Passenger car, truck   and bus tyre rolling resistance measurement method -   Single point test and correlation of measurement results.
Magic Formula	Magic formula equations from 4.E70 in Tire and Vehicle   Dynamics. The magic formula is an empirical equation based   on fitting coefficients.
Mapped torque	Lookup table that is a function of the normal force and spin   axis longitudinal velocity.

To calculate vertical motion, specify one of these Vertical Motion parameters.

Setting	Block Implementation
None	Block passes the applied chassis forces directly through to   the rolling resistance and longitudinal force calculations.
Mapped stiffness and damping	Vertical motion depends on wheel stiffness and damping.   Stiffness is a function of tire sidewall displacement and   pressure. Damping is a function of tire sidewall velocity and   pressure.

## Rotational Wheel Dynamics

The block calculates the inertial response of the wheel subject to:

- Axle losses
- Brake and drive torque
- Tire rolling resistance
- Ground contact through the tire-road interface

The input torque is the summation of the applied axle torque, braking torque, and moment arising from the combined tire torque.

$$
T_{i}=T_{a}-T_{b}+T_{d}
$$

For the moment arising from the combined tire torque, the block implements tractive wheel forces and rolling resistance with first-order dynamics. The rolling resistance has a time constant parameterized in terms of a relaxation length.

$$
T_{d}(s)=\frac{1}{\frac{L_{e}}{|\omega| R_{e}} s+1}+\left(F_{x} R_{e}+M_{y}\right)
$$

To calculate the rolling resistance torque, you can specify one of these Rolling Resistance parameters.

Setting	Block Implementation
None	Block sets rolling resistance, $M_{y}$, to zero.
Pressure and   velocity	Block uses the method in SAE Stepwise Coastdown Methodology for Measuring   Tire Rolling Resistance. The rolling resistance is a function of tire pressure,   normal force, and velocity, specifically,      $M_{y}=R_{e}\left\{a+b\left\|V_{x}\right\|+c V_{x}{ }^{2}\right\}\left\{F_{z} \beta p_{i} \alpha\right\} \tanh \left(4 V_{x}\right)$
IS0 28580	Block uses the method specified in ISO 28580:2018, Passenger car, truck and   bus tyre rolling resistance measurement method - Single point test and   correlation of measurement results. The method accounts for normal load,   parasitic loss, and thermal corrections from test conditions, specifically,
$\quad M_{y}=R_{e}\left(\frac{F_{z} C_{r}}{1+K_{t}\left(T_{a m b}-T_{\text {meas }}\right)}-F_{p l}\right)$ tanh $(\omega)$	

If the brakes are enabled, the block determines the braking locked or unlocked condition based on an idealized dry clutch friction model. Based on the lock-up condition, the block implements these friction and dynamic models.

Equation	Lock-Up Condition	Friction Model	Dynamic Model
$\omega \neq 0$   or $\left\|T_{S}<\left\|T_{i}+T_{f}-\omega b\right\|\right.$	Unlocked	$T_{f}=T_{k},$   where $\begin{aligned} & T_{k}=F_{c} R_{e f f} \mu_{k} \tanh \left[4\left(-\omega_{d}\right)\right] \\ & T_{s}=F_{C} R_{e f f} \mu_{S} \\ & R_{e f f}=\frac{2\left(R_{o}^{3}-R_{i}^{3}\right)}{3\left(R_{o}{ }^{2}-R_{i}^{2}\right)} \end{aligned}$	$\dot{\omega} J=-\omega b+T_{i}+T_{o}$
$\begin{aligned} & \omega=0 \\ & \text { and } \\ & T_{S} \geq\left\|T_{i}+T_{f}-\omega b\right\| \end{aligned}$	Locked	$T_{f}=T_{S}$	$\omega=0$

The equations use these variables.

Variable	Value
$\omega$	Wheel angular velocity
$a$	Velocity-independent force component
$b$	Linear velocity force component
$c$	Quadratic velocity force component
$L_{e}$	Tire relaxation length
$J$	Moment of inertia
$M_{y}$	Rolling resistance torque
$T_{a}$	Applied axle torque
$T_{b}$	Braking torque
$T_{d}$	Combined tire torque
$T_{f}$	Frictional torque
$T_{i}$	Net input torque
$T_{k}$	Kinetic frictional torque
$T_{o}$	Net output torque
$T_{s}$	Static frictional torque
$F_{c}$	Applied clutch force
$F_{x}$	Longitudinal force developed by the tire road interface due to slip
$R_{e f f}$	Effective clutch radius
$R_{o}$	Annular disk outer radius
$R_{i}$	Annular disk inner radius
$R_{e}$	Effective tire radius while under load and for a given pressure
$V_{x}$	Longitudinal axle velocity
$F_{z}$	Vehicle normal force
$C_{r}$	Rolling resistance constant
$T_{a m b}$	Ambient temperature


Variable	Value
$T_{\text {meas }}$	Measured temperature for rolling resistance constant
$F_{p l}$	Parasitic force loss
$K_{t}$	Thermal correction factor
$\alpha$	Tire pressure exponent
$\beta$	Normal force exponent
$p_{i}$	Tire pressure
$\mu_{s}$	Coefficient of static friction
$\mu_{k}$	Coefficient of kinetic friction

## Longitudinal Force

The block implements the longitudinal force as a function of wheel slip relative to the road surface using these equations.

Calculation	Equation
Nominal Slip	$F_{X}=\frac{C_{k} K}{1-K} f(z),$   where $\begin{aligned} & f(z)= \begin{cases}z(2-z) & \text { when } z<1 \\ 1 & \text { when } z \geq 1\end{cases} \\ & z=\frac{\mu F_{z}(1-\kappa)}{2 \sqrt{\left(C_{k} K\right)^{2}+\left(C_{\alpha} \tan (\alpha)\right)^{2}}} \end{aligned}$
Extended	$F_{X}=\frac{C_{k} K}{1-K} f(z) g_{x}$   where $\begin{aligned} & f(z)= \begin{cases}z(2-z) & \text { when } z<1 \\ 1 & \text { when } z \geq 1\end{cases} \\ & z=\frac{\mu F_{z}(1-\kappa)}{2 \sqrt{\left(C_{k} K\right)^{2}+\left(C_{\alpha} \tan (\alpha)\right)^{2}}} \\ & \left.g_{x}=\left(g_{x 1}+g_{x 2} \mu\right)\right)^{2}-\left(g_{x 3}+g_{x 4} \mu\right) K+g_{x 5} \end{aligned}$
Friction coefficient	$\mu=\mu_{0}\left(1-A_{s} V_{s}\right),$   where $V_{S}=u \sqrt{K^{2}+\tan ^{2}(\alpha)}$

The equations use these variables.

Variable	Value
$F_{\chi}$	Longitudinal force acting on axle along tire-fixed $x$-axis
$C_{K}$	Longitudinal stiffness
$C_{\alpha}$	Lateral stiffness per slip angle


Variable	Value
$k$	Longitudinal slip ratio of tires
$F_{z}$	Vertical contact patch normal force along tire-fixed $z$-axis
$u$	Velocity component in the wheel plane
$\mu$	Maximum friction coefficient
$\mu_{0}$	Maximum friction scaling coefficient
$A_{s}$	Friction reduction factor
$V_{s}$	Friction reduction magnitude
$\alpha$	Side slip angle of tires
$g_{x}$	Longitudinal correction factor
$g_{\times 1}$	Longitudinal squared slip correction factor
$g_{\times 2}$	Longitudinal squared slip friction correction factor
$g_{\times 3}$	Longitudinal linear slip correction factor
$g_{\times 4}$	Longitudinal linear slip friction correction factor
$g_{\times 5}$	Longitudinal offset correction factor

## Lateral Force

The block implements the lateral force as a function of wheel slip angle state using these equations.

Calculation	Equation
Nominal Slip	$F_{y}=\frac{C_{\alpha} \tan (\alpha)}{1-K} f(z)+\gamma C_{\gamma},$   where $\begin{aligned} & f(z)= \begin{cases}z(2-z) & \text { when } z<1 \\ 1 & \text { when } z \geq 1\end{cases} \\ & z=\frac{\mu F_{z}(1-K)}{2 \sqrt{\left(C_{k} K\right)^{2}+\left(C_{\alpha} \tan (\alpha)\right)^{2}}} \end{aligned}$
Extended Slip	$F_{y}=\frac{C_{\alpha} \tan (\alpha)}{1-K} f(z) g_{y}+\gamma C_{\gamma},$   where $\begin{aligned} & f(z)= \begin{cases}z(2-z) & \text { when } z<1 \\ 1 & \text { when } z \geq 1\end{cases} \\ & z=\frac{\mu F_{z}(1-\kappa)}{2 \sqrt{\left(C_{k} K\right)^{2}+\left(C_{\alpha} \tan (\alpha)\right)^{2}}} \\ & g_{y}=\left(\mu+g_{y 1}\right) \tan (\alpha)+g_{y 2} \end{aligned}$
Friction Coefficient	$\mu=\mu_{0}\left(1-A_{s} V_{s}\right),$   where $V_{S}=u \sqrt{\kappa^{2}+\tan ^{2}(\alpha)}$

The equations use these variables.

Variable	Value
$\alpha$	Side slip angle of tires
$F_{y}$	Lateral force acting on axle along tire-fixed $y$-axis
$F_{z}$	Vertical contact patch normal force along tire-fixed $z$-axis
$\gamma$	Camber angle
$C_{\gamma}$	Camber stiffness
$C_{\alpha}$	Lateral stiffness per angle slip
$C_{k}$	Longitudinal stiffness
$k$	Longitudinal slip ratio of tires
$u$	Velocity component in the wheel plane
$\mu$	Maximum friction coefficient
$\mu_{0}$	Maximum friction scaling coefficient
$V_{s}$	Friction reduction magnitude
$A_{s}$	Friction reduction factor
$g_{y}$	Lateral correction factor
$g_{y 1}$	Lateral maximum friction correction factor
$g_{y 2}$	Lateral offset correction factor

## Vertical Dynamics

The block implements these equations for the vertical dynamics.

Calculation	Equation
Vertical response	$\ddot{z} m=F_{z t i r e}+m g-F z$
Tire normal force	$F_{z t i r e}=\rho_{z} k-b \dot{z}$
Vertical sidewall deflection	$\rho_{z}=z_{\text {gnd }}-z, z \geq 0$

The equations use these variables.

Variable	Value
$z$	Tire deflection along tire-fixed $z$-axis
$z_{\text {gnd }}$	Ground displacement along tire-fixed $z$-axis
$F_{\text {ztire }}$	Tire normal force along tire-fixed $z$-axis
$F_{z}$	Vertical force acting on axle along tire-fixed $z$-axis
$\rho_{z}$	Vertical sidewall deflection along tire-fixed $z$-axis
$k$	Vertical sidewall stiffness
$b$	Vertical sidewall damping

## Overturning, Aligning, and Scaling

This table summarizes the overturning, aligning, and scaling implementation.

Calculation	Implementation
Overturning moment	The Dugoff model does not define an overturning moment. The   block implements this equation, requiring minimal parameters.   $M_{x}=F_{y} R_{e} \cos (\gamma)$
Aligning moment	The block implements the aligning moment as a combination of yaw   rate damping and slip angle state.
	$M_{z}= \begin{cases}\dot{\psi} b_{M_{z}} & \text { when }\left\|\alpha^{\prime}\right\|>\alpha^{\prime} \text { Critical } \\ \tanh \left(4 \alpha^{\prime}\right) w \mu\left\|F_{z}\right\|(1-\xi) \xi^{3}+\dot{\psi} b_{M_{z}} & \text { when }\left\|\alpha^{\prime}\right\| \leq \alpha_{C r i t i c a l ~}^{\prime}\end{cases}$
	$\xi=1-\frac{C_{a}\left\|\tan \left(\alpha^{\prime}\right)\right\|}{3 \mu\left\|F_{z}\right\|}$

The equations use these variables.

Variable	Value
$M_{x}$	Overturning moment acting on axle about tire-fixed $x$-axis
$M_{z}$	Aligning moment acting on axle about tire-fixed $z$-axis
$R_{e}$	Effective contact patch to wheel carrier radial distance
$\gamma$	Camber angle
$k$	Vertical sidewall stiffness
$b$	Vertical sidewall damping
$\dot{\psi}$	Tire angular velocity about the tire-fixed $z$-axis (yaw rate)
$w$	Tire width
$\alpha^{\prime}$	Slip angle state
$b_{M z}$	Linear yaw rate resistance
$F_{y}$	Lateral force acting on axle along tire-fixed $y$-axis
$C_{\gamma}$	Camber stiffness
$C_{\alpha}$	Lateral stiffness per slip angle
$\mu$	Friction coefficient
$F_{z}$	Vertical contact patch normal force along tire-fixed $z$-axis

## Tire and Wheel Coordinate Systems

To resolve the forces and moments, the block uses the Z-Up orientation of the tire and wheel coordinate systems.

- Tire coordinate system axes $\left(X_{T}, Y_{T}, Z_{T}\right)$ are fixed in a reference frame attached to the tire. The origin is at the tire contact with the ground.
- Wheel coordinate system axes ( $X_{W}, Y_{W}, Z_{W}$ ) are fixed in a reference frame attached to the wheel. The origin is at the wheel center.


## Z-Up Orientation ${ }^{5}$



## Brakes

## Disc

If you specify the Brake Type parameter as Disc, the block implements a disc brake. This figure shows the side and front views of a disc brake.


5 Reprinted with permission Copyright © 2008 SAE International. Further distribution of this material is not permitted without prior permission from SAE.

A disc brake converts brake cylinder pressure from the brake cylinder into force. The disc brake applies the force at the brake pad mean radius.

The block uses these equations to calculate brake torque for the disc brake.

$$
\begin{aligned}
& T= \begin{cases}\frac{\mu P_{\pi B} B_{a} R_{m} N_{\text {pads }}}{4} & \text { when } N \neq 0 \\
\frac{\mu_{\text {static }} P_{\Pi B} B_{a} 2 R_{m} N_{\text {pads }}}{4} & \text { when } N=0\end{cases} \\
& R m=\frac{R o+R i}{2}
\end{aligned}
$$

The equations use these variables.

Variable	Value
$T$	Brake torque
$P$	Applied brake pressure
$N$	Wheel speed
$N_{\text {pads }}$	Number of brake pads in disc brake assembly
$\mu_{\text {static }}$	Disc pad-rotor coefficient of static friction
$\mu$	Disc pad-rotor coefficient of kinetic friction
$B_{a}$	Brake actuator bore diameter
$R_{m}$	Mean radius of brake pad force application on brake rotor
$R_{o}$	Outer radius of brake pad
$R_{i}$	Inner radius of brake pad

## Drum

If you specify the Brake Type parameter as Drum, the block implements a static (steady-state) simplex drum brake. A simplex drum brake consists of a single two-sided hydraulic actuator and two brake shoes. The brake shoes do not share a common hinge pin.

The simplex drum brake model uses the applied force and brake geometry to calculate a net torque for each brake shoe. The drum model assumes that the actuators and shoe geometry are symmetrical for both sides, allowing a single set of geometry and friction parameters to be used for both shoes.

The block implements equations that are derived from these equations in Fundamentals of Machine Elements.

$$
\begin{aligned}
& T_{\text {rshoe }}=\left(\frac{\pi \mu c r\left(\cos \theta_{2}-\cos \theta_{1}\right) B_{a}{ }^{2}}{2 \mu\left(2 r\left(\cos \theta_{2}-\cos \theta_{1}\right)+a\left(\cos ^{2} \theta_{2}-\cos ^{2} \theta_{1}\right)\right)+a r\left(2 \theta_{1}-2 \theta_{2}+\sin 2 \theta_{2}-\sin 2 \theta_{1}\right)}\right) P \\
& T_{\text {lshoe }}=\left(\frac{\pi \mu c r\left(\cos \theta_{2}-\cos \theta_{1}\right) B_{a}^{2}}{-2 \mu\left(2 r\left(\cos \theta_{2}-\cos \theta_{1}\right)+a\left(\cos ^{2} \theta_{2}-\cos ^{2} \theta_{1}\right)\right)+a r\left(2 \theta_{1}-2 \theta_{2}+\sin 2 \theta_{2}-\sin 2 \theta_{1}\right)}\right) P \\
& T= \begin{cases}T_{\text {rshoe }}+T_{\text {lshoe }} & \text { when } N \neq 0 \\
\left(T_{\text {rshoe }}+T_{\text {lshoe }}\right) \frac{\mu_{\text {static }}}{\mu} & \text { when } N=0\end{cases}
\end{aligned}
$$



The equations use these variables.

Variable	Value
$T$	Brake torque
$P$	Applied brake pressure
$N$	Wheel speed
$\mu_{\text {static }}$	Disc pad-rotor coefficient of static friction
$\mu$	Disc pad-rotor coefficient of kinetic friction
$T_{\text {rshoe }}$	Right shoe brake torque
$T_{\text {lshoe }}$	Left shoe brake torque
$a$	Distance from drum center to shoe hinge pin center
$C$	Distance from shoe hinge pin center to brake actuator connection on brake shoe
$r$	Drum internal radius
$B_{a}$	Brake actuator bore diameter
$\Theta_{1}$	Angle from shoe hinge pin center to start of brake pad material on shoe
$\Theta_{2}$	Angle from shoe hinge pin center to end of brake pad material on shoe

## Mapped

If you specify the Brake Type parameter as Mapped, the block uses a lookup table to determine the brake torque.

$$
T=\left\{\begin{array}{lr}
f_{\text {brake }}(P, N) & \text { when } N \neq 0 \\
\left(\frac{\mu_{\text {static }}}{\mu}\right) f_{\text {brake }}(P, N) & \text { when } N=0
\end{array}\right.
$$

The equations use these variables.

Variable	Value
$T$	Brake torque
$f_{\text {brake }}(P, N)$	Brake torque lookup table
$P$	Applied brake pressure
$N$	Wheel speed
$\mu_{\text {static }}$	Friction coefficient of drum pad-face interface under static conditions
$\mu$	Friction coefficient of disc pad-rotor interface

The lookup table for the brake torque, $f_{\text {brake }}(P, N)$, is a function of applied brake pressure and wheel speed, where:

- $T$ is brake torque, in $\mathrm{N} \cdot \mathrm{m}$.
- $P$ is applied brake pressure, in bar.
- $N$ is wheel speed, in rpm.



## Ports

Input
BrkPrs - Brake pressure
scalar | $N$-by- 1 vector
Brake pressure, in Pa.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

## Dependencies

To enable this port, set the Brake Type parameter, to one of these types:

- Disc
- Drum
- Mapped

AxITrq - Axle torque
scalar | $N$-by- 1 vector

Axle torque, $T_{a}$, about wheel spin axis, in $\mathrm{N} \cdot \mathrm{m}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Vx - Longitudinal velocity
scalar | $N$-by-1 vector
Axle longitudinal velocity, $V_{x}$, along tire-fixed $x$-axis, in $\mathrm{m} / \mathrm{s}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.
$\mathbf{V y}$ - Lateral velocity
scalar | $N$-by- 1 vector
Axle lateral velocity, $V_{y}$, along tire-fixed $y$-axis, in $\mathrm{m} / \mathrm{s}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Camber - Inclination angle
scalar | N-by-1 vector
Camber angle, $\gamma$, or inclination angle, $\varepsilon$, in rad.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

YawRate - Tire angular velocity
scalar | $N$-by-1 vector
Tire angular velocity, $r$, about the tire-fixed $z$-axis (yaw rate), in rad/s.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Prs - Tire inflation pressure
scalar | N-by-1 vector
Tire inflation pressure, $p_{i}$, in Pa.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Gnd - Ground displacement
scalar | $N$-by-1 vector
Ground displacement along tire-fixed $z$-axis, in m . Positive input produces wheel lift.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Fext - Axle force applied to tire
scalar | $N$-by- 1 vector

Axle force applied to tire, $F_{\text {ext }}$, along vehicle-fixed $z$-axis (positive input compresses the tire), in N .
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

ScaleFctrs - Scale factor
scalar | $N$-by-1 vector
Scale factor to account for variations in the coefficient of friction.

Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

## Output

Info - Block data
bus

Block data, returned as a bus signal containing these block values.

Signal	Description	Units
AxlTrq	Axle torque about wheel-fixed $y$-axis	$\mathrm{N} \cdot \mathrm{m}$
Omega	Wheel angular velocity about wheel-fixed $y$-axis	$\mathrm{rad} / \mathrm{s}$
Fx	Longitudinal vehicle force along tire-fixed $x$-axis	N
Fy	Lateral vehicle force along tire-fixed $y$-axis	N
Fz	Vertical vehicle force along tire-fixed $z$-axis	N
Mx	Overturning moment about tire-fixed $x$-axis	$\mathrm{N} \cdot \mathrm{m}$
My	Rolling resistance torque about tire-fixed $y$-axis	$\mathrm{N} \cdot \mathrm{m}$
Mz	Aligning moment about tire-fixed $z$-axis	$\mathrm{N} \cdot \mathrm{m}$
Vx	Vehicle longitudinal velocity along tire-fixed $x$-axis	$\mathrm{m} / \mathrm{s}$
Vy	Vehicle lateral velocity along tire-fixed $y$-axis	$\mathrm{m} / \mathrm{s}$
Re	Loaded effective radius	m
Kappa	Longitudinal slip ratio	NA
Alpha	Side slip angle	rad
a	Contact patch half length	m
b	Contact patch half width	m
Gamma	Camber angle	rad
psidot	Tire angular velocity about the tire-fixed $z$-axis $($ yaw   rate $)$	$\mathrm{rad} / \mathrm{s}$
BrkTrq	Brake torque about the vehicle-fixed $y$-axis	$\mathrm{N} \cdot \mathrm{m}$
BrkPrs	Brake pressure	Pa
z	Axle vertical displacement along tire-fixed $z$-axis	m
zdot	Axle vertical velocity along tire-fixed $z$-axis	$\mathrm{m} / \mathrm{s}$


Signal	Description	Units
Gnd	Ground displacement along tire-fixed $z$-axis (positive   input produces wheel lift)	m
GndFz	Vertical sidewall force on ground along tire-fixed $z$-axis	N
Prs	Tire inflation pressure	Pa

Omega - Wheel angular velocity
scalar | $N$-by-1 vector
Wheel angular velocity, $\omega$, about wheel-fixed $y$-axis, in rad/s.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Fx - Longitudinal axle force
scalar | $N$-by-1 vector
Longitudinal force acting on axle, $F_{x}$, along tire-fixed $x$-axis, in N. Positive force acts to move the vehicle forward.

Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

## Fy - Lateral axle force

scalar | $N$-by-1 vector
Lateral force acting on axle, $F_{y}$, along tire-fixed $y$-axis, in N .
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

## Fz - Vertical axle force

scalar | $N$-by-1 vector
Vertical force acting on axle, $F_{z}$, along tire-fixed $z$-axis, in N .
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Mx - Overturning moment
scalar | $N$-by-1 vector
Longitudinal moment acting on axle, $M_{x}$, about tire-fixed x-axis, in $\mathrm{N} \cdot \mathrm{m}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

My - Rolling resistive moment
scalar | $N$-by- 1 vector
Lateral moment acting on axle, $M_{y}$, about tire-fixed $y$-axis, in $\mathrm{N} \cdot \mathrm{m}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

Mz - Aligning moment
scalar | $N$-by-1 vector
Vertical moment acting on axle, $M_{z}$, about tire-fixed $z$-axis, in $\mathrm{N} \cdot \mathrm{m}$.
Vector is the number of wheels, $N$, by 1 . If you provide a scalar value, the block assumes that number of wheels is one.

## Parameters

## Block Options

Tire type - Slip type
Nominal slip|Extended slip
Use the Tire Type parameter to select slip type.

Action	Tire Type Setting
Calculate longitudinal and lateral   forces under nominal slip conditions	Nominal slip
Calculate longitudinal and lateral   forces with additional correction   factors for a more accurate response   at higher slip ratios	Extended slip

## Dependencies

Setting Tire type to Extended slip enables these parameters:

Setting	Parameters Enabled
Extended slip	- Longitudinal squared slip correction factor, $\mathbf{g x 1}$
	- Longitudinal squared slip friction correction factor, $\mathbf{g x} 2$
	- Longitudinal linear slip correction factor, gx3
	- Longitudinal linear slip friction correction factor, gx4
	- Longitudinal offset correction factor, gx5
	- Lateral maximum friction correction factor, gy1
	- Lateral offset correction factor, gy2

## Brake type - Brake type

None | Disc | Drum | Mapped
Use the Brake Type parameter to select the brake.

Action	Brake Type Setting
No braking	None
Implement brake that converts the   brake cylinder pressure into a   braking force	Disc
Implement simplex drum brake that   converts the applied force and brake   geometry into a net braking torque	Drum
Implement lookup table that is a   function of the wheel speed and   applied brake pressure	Mapped

Rolling Resistance - Rolling resistance torque
None (default) | Pressure and velocity | ISO 28580|Magic Formula|Mapped torque
To calculate the rolling resistance torque, specify one of these Rolling Resistance parameters.

Setting	Block Implementation
None	None
Pressure and velocity	Method in Stepwise Coastdown Methodology for Measuring   Tire Rolling Resistance. The rolling resistance is a function of   tire pressure, normal force, and velocity.
ISO 28580	Method specified in ISO 28580:2018, Passenger car, truck   and bus tyre rolling resistance measurement method   Single point test and correlation of measurement results.
Magic Formula	Magic formula equations from 4.E70 in Tire and Vehicle   Dynamics. The magic formula is an empirical equation based   on fitting coefficients.
Mapped torque	Lookup table that is a function of the normal force and spin   axis longitudinal velocity.

## Dependencies

Each Rolling Resistance setting enables additional parameters.

Setting	Parameters Enabled
Pressure and velocity	- Velocity independent force coefficient, aMy
	- Linear velocity force component, bMy
	- Quadratic velocity force component, cMy
	- Tire pressure exponent, alphaMy
	- $\quad$ Normal force exponent, betaMy


Setting	Parameters Enabled
ISO 28580	-
	Parasitic losses force, Fpl
	Rolling resistance constant, Cr
	- Thermal correction factor, Kt
	Measured temperature, Tmeas
	-
	Ambitic losses force, Fpl
	Rolling resistance torque coefficient, QSY
	Longitudinal force rolling resistance coefficient, QSY2
	Linear rotational speed rolling resistance coefficient,
	QSY3
	Quartic rotational speed rolling resistance coefficient,
QSY4	
	Camber squared rolling resistance torque, QSY5
	Load based camber squared rolling resistance torque,
	QSY6
	Normal load rolling resistance coefficient, QSY7
	Pressure load rolling resistance coefficient, QSY8
	Rolling resistance scaling factor, lam_My
Mapped torque	Spin axis velocity breakpoints, VxMy
	Normal force breakpoints, FzMy
	Rolling resistance torque map, MyMap

## Vertical Motion - Vertical Motion

None (default)|Mapped stiffness and damping
To calculate vertical motion, specify one of these Vertical Motion parameters.

Setting	Block Implementation
None	Block passes the applied chassis forces directly through to   the rolling resistance and longitudinal force calculations.
Mapped stiffness and damping	Vertical motion depends on wheel stiffness and damping.   Stiffness is a function of tire sidewall displacement and   pressure. Damping is a function of tire sidewall velocity and   pressure.

## Dependencies

Setting Vertical Motion to Mapped stiffness and damping enables these parameters:

Setting	Parameters Enabled
Mapped stiffness and damping	- Wheel mass, MASS   - Initial tire displacement, zo   - Initial velocity, zdoto   - Initial wheel vertical velocity (wheel fixed frame), zdoto   - Vertical deflection breakpoints, $\mathbf{z F z}$   - Pressure breakpoints, pFz   - Force due to deflection, Fzz   - Vertical velocity breakpoints, zdotFz   - Force due to velocity, Fzzdot

## Longitudinal and Lateral

Longitudinal stiffness, Ckappa - Longitudinal stiffness
1e7 (default) | scalar | $N$-by-1 vector
Longitudinal stiffness, $C_{K}$, specified as a scalar or $N$-by-1 vector, in N. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other longitudinal and lateral parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Lateral stiffness per slip angle, Calpha - Lateral stiffness
4.5 e 4 (default) | scalar | $N$-by-1 vector

Lateral stiffness per slip angle, $C_{\alpha}$, specified as a scalar or $N$-by- 1 vector, in $N /$ rad. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other longitudinal and lateral parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Camber stiffness, Cgamma - Camber stiffness
1e3 (default) | scalar | $N$-by-1 vector
Camber stiffness, $C_{\gamma}$, specified as a scalar or $N$-by- 1 vector, in $\mathrm{N} /$ rad. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other longitudinal and lateral parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Maximum friction scaling coefficient, mu0 - Maximum friction scaling coefficient
0.8 (default) | scalar | $N$-by-1 vector

Maximum friction scaling coefficient, $\mu_{0}$, specified as a scalar or $N$-by-1 vector, dimensionless. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other longitudinal and lateral parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Friction reduction factor, As - Friction reduction factor
0.01 (default) | scalar | $N$-by-1 vector

Friction reduction factor, $A_{s}$, specified as a scalar or $N$-by-1 vector, dimensionless. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other longitudinal and lateral parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Longitudinal relaxation length, Lrelx - Longitudinal relaxation length
0.05 (default) | scalar | $N$-by-1 vector

Longitudinal relaxation length, $L_{\text {relx }}$, specified as a scalar or $N$-by- 1 vector, in $m$. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other longitudinal and lateral parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Lateral relaxation length, Lrely - Lateral relaxation length
0.15 (default) | scalar | $N$-by-1 vector

Lateral relaxation length, $L_{\text {rely }}$, specified as a scalar or $N$-by- 1 vector, in $\mathrm{m} / \mathrm{rad}$. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other longitudinal and lateral parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Extended slip

Lateral offset correction factor, gy2 - Lateral offset correction factor
1.5 (default) | scalar

Lateral offset correction factor, $g_{y 2}$, dimensionless.

## Dependencies

To enable this parameter, set Tire type to Extended slip.
Lateral maximum friction correction factor, gy1 - Lateral maximum friction correction factor

- 1.6 (default) | scalar

Lateral maximum friction correction factor, $g_{y 1}$, dimensionless.

## Dependencies

To enable this parameter, set Tire type to Extended slip.
Longitudinal offset correction factor, $\mathbf{g x 5}$ - Longitudinal offset correction factor
1.5 (default) | scalar

Longitudinal offset correction factor, $g_{\times 5}$, dimensionless.

## Dependencies

To enable this parameter, set Tire type to Extended slip.
Longitudinal linear slip friction correction factor, $\mathbf{g x 4}$ - Longitudinal linear slip friction correction factor

- 0.75 (default) | scalar

Longitudinal linear slip friction correction factor, $g_{x 4}$, dimensionless.

## Dependencies

To enable this parameter, set Tire type to Extended slip.
Longitudinal linear slip correction factor, gx3 - Longitudinal linear slip correction factor 1.63 (default) | scalar

Longitudinal linear slip correction factor, $g_{x 3}$, dimensionless.

## Dependencies

To enable this parameter, set Tire type to Extended slip.
Longitudinal squared slip friction correction factor, gx2 - Longitudinal squared slip friction correction factor

- 0.75 (default) | scalar

Longitudinal squared slip friction correction factor, $g_{x 2}$, dimensionless.

## Dependencies

To enable this parameter, set Tire type to Extended slip.
Longitudinal squared slip correction factor, gx1 - Longitudinal squared slip correction factor 1.14 (default) | scalar

Longitudinal squared slip correction factor, $g_{x 1}$, dimensionless.

## Dependencies

To enable this parameter, set Tire type to Extended slip.

## Rolling

Rotational damping, br - Rotational damping
scalar | $N$-by-1 vector
Rotational damping, specified as a scalar or $N$-by-1 vector, in $N \cdot m \cdot s / r a d$. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other rotational parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Rotational inertia (rolling axis), IYY - Rotational inertia
scalar | $N$-by-1 vector
Rotational inertia (rolling axis), specified as a scalar or $N$-by- 1 vector, in $\mathrm{kg} \cdot \mathrm{m}^{2}$. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other rotational parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Initial rotational velocity, omegao - Initial rotational velocity
scalar | $N$-by-1 vector

Initial rotational velocity, specified as a scalar or $N$-by-1 vector, in rad/s. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other rotational parameters.
$N$ is the number of wheels and must match the input signal dimensions.
Unloaded radius, UNLOADED_RADIUS - Unloaded radius 0.309384029954441 (default) | scalar

Unloaded radius, in $m$.
Pressure and Velocity
Velocity independent force coefficient, aMy - Velocity-independent force coefficient 8e-4 (default) | scalar

Velocity-independent force coefficient, $a$, in $\mathrm{s} / \mathrm{m}$.

## Dependencies

To enable this parameter, set Rolling Resistance to Pressure and velocity.
Linear velocity force component, bMy - Linear velocity force component
0.001 (default) | scalar

Linear velocity force component, $b$, in s/m.

## Dependencies

To enable this parameter, set Rolling Resistance to Pressure and velocity.
Quadratic velocity force component, cMy - Quadratic velocity force component 1.6e-4 (default) | scalar

Quadratic velocity force component, $c$, in $\mathrm{s}^{\wedge} 2 / \mathrm{m}^{\wedge} 2$.

## Dependencies

To enable this parameter, set Rolling Resistance to Pressure and velocity.
Tire pressure exponent, alphaMy - Tire pressure exponent
-0.003 (default) | scalar
Tire pressure exponent, $\alpha$, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Pressure and velocity.
Normal force exponent, betaMy - Normal force exponent
0.97 (default) | scalar

Normal force exponent, $\beta$, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Pressure and velocity.

ISO 28580
Parasitic losses force, Fpl — Parasitic force loss
10 (default) | scalar
Parasitic force loss, $F_{p l}$, in N .

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.
Rolling resistance constant, $\mathbf{C r}$ - Rolling resistance constant
1e-3 (default) | scalar
Rolling resistance constant, $C_{r}$, in $\mathrm{N} / \mathrm{kN}$. ISO 28580 specifies the rolling resistance unit as one newton of tractive resistance for every kilonewtons of normal load.

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.
Thermal correction factor, $\mathbf{K t}$ - Thermal correction factor
0.008 (default) | scalar

Thermal correction factor, $K_{t}$, in $1 /$ degC.
Dependencies
To enable this parameter, set Rolling Resistance to ISO 28580.
Measured temperature, Tmeas - Temperature during testing
298.15 (default) | scalar

Measured ambient temperature, $T_{\text {meas }}$, near tire during tire testing, in K .

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.
Ambient temperature, Tamb - Temperature in application environment 298.15 (default) | scalar

Measured ambient temperature, $T_{\text {amb }}$, near tire in application environment, in K. For example, the measured ambient temperature is the ambient temperature near the tire when the vehicle is on the road.

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.
Input ambient temperature - Option to input ambient temperature
off (default) | on
Select to create input port Tamb to input the measured ambient temperature.
The measured ambient temperature, $T_{\text {amb }}$, is the temperature near tire in application environment, in K. For example, the measured ambient temperature is the ambient temperature near the tire when the vehicle is on the road.

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.

## Magic Formula

Rolling resistance torque coefficient, QSY1 - Torque coefficient 0.007 (default) | scalar

Rolling resistance torque coefficient, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Longitudinal force rolling resistance coefficient, QSY2 - Force resistance coefficient 0 (default) | scalar

Longitudinal force rolling resistance coefficient, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Linear rotational speed rolling resistance coefficient, QSY3 - Linear speed coefficient 0.0015 (default) | scalar

Linear rotational speed rolling resistance coefficient, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Quartic rotational speed rolling resistance coefficient, QSY4 - Quartic speed coefficient 8.5e-05 (default) | scalar

Quartic rotational speed rolling resistance coefficient, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Camber squared rolling resistance torque, QSY5 - Camber resistance torque
0 (default) | scalar
Camber squared rolling resistance torque, in $1 / \mathrm{rad}^{\wedge} 2$.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Load based camber squared rolling resistance torque, QSY6 - Load resistance torque 0 (default) | scalar

Load based camber squared rolling resistance torque, in $1 / \mathrm{rad}^{\wedge} 2$.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.

Normal load rolling resistance coefficient, QSY7 - Normal resistance coefficient 0.9 (default) | scalar

Normal load rolling resistance coefficient, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Pressure load rolling resistance coefficient, QSY8 - Pressure resistance coefficient -0. 4 (default) | scalar

Pressure load rolling resistance coefficient, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.
Rolling resistance scaling factor, lam_My - Scaling factor
1 (default) | scalar
Rolling resistance scaling factor, dimensionless.

## Dependencies

To enable this parameter, set Rolling Resistance to Magic Formula.

## Mapped

Spin axis velocity breakpoints, VxMy - Spin axis velocity breakpoints
-20:1:20 (default) | vector
Spin axis velocity breakpoints, in m/s.

## Dependencies

To enable this parameter, set Rolling Resistance to Mapped torque.
Normal force breakpoints, FzMy - Normal force breakpoints
0:200:1e4 (default) | vector
Normal force breakpoints, in N.

## Dependencies

To enable this parameter, set Rolling Resistance to Mapped torque.
Rolling resistance torque map, MyMap - Rolling resistance torque map array

Rolling resistance torque versus axle speed and normal force, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this parameter, set Rolling Resistance to Mapped torque.

## Aligning

Wheel width, WIDTH - Wheel width
scalar
Wheel width, WIDTH, in m.

## Linear yaw rate resistance, bMz - Linear yaw rate resistance

0 | scalar
Linear yaw rate resistance, $b_{M z}$, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.

## Brake

Static friction coefficient, mu_static - Static friction coefficient
0.3 (default) | scalar | $N$-by-1 vector

Static friction coefficient, specified as a scalar or $N$-by-1 vector, dimensionless. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other brake parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Brake Type to Disc, Drum, or Mapped
Kinetic friction coefficient, mu_kinetic - Kinetic friction
0.2 (default) | scalar | $N$-by-1 vector

Kinematic friction coefficient, specified as a scalar or $N$-by-1 vector, dimensionless. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other brake parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Brake Type to Disc, Drum, or Mapped

## Disc

Disc brake actuator bore, disc_abore - Bore distance
0.05 (default) | scalar | $N$-by-1 vector

Disc brake actuator bore, specified as a scalar or $N$-by- 1 vector, in $m$. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other brake parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Brake Type to Disc.
Brake pad mean radius, Rm - Radius
0.177 (default) | scalar | $N$-by-1 vector

Brake pad mean radius, specified as a scalar or $N$-by- 1 vector, in m. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other brake parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Brake Type to Disc.
Number of brake pads, num_pads - Number of brake pads
2 (default) | scalar $\mid N$-by- 1 vector
Number of brake pads, specified as a scalar or $N$-by- 1 vector, dimensionless. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other brake parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Brake Type to Disc.

## Drum

## Drum brake actuator bore, disc_abore - Bore distance

0.0508 (default) | scalar | $N$-by-1 vector

Drum brake actuator bore, specified as a scalar or $N$-by-1 vector, in m. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other brake parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Brake Type to Drum.
Shoe pin to drum center distance, drum_a - Shoe pin to drum center distance 0.123 (default) | scalar

Shoe pin to drum center distance, in $m$.

## Dependencies

To enable this parameter, set Brake Type to Drum.
Shoe pin center to force application point distance, drum_c - Shoe pin center to force application point distance
0.212 (default) | scalar

Shoe pin center to force application point distance, in $m$.

## Dependencies

To enable this parameter, set Brake Type to Drum.

Drum internal radius, drum_r - Drum internal radius
0.15 (default) | scalar

Drum internal radius, in $m$.

## Dependencies

To enable this parameter, set Brake Type to Drum.
Shoe pin to pad start angle, drum_thetal - Shoe pin to pad start angle
0 (default) | scalar
Shoe pin to pad start angle, in deg.

## Dependencies

To enable this parameter, set Brake Type to Drum.
Shoe pin to pad end angle, drum_theta 2 - Shoe pin to pad end angle 126 (default) | scalar

Shoe pin to pad end angle, in deg.

## Dependencies

To enable this parameter, set Brake Type to Drum.
Mapped
Brake actuator pressure breakpoints, brake_p_bpt - Brake actuator pressure breakpoints vector

Brake actuator pressure breakpoints, in bar.

## Dependencies

To enable this parameter, set Brake Type to Mapped.
Wheel speed breakpoints, brake_n_bpt - Wheel speed breakpoints
vector
Wheel speed breakpoints, in rpm.

## Dependencies

To enable this parameter, set Brake Type to Mapped.
Brake torque map, f_brake_t - Lookup table for brake torque array

The lookup table for the brake torque, $f_{\text {brake }}(P, N)$, is a function of applied brake pressure and wheel speed, where:

- $\quad T$ is brake torque, in $\mathrm{N} \cdot \mathrm{m}$.
- $P$ is applied brake pressure, in bar.
- $N$ is wheel speed, in rpm.



## Dependencies

To enable this parameter, set Brake Type to Mapped.

## Vertical

Wheel mass, $\mathbf{m}$ - Wheel mass
9.46491996974568 (default) | scalar | $N$-by-1 vector

Wheel mass, specified as a scalar or $N$-by- 1 vector, in kg . If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other vertical parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Initial tire deflection, zo - Initial tire deflection
0 (default) | scalar | $N$-by-1 vector
Initial tire displacement, specified as a scalar or $N$-by-1 vector, in $m$. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other vertical parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Initial wheel vertical velocity (wheel fixed frame), zdoto - Initial wheel vertical velocity
0 (default) | scalar | $N$-by-1 vector
Initial wheel vertical velocity, specified as a scalar or $N$-by- 1 vector, in m/s. If you specify a scalar, the block uses that value for all wheels. If you specify a vector, you must specify vectors for the other vertical parameters.
$N$ is the number of wheels and must match the input signal dimensions.

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

## Gravitational acceleration, GRAVITY - Gravitational acceleration

## -9.81 (default) | scalar

Gravitational acceleration, in $\mathrm{m} / \mathrm{s}^{\wedge} 2$.

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

## Mapped Stiffness and Damping

Vertical deflection breakpoints, zFz - Vertical deflection breakpoints
[0 . 01 .1] (default) | vector
Vector of sidewall deflection breakpoints corresponding to the force table, in $m$.

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Pressure breakpoints, pFz - Pressure breakpoints
[10000 1000000] (default) | vector
Vector of pressure data points corresponding to the force table, in Pa.

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Force due to deflection, Fzz - Force due to deflection
[0 le3 1e4; 0 le4 1e5] (default)|vector
Force due to sidewall deflection and pressure along wheel-fixed $z$-axis, in N .

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Vertical velocity breakpoints, zdotFz - Vertical velocity breakpoints
[-20 0 20] (default)|scalar
Vector of sidewall velocity breakpoints corresponding to the force due to velocity table, in m .

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Force due to velocity, Fzzdot - Force due to velocity
[500 0-500;250 0-250] (default) | array
Force due to sidewall velocity and pressure along wheel-fixed $z$-axis, in N .

## Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

## Simulation Setup

Maximum normal force, FZMAX - Maximum normal force
10000 (default) | scalar
Maximum normal force, in N. Used with all vertical force calculations.
Minimum normal force, FZMIN - Minimum normal force
0 (default) | scalar
Minimum normal force, in N. Used with all vertical force calculations.
Maximum pressure, PRESMAX - Maximum pressure
1003118 (default) | scalar
Maximum pressure, PRESMAX, in Pa.
Minimum pressure, PRESMIN - Minimum pressure
9982 (default) | scalar
Minimum pressure, PRESMIN, in Pa.
Max allowable slip ratio (absolute), KPUMAX - Max allowable slip ratio
0.999 (default) | scalar

Max allowable slip ratio (absolute), KPUMAX, dimensionless.
Minimum allowable slip ratio (absolute), KPUMIN - Minimum allowable slip ratio -0.999 (default) | scalar

Minimum allowable slip ratio (absolute), KPUMIN, dimensionless.
Max allowable slip angle (absolute), ALPMAX - Max allowable slip angle 1.5708 (default) | scalar

Max allowable slip angle (absolute), ALPMAX, in rad.
Minimum allowable slip angle (absolute), ALPMIN - Minimum allowable slip angle - 1.5708 (default) | scalar

Minimum allowable slip angle (absolute), ALPMIN, in rad.
Maximum allowable camber angle, CAMMAX - Maximum allowable camber angle 0.173 | scalar

Maximum allowable camber angle CAMMAX, in rad.
Minimum allowable camber angle, CAMMIN - Minimum allowable camber angle -0. 173 | scalar

Minimum allowable camber angle, CAMMIN, in rad.
Minimum ambient temperature, TMIN - Minimum ambient temperature 0 (default) | scalar

Minimum ambient temperature, $T_{\text {MIN }}$, in K .

## Dependencies

To enable this parameter, set Rolling Resistance to ISO 28580.
Maximum ambient temperature, TMAX - Maximum ambient temperature 400 (default) | scalar

Maximum ambient temperature, $T_{M A X}$, in K .
Dependencies
To enable this parameter, set Rolling Resistance to ISO 28580.

## Version History

## Introduced in R2023a

## References

[1] Bhoraskar, A. and P. Sakthivel. "A Review and a Comparison of Dugoff and Modified Dugoff Formula with Magic Formula." 2017 International Conference on Nascent Technologies in Engineering (ICNTE)(2017): 1-4. https://doi.org/10.1109/ICNTE.2017.7947898.
[2] Highway Tire Committee. Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. Standard J2452_199906. Warrendale, PA: SAE International, June 1999.
[3] International Organization for Standardization. Passenger car, truck and bus tyre rolling resistance measurement method - Single point test and correlation of measurement results. ISO 28580: 2018. https://www.iso.org/standard/67531.html.
[4] Pacejka, H. B. Tire and Vehicle Dynamics, 3rd ed. Oxford, UK: SAE and Butterworth-Heinemann, 2012.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

## See Also

Combined Slip Wheel 2DOF | Combined Slip Wheel 2DOF CPI | Combined Slip Wheel 2DOF STI |
Longitudinal Wheel | Fiala Wheel 2DOF
Topics
"Coordinate Systems in Vehicle Dynamics Blockset" Propulsion Blocks

## Simple Engine

Simplified engine model using lookup tables


## Libraries:

Powertrain Blockset / Propulsion / Combustion Engines
Vehicle Dynamics Blockset / Powertrain / Propulsion

## Description

The Simple Engine block implements a simplified engine model using a maximum torque vs engine speed table, two scalar fuel mass properties, and one scalar engine efficiency parameter to estimate engine torque and fuel flow. You can use the block for:

- Hardware-in-the-loop (HIL) engine control design
- Vehicle-level fuel economy and performance simulations


## Ports

## Input

TrqCmd - Commanded torque
scalar
Torque, in $\mathrm{N} \cdot \mathrm{m}$.
EngSpd - Engine speed
scalar
Engine speed, in rpm.

## Output

Info - Bus signal
bus
Bus signal containing these block calculations.

Signal	Description	Units
IntkGasMassFlw (zeroed out intentionally)	Engine air mass flow output	$\mathrm{kg} / \mathrm{s}$
NrmlzdAirChrg (zeroed out intentionally)	Normalized engine cylinder air mass	$\mathrm{N} / \mathrm{A}$
Afr (zeroed out intentionally)	Air-fuel ratio (AFR)	$\mathrm{N} / \mathrm{A}$
FuelMassFlw	Engine fuel flow output	$\mathrm{kg} / \mathrm{s}$
FuelVolFlw	Volumetric fuel flow	$\mathrm{m}^{3} / \mathrm{s}$
ExhManGasTemp (zeroed out intentionally)	Engine exhaust gas temperature	K


Signal			Description	Units
EngTrq			Engine torque output	$\mathrm{N} \cdot \mathrm{m}$
EngSpd			Engine speed	rpm
CrkAng (zeroed out intentionally)			Engine crankshaft absolute angle $\int_{0}^{(360) C p s} E n g S p d \frac{180}{30} d \theta$   where Cps is crankshaft revolutions per power stroke.	degrees crank angle
Bsfc			Engine brake-specific fuel consumption (BSFC)	$\mathrm{g} / \mathrm{kWh}$
EoHC (zeroed out intentionally)			Engine out hydrocarbon emission mass flow	kg/s
EoC0 (zeroed out intentionally)			Engine out carbon monoxide emission mass flow rate	kg/s
EoN0x (zeroed out intentionally)			Engine out nitric oxide and nitrogen dioxide emissions mass flow	kg/s
EoC02 (zeroed out intentionally)			Engine out carbon dioxide emission mass flow	kg/s
EoPM (zeroed out intentionally)			Engine out particulate matter emission mass flow	kg/s
PwrInfo	PwrTrnsfrd	PwrCrkshft	Crankshaft power	W
	PwrNotTrnsfrd	PwrFuel	Fuel input power	W
		PwrLoss	Power loss	W
	PwrStored		Not used	

EngTrq - Engine brake torque
scalar
Engine brake torque, in $\mathrm{N} \cdot \mathrm{m}$.

## Parameters

Engine maximum torque, f_tqmax - Breakpoints

```
[75.679776480773256 75.679776480773256 97.173658538143172 116.84042599160529
152.21029882684542 175 174.99889520597083 174.99996520122858 175 175 175 175
175 175 175 175] (default)
```

Breakpoints, in $\mathrm{N} \cdot \mathrm{m}$.
Breakpoints for engine speed input, f_tqmax_n_bpt - Breakpoints

Breakpoints, in rpm.
Fuel lower heating value, Lhv - Heating value
4. 6E+7 (default)

Fuel lower heating value, in J/kg.
Fuel specific gravity, Sg - Specific gravity
0.745 (default)

Specific gravity of fuel, dimensionless.
Average brake specific fuel consumption, BsfcAvg - Average brake specific fuel consumption 350 (default)

Average brake specific fuel consumption, in $\mathrm{g} / \mathrm{kwh}$.

## Version History

Introduced in R2021b

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\text {™ }}$.

## Mapped Motor

Mapped motor and drive electronics operating in torque-control mode


## Libraries:

Powertrain Blockset / Propulsion / Electric Motors and Inverters
Vehicle Dynamics Blockset / Powertrain / Propulsion

## Description

The Mapped Motor block implements a mapped motor and drive electronics operating in torquecontrol mode. The output torque tracks the torque reference demand and includes a motor-response and drive-response time constant. Use the block for fast system-level simulations when you do not know detailed motor parameters, for example, for motor power and torque tradeoff studies. The block assumes that the speed fluctuations due to mechanical load do not affect the motor torque tracking.

You can specify:

- Port configuration - Input torque or speed.
- Electrical torque range - Torque speed envelope or maximum motor power and torque.
- Electrical loss - Single operating point, measured efficiency, or measured loss. If you have ModelBased Calibration Toolbox ${ }^{\mathrm{TM}}$, you can virtually calibrate the measured loss tables.


## Electrical Torque

To specify the range of torque and speed that the block allows, on the Electrical Torque tab, for Parametrized by, select one of these options.

Setting	Block Implementation
Tabulated torque-speed   envelope	Range specified as a set of speed data points and corresponding   maximum torque values.
Maximum torque and power	Range specified with maximum torque and maximum power.

For either method, the block implements an envelope similar to this.


## Electrical Losses

To specify the electrical losses, on the Electrical Losses tab, for Parameterize losses by, select one of these options.

Setting	Block Implementation
Single efficiency measurement	Sum of these terms, measured at a single measurement point:   - Fixed losses independent of torque and speed, $P_{0}$. Use $P_{0}$ to account for fixed converter losses.   - A torque-dependent electrical loss $k \tau^{2}$, where $k$ is a constant and $\tau$ is the torque. Represents ohmic losses in the copper windings.   - A speed-dependent electrical loss $k_{\mathrm{w}} \omega^{2}$, where $k_{\mathrm{w}}$ is a constant and $\omega$ is the speed. Represents iron losses due to eddy currents.
Tabulated loss data	Loss lookup table that is a function of motor speeds and load torques.   If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 2D lookup tables using measured data.
Tabulated loss data with temperature	Loss lookup table that is a function of motor speeds, load torques, and operating temperature.   If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 3D lookup tables using measured data.
Tabulated efficiency data	2D efficiency lookup table that is a function of motor speeds and load torques:   - Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.   - Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.   - Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.   - Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.


Setting	Block Implementation
Tabulated efficiency data   with temperature	3D efficiency lookup table that is a function of motor speeds, load   torques, and operating temperature:
	-Converts the efficiency values you provide into losses and uses   the tabulated losses for simulation.   Ignores efficiency values you provide for zero speed or zero   torque. Losses are assumed zero when either torque or speed   is zero.                  - Uses linear interpolation to determine losses. Provide   tabulated data for low speeds and low torques, as required, to   get the desired level of accuracy for lower power conditions.   Does not extrapolate loss values for speed, torque, or   temperature magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Note Due to system losses, the motor can draw a current when the motor torque is zero.

## Virtual Calibration

If you have Model-Based Calibration Toolbox, you can virtually calibrate the measured loss lookup tables.

1 On the Electrical Losses tab, set Parameterize losses by to either:

- Tabulated loss data
- Tabulated loss data with temperature


## 2 Click Calibrate Maps.

The dialog box steps through these tasks.

Task	Description	
Import Loss Data	Import this loss data from a file. For example, open <matlabroot>/toolbox/ autoblks/autoblksshared/mbctemplates/MappedMotorDataset.xlsx.   For more information, see "Using Data" (Model-Based Calibration Toolbox).	
	Parameterize losses by	Required Data
	Tabulated loss data	- Motor speed, rad/s - - Potor torquer loss, W
	Tabulated loss data with temperature	- Motor speed, rad/s   - Motor torque, $\mathrm{N} \cdot \mathrm{m}$   - Motor temperature, K   - Power loss, W
	Collect motor data at steady-state operating conditions. Data should cover the motor speed, torque, and temperature operating range.   To filter or edit the data, select Edit in Application. The Model-Based Calibration Toolbox Data Editor opens.	
Generate Response Models	Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs).   To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).	
Generate Calibration	Model-Based Calibration Toolbox calibrates the response models and generates calibrated tables.   To assess or adjust the calibration, select Edit in Application. The ModelBased Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).	


Task	Description	
Update block parameters	Update these parameters with the calibration.	
	Parameterize losses by	Parameters
	Tabulated loss data	- Vector of speeds(w) for tabulated losses, w_eff_bp   - Vector of torques (T) for tabulated losses, T_eff_bp   - Corresponding losses, losses_table
	Tabulated loss data with temperature	- Vector of speeds(w) for tabulated losses, w_eff_bp   - Vector of torques ( $\mathbf{T}$ ) for tabulated losses, T_eff_bp   Vector of temperatures for tabulated losses, Temp_eff_bp   - Corresponding losses, losses_table_3d

## Battery Current

The block calculates the battery current using the mechanical power, power loss, and battery voltage. Positive current indicates battery discharge. Negative current indicates battery charge.

$$
\text { BattAmp }=\frac{\text { MechPwr }+ \text { PwrLoss }}{\text { BattVolt }}
$$

The equation uses these variables.

## BattVolt Battery voltage

MechPwr Mechanical power
PwrLoss Power loss
BattCurr Battery current

## Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Variable	Equations
PwrIn fo	PwrTrnsfrd   - Positive signals indicate power flow into the block.   - Negative signals indicate power flow out of the block.	PwrMtr	Mechanical power	$P_{\text {mot }}$	$P_{\text {mot }}=\omega_{m} T_{e}$
		PwrBus	Electrical power	$P_{\text {bus }}$	$P_{\text {bus }}=P_{\text {mot }}+P_{\text {loss }}$
	PwrNotTrnsfrd   - Negative signals indicate power loss.	PwrLoss	Motor power loss	$P_{\text {loss }}$	${ }_{\text {stored }}=\omega_{m} \dot{\omega}_{m} J$


| Bus Signal |  | Description | Variable | Equations |
| :--- | :--- | :--- | :--- | :--- | :--- |
| PwrStored <br> -Positive signals indicate <br> power gain. | PwrStor <br> edShft | Motor power <br> stored | $P_{\text {str }}$ | $P_{\text {loss }}=\quad-\left(P_{\text {mot }}\right.$ <br> $\left.+P_{\text {loss }}-\quad P_{\text {stored }}\right)$ |

The equations use these variables.

$T_{e}$	Motor output shaft torque
$\omega$	Motor shaft speed
$J$	Motor inertia

## Ports

Input
BattVolt - Battery voltage
scalar
Battery voltage, BattVolt, in V.
TrqCmd - Commanded motor torque
scalar
Commanded motor torque, $\mathrm{Trq}_{\text {cmd }}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this input port, for the Port configuration, select Torque.
MtrSpd - Motor output shaft speed
scalar
Motor shaft speed, $M t r_{\text {spd }}$, in rad/s.

## Dependencies

To create this input port, for the Port configuration, select Speed.

## Output

Info - Bus signal
bus
The bus signal contains these block calculations.

Signal		Description	Units
MechPwr		Mechanical power	W
PwrLoss	Internal inverter and motor power loss	$\mathrm{N} \cdot \mathrm{m}$	
PwrInfo	PwrTrnsfrd	PwrMtr	Mechanical power
	PwrBus	Electrical power	W


Signal		Description	Units	
	PwrNotTrnsfrd	PwrLoss	Motor power loss	W
	PwrStored	PwrStored   Shft	Motor power stored	W

## BattCurr - Battery current scalar

Battery current draw or demand, $I_{\text {batt, }}$ in A.
MtrTrq - Motor torque
scalar
Motor output shaft torque, $\mathrm{Mtr}_{\text {trq, }}$, in $\mathrm{N} \cdot \mathrm{m}$.
MtrSpd - Motor shaft speed
scalar
Motor shaft speed, $M t r_{s p d}$, in rad/s.

## Dependencies

To create this output port, for the Port configuration, select Torque.

## Parameters

## Block Options

Port configuration - Select port configuration
Torque (default) | Speed
This table summarizes the port configurations.

Port Configuration	Creates Ports
Torque	Outpost MtrSpd
Speed	Input Mt rSpd

Calibrate Maps - Calibrate tables with measured data selection

If you have Model-Based Calibration Toolbox, you can virtually calibrate the measured loss lookup tables.

1 On the Electrical Losses tab, set Parameterize losses by to either:

- Tabulated loss data
- Tabulated loss data with temperature


## 2 Click Calibrate Maps.

The dialog box steps through these tasks.

Task	Description	
Import Loss Data	Import this loss data from a file. For example, open <matlabroot>/toolbox/ autoblks/autoblksshared/mbctemplates/MappedMotorDataset.xlsx.   For more information, see "Using Data" (Model-Based Calibration Toolbox).	
	Parameterize losses by	Required Data
	Tabulated loss data	- Motor speed, rad/s - - Potor torquer loss, W
	Tabulated loss data with temperature	- Motor speed, rad/s   - Motor torque, $\mathrm{N} \cdot \mathrm{m}$   - Motor temperature, K   - Power loss, W
	Collect motor data at steady-state operating conditions. Data should cover the motor speed, torque, and temperature operating range.   To filter or edit the data, select Edit in Application. The Model-Based Calibration Toolbox Data Editor opens.	
Generate Response Models	Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs).   To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).	
Generate Calibration	Model-Based Calibration Toolbox calibrates the response models and generates calibrated tables.   To assess or adjust the calibration, select Edit in Application. The ModelBased Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).	


Task	Description	
Update block parameters	Update these parameters with the calibration.	
	Parameterize losses by	Parameters
	Tabulated loss data	- Vector of speeds(w) for tabulated losses, w_eff_bp   - Vector of torques (T) for tabulated losses, T_eff_bp   - Corresponding losses, losses_table
	```Tabulated loss data with temperature```	- Vector of speeds(w) for tabulated losses, w_eff_bp   - Vector of torques (T) for tabulated losses, T_eff_bp   - Vector of temperatures for tabulated losses, Temp_eff_bp   - Corresponding losses, losses_table_3d

Electrical Torque

Parameterized by - Select type
Tabulated torque-speed envelope (default)|Maximum torque and power

Setting	Block Implementation
Tabulated torque-speed envelope	Range specified as a set of speed data points and corresponding maximum torque values.
Maximum torque and power	Range specified with maximum torque and maximum power.

For either method, the block implements an envelope similar to this.

Vector of rotational speeds, w_t - Rotational speeds

[0 375750 800] (default) | vector

Rotational speeds for permissible steady-state operation, in rad/s. To avoid poor performance due to an infinite slope in the torque-speed curve, specify a vector of rotational speeds that does not contain duplicate consecutive values.

Dependencies

To create this parameter, for the Parameterized by parameter, select Tabulated torque-speed envelope.

Vector of maximum torque values, $\mathbf{T}_{-} \mathbf{t}$ - Torque
[0.09 0.08 0.07 0] (default)|vector
Maximum torque values for permissible steady state, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this parameter, for the Parameterized by parameter, select Tabulated torque-speed envelope.

Maximum torque, torque_max - Torque
. 1 (default) | scalar
The maximum permissible motor torque, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this parameter, for the Parameterized by parameter, select Maximum torque and power.

Maximum power, power_max - Power
30 (default) | scalar
The maximum permissible motor power, in W .

Dependencies

To create this parameter, for the Parameterized by parameter, select Maximum torque and power.

Torque control time constant, Tc - Time constant
0.02 (default) | scalar

Time constant with which the motor driver tracks a torque demand, in s.

Electrical Losses

Parameterize losses by - Select type
Single efficiency measurement (default)|Tabulated loss data|Tabulated efficiency data

Setting	Block Implementation
Single efficiency measurement	Sum of these terms, measured at a single measurement point: - Fixed losses independent of torque and speed, P_{0}. Use P_{0} to account for fixed converter losses. - A torque-dependent electrical loss $k \tau^{2}$, where k is a constant and τ is the torque. Represents ohmic losses in the copper windings. - A speed-dependent electrical loss $k_{\mathrm{w}} \omega^{2}$, where k_{w} is a constant and ω is the speed. Represents iron losses due to eddy currents.
Tabulated loss data	Loss lookup table that is a function of motor speeds and load torques. If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 2D lookup tables using measured data.
Tabulated loss data with temperature	Loss lookup table that is a function of motor speeds, load torques, and operating temperature. If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 3D lookup tables using measured data.
Tabulated efficiency data	2D efficiency lookup table that is a function of motor speeds and load torques: - Converts the efficiency values you provide into losses and uses the tabulated losses for simulation. - Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero. - Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. - Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.

Setting	Block Implementation
Tabulated efficiency data with temperature	3D efficiency lookup table that is a function of motor speeds, load torques, and operating temperature: - Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.
	- Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.
	Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. Does not extrapolate loss values for speed, torque, or temperature magnitudes that exceed the range of the table.

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Note Due to system losses, the motor can draw a current when the motor torque is zero.

Motor and drive overall efficiency, eff - Efficiency

100 (default) | scalar
The block defines overall efficiency as:

$$
\eta=100 \frac{\tau_{0} \omega_{0}}{\tau_{0} \omega_{0}+P_{0}+k \tau_{0}^{2}+k_{w} \omega_{0}^{2}}
$$

The equation uses these variables.
$\tau_{0} \quad$ Torque at which efficiency is measured
$\omega_{0} \quad$ Speed at which efficiency is measured
$P_{0} \quad$ Fixed losses independent of torque or speed
$k \tau_{0}^{2} \quad$ Torque-dependent electrical losses
$k_{w} \omega^{2} \quad$ Speed-dependent iron losses
At initialization, the block solves the efficiency equation for k. The block neglects losses associated with the rotor damping.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.

Speed at which efficiency is measured, w_eff - Speed

375 (default) | scalar
Speed at which efficiency is measured, in rad/s.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.

Torque at which efficiency is measured, T_eff - Torque
0.08 (default)| scalar

Torque at which efficiency is measured, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.

Iron losses, Piron - Power
0 (default) | scalar
Iron losses at the speed and torque at which efficiency is defined, in W.
Dependencies
To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.

Fixed losses independent of torque and speed, Pbase - Power
0 (default) | scalar
Fixed electrical loss associated with the driver when the motor current and torque are zero, in W.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.

Vector of speeds (w) for tabulated losses, w_eff_bp - Breakpoints
[-8000-4000 04000 8000] (default)| 1-by-M vector
Speed breakpoints for lookup table when calculating losses, in rad/s. Array dimensions are 1 by the number of speed breakpoints, M.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select one of these:

- Tabulated loss data
- Tabulated loss data with temperature
- Tabulated efficiency data
- Tabulated efficiency data with temperature

Vector of torques (T) for tabulated losses, T_eff_bp - Breakpoints
[0 0.03 0.06 0.09] (default)| 1-by-N vector
Torque breakpoints for lookup table when calculating losses, in $N \cdot m$. Array dimensions are 1 by the number of torque breakpoints, N .

Dependencies

To create this parameter, for the Parameterize losses by parameter, select one of these:

- Tabulated loss data
- Tabulated loss data with temperature
- Tabulated efficiency data
- Tabulated efficiency data with temperature

Vector of temperatures for tabulated losses, Temp_eff_bp - Breakpoints
[233.15 293.15 373.15] (default)| 1-by-L vector
Temperature breakpoints for lookup table when calculating losses, in K. Array dimensions are 1 by the number of temperature breakpoints, L.

Dependencies
To create this parameter, for the Parameterize losses by parameter, select one of these:

- Tabulated loss data with temperature
- Tabulated efficiency data with temperature

Corresponding losses, losses_table - 2D lookup table
M-by-N matrix
Array of values for electrical losses as a function of speed and torque, in W. Each value specifies the losses for a specific combination of speed and torque. The array dimensions must match the speed, M, and torque, N , breakpoint vector dimensions.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select Tabulated loss data.

Corresponding losses, losses_table_3d - 3D lookup table

M-by-N-by-L array
Array of values for electrical losses as a function of speed, torque, and temperature, in W. Each value specifies the losses for a specific combination of speed, torque, and temperature. The array dimensions must match the speed, M, torque, N, and temperature, L, breakpoint vector dimensions.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select Tabulated loss data with temperature.

Corresponding efficiency, efficiency_table - 2D lookup table

M-by-N matrix
Array of efficiency as a function of speed and torque, in \%. Each value specifies the losses for a specific combination of speed and torque. The array dimensions must match the speed, M, and torque, N , breakpoint vector dimensions.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select Tabulated efficiency data.

Corresponding efficiency, efficiency_table_3d - 3D lookup table
M-by-N-by-L array
Array of efficiency as a function of speed and torque, in \%. Each value specifies the losses for a specific combination of speed and torque. The array dimensions must match the speed, M , torque, N , and temperature, L, breakpoint vector dimensions.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

Dependencies

To create this parameter, for the Parameterize losses by parameter, select Tabulated efficiency data.

Mechanical
Rotor inertia, J - Inertia
5e-6 (default) | scalar
Rotor resistance to change in motor motion, in $\mathrm{kg}^{*} \mathrm{~m}^{2}$. The value can be zero.

Dependencies

To create this parameter, for the Port configuration parameter, select Torque.
Rotor damping, b - Damping
le-5 (default) | scalar
Rotor damping, in $\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})$. The value can be zero.

Dependencies

To create this parameter, for the Port configuration parameter, select Torque.
Initial rotor speed, omega_o - Speed
0 (default) | scalar
Rotor speed at the start of the simulation, in rad/s.

Dependencies

To create this parameter, for the Port configuration parameter, select Torque.

Version History

Introduced in R2017a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Open Differential

Mapped CI Engine

Compression-ignition engine model using lookup tables

Libraries:

Powertrain Blockset / Propulsion / Combustion Engines
Vehicle Dynamics Blockset / Powertrain / Propulsion

Description

The Mapped CI Engine block implements a mapped compression-ignition (CI) engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:

- Hardware-in-the-loop (HIL) engine control design
- Vehicle-level fuel economy and performance simulations

The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of injected fuel mass, F, engine torque, T, engine speed, N, and engine temperature, $T e m p_{\text {Eng }}$.

Input Command Setting	Input Engine Temperature Parameter Setting	Lookup Tables
Fuel mass	off	$f(F, N)$
	on	$f\left(F, N, T e m p_{\text {Eng }}\right)$
Torque	off	$f(T, N)$
	on	$f\left(T, N, T e m p_{\text {Eng }}\right)$

The block enables you to specify lookup tables for these engine characteristics:

- Power
- Air
- Fuel
- Temperature
- Efficiency
- Hydrocarbon (HC) emissions
- Carbon monoxide (CO) emissions
- Nitric oxide and nitrogen dioxide (NOx) emissions
- Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ emissions
- Particulate matter (PM) emissions

To bound the Mapped CI Engine block output, the block does not extrapolate the lookup table data.

Virtual Calibration

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.

Task	Description		
Import firing data	Import this loss data from a file. For example, open <matlabroot>/ toolbox/mbc/mbctraining/CiEngineData.xlsx. For more information, see "Using Data" (Model-Based Calibration Toolbox).		
	Input command	Required Data	Optional Data
	Fuel mass	- Engine speed, rpm - Commanded fuel mass per injection, mg - Engine torque, $\mathrm{N} \cdot \mathrm{m}$	- Air mass flow rate, kg/s - Brake specific fuel consumption, $\mathrm{g} /(\mathrm{kW} \cdot \mathrm{h})$ - CO2 mass flow rate, kg / s
	Torque	- Engine speed, rpm	- CO mass flow rate, kg / s - Exhaust temperature, K - Fuel mass flow rate, kg/s - HC mass flow rate, kg / s - NOx mass flow rate, kg/s - Particulate matter mass flow rate, kg / s
	Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque. To filter or edit the data, select Edit in Application. The Model-Based Calibration Toolbox Data Editor opens.		
Import non-firing data	Import this non-firing data from a file. For example, open <matlabroot>/ toolbox/mbc/mbctraining/CiEngineData.xlsx. - Engine speed, rpm - Engine torque, $\mathrm{N} \cdot \mathrm{m}$ Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.		
Generate response models	For both firing and non-firing data, the Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).		

Task	Description
Generate calibration	Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables. To assess or adjust the calibration, select Edit in Application. The Model- Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).
Update block parameters	Update the block lookup table and breakpoint parameters with the calibration.

Cylinder Air Mass

The block calculates the normalized cylinder air mass using these equations.

$$
\begin{aligned}
& M_{\text {Nom }}=\frac{P_{\text {std }} V_{d}}{N_{\text {cyl }} R_{\text {air }} T_{\text {std }}} \\
& L=\frac{\left(\frac{60 s}{\mathrm{~min}}\right) C p s \cdot \dot{m}_{a i r}}{\left(\frac{1000 g}{\mathrm{Kg}}\right) N_{\text {cyl }} \cdot N \cdot M_{\text {Nom }}}
\end{aligned}
$$

The equations use these variables.
$L \quad$ Normalized cylinder air mass
$M_{\text {Nom }} \quad$ Nominal engine cylinder air mass at standard temperature and pressure, piston at bottom dead center (BDC) maximum volume, in kg
Cps Crankshaft revolutions per power stroke, rev/stroke
$P_{s t d} \quad$ Standard pressure
$T_{\text {std }} \quad$ Standard temperature
$R_{\text {air }} \quad$ Ideal gas constant for air and burned gas mixture
$V_{d} \quad$ Displaced volume
$N_{\text {cyl }} \quad$ Number of engine cylinders
$N \quad$ Engine speed
$\dot{m}_{\text {intk }} \quad$ Engine air mass flow, in g / s

Turbocharger Lag

To model turbocharger lag, select Include turbocharger lag effect. Turbocharger lag limits the maximum fuel mass per injection. To model the maximum fuel mass per injection, the block uses a first-order system with a time constant. At low torque, the engine does not require boost to provide sufficient air flow. When the requested fuel mass requires boost, the block uses a time constant to determine the maximum fuel mass per injection. The block uses these equations for the specified Input command setting.

Calculation	Input command Parameter Setting	
	Fuel mass	Torque
Dynamic torque	$\frac{d F_{\max }}{d t}=\frac{1}{\tau_{e n g}}\left(F_{c m d}-F_{\max }\right)$	$\frac{d T_{\max }}{d t}=\frac{1}{\tau_{e n g}}\left(T_{c m d}-T_{\max }\right)$
Fuel mass per injection or torque - with turbocharger lag	$\begin{aligned} & F= \\ & \begin{cases}F_{c m d} & \text { when } F_{c m d}<F_{\max } \\ F_{\max } & \text { when } F_{c m d} \geq F_{\max }\end{cases} \end{aligned}$	$\begin{aligned} & T_{\text {target }}= \\ & \begin{cases}T_{c m d} & \text { when } T_{c m d}<T_{\max } \\ T_{\max } & \text { when } T_{c m d} \geq T_{\max }\end{cases} \end{aligned}$
Fuel mass per injection or torque- without turbocharger lag	$F=F_{\text {cmd }}=F_{\text {max }}$	$T_{\text {target }}=T_{\text {cmd }}=T_{\text {max }}$
Boost time constant	$\begin{aligned} & \tau_{b s t}= \\ & \begin{cases}\tau_{\text {bst, } \text { rising }} & \text { when } F_{c m d}>F_{\mathrm{max}} \\ \tau_{b s t, \text { falling }} & \text { when } F_{c m d} \leq F_{\mathrm{max}}\end{cases} \end{aligned}$	$\begin{aligned} & \tau_{b s t}= \\ & \begin{cases}\tau_{\text {bst, } \text { rising }} & \text { when } T_{c m d}>T_{\max } \\ \tau_{\text {bst }, \text { falling }} & \text { when } T_{c m d} \leq T_{\max }\end{cases} \end{aligned}$
Final time constant	$\tau_{\text {eng }}= \begin{cases}\tau_{\text {nat }} & \text { when } T_{\text {brake }}<f_{\text {bst }}(N) \\ \tau_{\text {bst }} & \text { when } T_{\text {brake }} \geq f_{\text {bst }}(N)\end{cases}$	

The equations use these variables.

$T_{\text {brake }}$	Brake torque
F	Fuel mass per injection
$F_{\text {cmd }}, F_{\text {max }}$	Commanded and maximum fuel mass per injection, respectively
$T_{\text {target, }}, T_{\text {cmd }}, T_{\text {max }}$	Target, commanded, and maximum torque, respectively
$\tau_{\text {bst }}$	Boost time constant
$\tau_{\text {bst,rising, }}, \tau_{\text {bst,falling }}$	Boost rising and falling time constant, respectively
$\tau_{\text {eng }}$	Final time constant
$\tau_{\text {nat }}$	Time constant below the boost torque speed line
$f_{\text {bst }}(N)$	Boost torque/speed line
N	Engine speed

Fuel Flow

To calculate the fuel economy for high-fidelity models, the block uses the volumetric fuel flow.

$$
Q_{f u e l}=\frac{\dot{m}_{\text {fuel }}}{\left(\frac{100 \mathrm{~kg}}{\mathrm{~m}^{3}}\right) S g_{\text {fuel }}}
$$

The equation uses these variables.
$\dot{m}_{\text {fuel }} \quad$ Fuel mass flow
$S g_{\text {fuel }} \quad$ Specific gravity of fuel
$Q_{\text {fuel }} \quad$ Volumetric fuel flow

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations
PwrInf 0	PwrTrnsfrd - Power transferred between blocks - Positive signals indicate flow into block - Negative signals indicate flow out of block	PwrCrkshft	Crankshaft power	$-\tau_{\text {eng }} \omega$
	PwrNotTrnsfrd - Power crossing the block boundary, but not transferred	PwrFuel	Fuel input power	$\dot{m}_{\text {fuel }} L H V$
	- Positive signals indicate an input - Negative signals indicate a loss	PwrLoss	Power loss	$\left\lvert\, \begin{aligned} & \tau_{e n g} \omega \\ & -\dot{m}_{\text {fuel }} L H V \end{aligned}\right.$
	PwrStored - Stored energy rate of cha - Positive signals indicate an increase - Negative signals indicate a decrease		Not used	

The equations use these variables.

LHV	Fuel lower heating value
ω	Engine speed, rad/s
$\dot{m}_{\text {fuel }}$	Fuel mass flow
$\tau_{\text {eng }}$	Fuel mass per injection time constant

Ports

Input

FuelMassCmd - Injected fuel mass command
scalar
Injected fuel mass command, F, in mg/inj.

Dependencies

To enable this port, for Input command, select Fuel mass.
TrqCmd - Torque command
scalar
Torque command, T, in $N \cdot m$.

Dependencies

To enable this port, for Input command, select Torque.

EngSpd - Engine speed
scalar
Engine speed, N, in rpm.
EngTemp - Engine temperature
scalar
Engine temperature, $\mathrm{Temp}_{\text {Eng, }}$, in K .

Dependencies

To enable this port, select Input engine temperature.

Output

Info - Bus signal
bus
Bus signal containing these block calculations.

Signal	Description	Units
IntkGasMassFlw	Engine air mass flow output	kg / s
NrmlzdAirChrg	Normalized engine cylinder air mass	N / A
Afr	Air-fuel ratio (AFR)	N / A
FuelMassFlw	Engine fuel flow output	kg / s
FuelVolFlw	Volumetric fuel flow	$\mathrm{m}^{3} / \mathrm{s}$
ExhManGasTemp	Engine exhaust gas temperature	K
EngTrq	Engine torque output	$\mathrm{N} \cdot \mathrm{m}$
EngSpd	Engine speed	rpm
CrkAng	Engine crankshaft absolute angle $(360) C p s$	degrees crank angle
Bsfc	0 where Cps is crankshaft revolutions per power stroke.	Eng
EoHC	Engine brake-specific fuel consumption (BSFC)	$\mathrm{g} / \mathrm{kWh}$
EoCO	Engine out hydrocarbon emission mass flow	kg / s
EoNOx	Engine out carbon monoxide emission mass flow rate	kg / s
EoC02	Engine out nitric oxide and nitrogen dioxide emissions mass flow	kg / s

Signal		Description	Units
EoPM	Engine out particulate matter emission mass flow	kg / s	
PwrInfo	PwrTrnsfrd	PwrCrkshft	Crankshaft power
	PwrNotTrnsfr d	PwrFuel	Fuel input power
	PwrLoss	Power loss	W
	PwrStored	Not used	W

EngTrq - Power
 scalar

Engine power, $T_{\text {brake }}$, in $\mathrm{N} \cdot \mathrm{m}$.

Parameters

Block Options

Input command - Table functions
Fuel mass (default)|Torque
The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of injected fuel mass, F, engine torque, T, engine speed, N, and engine temperature, $T e m p_{\text {Eng }}$.

Input Command Setting	Input Engine Temperature Parameter Setting	Lookup Tables
Fuel mass	off	$f(F, N)$
	on	$f\left(F, N, T e m p_{\text {Eng }}\right)$
Torque	off	$f(T, N)$
	on	$f\left(T, N, T e m p_{\text {Eng }}\right)$

Dependencies

- Selecting Fuel mass enables Breakpoints for commanded fuel mass input, f_tbrake_f_bpt.
- Selecting Torque enables Breakpoints for commanded torque input, f_tbrake_t_bpt.
- Selecting Input engine temperature enables Breakpoints for temperature input, f_tbrake_engtmp_bpt.

Include turbocharger lag effect - Increase time constant
off (default)
To model turbocharger lag, select Include turbocharger lag effect. Turbocharger lag limits the maximum fuel mass per injection. To model the maximum fuel mass per injection, the block uses a first-order system with a time constant. At low torque, the engine does not require boost to provide sufficient air flow. When the requested fuel mass requires boost, the block uses a time constant to determine the maximum fuel mass per injection. The block uses these equations for the specified Input command setting.

Calculation	Input command Parameter Setting	
	Fuel mass	Torque
Dynamic torque	$\frac{d F_{\max }}{d t}=\frac{1}{\tau_{e n g}}\left(F_{c m d}-F_{\max }\right)$	$\frac{d T_{\max }}{d t}=\frac{1}{\tau_{e n g}}\left(T_{c m d}-T_{\max }\right)$
Fuel mass per injection or torque - with turbocharger lag	$\begin{aligned} & F= \\ & \begin{cases}F_{c m d} & \text { when } F_{c m d}<F_{\max } \\ F_{\max } & \text { when } F_{c m d} \geq F_{\max }\end{cases} \end{aligned}$	$\begin{aligned} & T_{\text {target }}= \\ & \begin{cases}T_{\text {cmd }} & \text { when } T_{c m d}<T_{\max } \\ T_{\max } & \text { when } T_{c m d} \geq T_{\max }\end{cases} \end{aligned}$
Fuel mass per injection or torque- without turbocharger lag	$F=F_{\text {cmd }}=F_{\text {max }}$	$T_{\text {target }}=T_{\text {cmd }}=T_{\text {max }}$
Boost time constant	$\begin{aligned} & \tau_{b s t} \\ & \begin{cases}\tau_{\text {bst, } \text { rising }} & \text { when } F_{c m d}>F_{\mathrm{max}} \\ \tau_{\text {bst }, \text { falling }} & \text { when } F_{c m d} \leq F_{\mathrm{max}}\end{cases} \end{aligned}$	$\begin{aligned} & \tau_{\text {bst }}= \\ & \begin{cases}\tau_{\text {bst }, \text { rising }} & \text { when } T_{c m d}>T_{\max } \\ \tau_{\text {bst }, \text { falling }} & \text { when } T_{c m d} \leq T_{\max }\end{cases} \end{aligned}$
Final time constant	$\tau_{\text {eng }}= \begin{cases}\tau_{\text {nat }} & \text { when } T_{\text {brake }}<f_{\text {bst }}(N) \\ \tau_{\text {bst }} & \text { when } T_{\text {brake }} \geq f_{\text {bst }}(N)\end{cases}$	

The equations use these variables.

$T_{\text {brake }}$	Brake torque
F	Fuel mass per injection
$F_{\text {cmd }}, F_{\text {max }}$	Commanded and maximum fuel mass per injection, respectively
$T_{\text {target },}, T_{\text {cmd }}, T_{\text {max }}$	Target, commanded, and maximum torque, respectively
$\tau_{\text {bst }}$	Boost time constant
$\tau_{\text {bst }, \text { rising, }}, \tau_{\text {bst,falling }}$	Boost rising and falling time constant, respectively
$\tau_{\text {eng }}$	Final time constant
$\tau_{\text {nat }}$	Time constant below the boost torque speed line
$f_{\text {bst }}(N)$	Boost torque/speed line
N	Engine speed
Dependencies	

Selecting Include turbocharger lag effect enables these parameters:

- Boost torque line, f_tbrake_bst
- Time constant below boost line, tau_nat
- Rising maximum fuel mass boost time constant, tau_bst_rising
- Falling maximum fuel mass boost time constant, tau_bst_falling

Input engine temperature - Create input port
off (default) | on
Select this to create the EngTemp input port.

The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of injected fuel mass, F, engine torque, T, engine speed, N, and engine temperature, $T e m p_{\text {Eng }}$.

Input Command Setting	Input Engine Temperature Parameter Setting	Lookup Tables
Fuel mass	off	$f(F, N)$
	on	$f\left(F, N, T e m p_{\text {Eng }}\right)$
Torque	off	$f(T, N)$
	on	$f\left(T, N, T e m p_{\text {Eng }}\right)$

Configuration

Calibrate Maps - Calibrate tables with measured data

selection
If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.

Task	Description		
Import firing data	Import this loss data from a file. For example, open <matlabroot>/ toolbox/mbc/mbctraining/CiEngineData.xlsx. For more information, see "Using Data" (Model-Based Calibration Toolbox).		
	Input command	Required Data	Optional Data
	Fuel mass	- Engine speed, rpm - Commanded fuel mass per injection, mg - Engine torque, $\mathrm{N} \cdot \mathrm{m}$	- Air mass flow rate, kg/s - Brake specific fuel consumption, $\mathrm{g} /(\mathrm{kW} \cdot \mathrm{h})$ - CO2 mass flow rate, kg / s
	Torque	- Engine speed, rpm - Engine torque, $\mathrm{N} \cdot \mathrm{m}$	- CO mass flow rate, kg / s - Exhaust temperature, K - Fuel mass flow rate, kg/s - HC mass flow rate, kg/s - NOx mass flow rate, kg / s - Particulate matter mass flow rate, kg / s

Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque.

To filter or edit the data, select Edit in Application. The Model-Based Calibration Toolbox Data Editor opens.

Task	Description
Import non-firing data	Import this non-firing data from a file. For example, open <matlabroot>/ toolbox/mbc/mbct raining/CiEngineData.xlsx. - Engine speed, rpm - Engine torque, N•m Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.
Generate response models	For both firing and non-firing data, the Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
Generate calibration	Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables. To assess or adjust the calibration, select Edit in Application. The Model- Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).
Update block parameters	Update the block lookup table and breakpoint parameters with the calibration.

Dependencies

To enable this parameter, clear Input engine temperature.

Breakpoints for commanded fuel mass input, f_tbrake_f_bpt - Breakpoints

1-by-M vector
Breakpoints, in mg/inj.

Dependencies

Setting Input command to Fuel mass enables this parameter.

Breakpoints for commanded torque input, f_tbrake_t_bpt - Breakpoints

1-by-M vector
Breakpoints, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

Setting Input command to Torque enables this parameter.

Breakpoints for engine speed input, f_tbrake_n_bpt - Breakpoints

1-by-N vector
Breakpoints, in rpm.
Breakpoints for temperature input, f_tbrake_engtmp_bpt - Breakpoints
[233.15 273.15 373.15] (default) | 1-by-L vector

Breakpoints, in K.
Dependencies
To enable this parameter, select Input engine temperature.
Number of cylinders, NCyI - Number
4 (default) | scalar
Number of cylinders.
Crank revolutions per power stroke, Cps - Crank revolutions
2 (default) | scalar
Crank revolutions per power stroke.
Total displaced volume, Vd - Volume
0.0015 (default) | scalar

Volume displaced by engine, in $\mathrm{m} \wedge 3$.
Fuel lower heating value, Lhv - Heating value
45e6 (default) | scalar
Fuel lower heating value, $L H V$, in J / kg.
Fuel specific gravity, $\mathbf{S g}$ - Specific gravity
0.832 (default) | scalar

Specific gravity of fuel, $S g_{\text {fuel }}$, dimensionless.
Ideal gas constant air, Rair - Constant
287 (default) | scalar
Ideal gas constant of air and residual gas entering the engine intake port, in $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.
Air standard pressure, Pstd - Pressure
101325 (default) | scalar
Standard air pressure, in Pa.
Air standard temperature, Tstd - Temperature
293.15 (default) | scalar

Standard air temperature, in K.
Boost torque line, f_tbrake_bst - Boost lag
[90, $95,95,95,96,100,104,104,104,100,95,85,75,67,60,55]$ (default) | 1-by-M vector
Boost torque line, $f_{\text {bst }}(N)$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To enable this parameter, select Include turbocharger lag effect.
Time constant below boost line - Time constant below
0.1 (default) | scalar

Time constant below boost line, $\tau_{\text {nat }}$, in s .
Dependencies
To enable this parameter, select Include turbocharger lag effect.
Rising maximum fuel mass boost time constant, tau_bst_rising - Rising time constant 1.0 (default) | scalar

Rising maximum fuel mass boost time constant, $\tau_{\text {bst,rising }}$, in s .
Dependencies
To enable this parameter, select Include turbocharger lag effect.
Falling maximum fuel mass boost time constant, tau_bst_falling - Falling time constant 0.7 (default) | scalar

Falling maximum fuel mass boost time constant, $\tau_{\text {bst,falling }}$ in s .
Dependencies
To enable this parameter, select Include turbocharger lag effect.
Turbocharger time constant blend fuel mass fraction, f_blend_frac - Time constant 0.01 (default)| scalar

Turbocharger time constant blend fuel mass fraction, in s.
Dependencies
To enable this parameter, select Include turbocharger lag effect.

Power

Brake torque map, f_tbrake - 2D lookup table
M-by-N matrix

Input Command Setting	Description
Fuel mass	The engine brake torque lookup table is a function of commanded fuel mass and engine speed, $T_{\text {brake }}=f(F, N)$, where: - $T_{\text {brake }}$ is engine torque, in $\mathrm{N} \cdot \mathrm{m}$. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm.
Torque	The engine brake torque lookup table is a function of target torque and engine speed, $T_{\text {brake }}=\mathrm{f}\left(T_{\text {target, }}, N\right)$, where: - $\quad T_{\text {brake }}$ is engine torque, in $\mathrm{N} \cdot \mathrm{m}$. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.
Plot brake torque map - Plot table
button
Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.
Brake torque map, f_tbrake_3d - 3D lookup table
M-by-N-by-L array

Input Command Setting	Description
Fuel mass	The engine brake torque lookup table is a function of commanded fuel mass and engine speed, $T_{\text {brake }}=f\left(F, N, T e m p_{\text {Eng }}\right)$, where: - $T_{\text {brake }}$ is engine torque, in $\mathrm{N} \cdot \mathrm{m}$. - F is commanded fuel mass, in mg per injection. - $\mathrm{Temp}_{\text {Eng }}$ is engine temperature, in K .

Input Command Setting	Description
Torque	The engine brake torque lookup table is a function of target torque and engine speed, $T_{\text {brake }}=f\left(T_{\text {target }}, N, T e m p_{\text {Eng }}\right)$, where: - $T_{\text {brake }}$ is engine torque, in $\mathrm{N} \cdot \mathrm{m}$. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm. - Temp $_{\text {Eng }}$ is engine temperature, in K .

Dependencies

To enable this parameter, select Input engine temperature.
Air
Air mass flow map, f_air - 2D lookup table
M-by-N matrix

Input Command Setting	Description
Fuel mass	The air mass flow lookup table is a function of commanded fuel mass and engine speed, $\dot{m}_{\text {intk }}=\mathrm{f}\left(F_{\text {max }}, N\right)$, where: - $\dot{m}_{\text {intk }}$ is engine air mass flow, in kg / s. - $F_{\text {max }}$ is commanded fuel mass, in mg per injection. - N is engine speed, in rpm.
Torque	The air mass flow lookup table is a function of maximum torque and engine speed, $\dot{m}_{\text {intk }}=f\left(T_{\max }, N\right)$, where: - $\dot{m}_{\text {intk }}$ is engine air mass flow, in kg / s. - $T_{\max }$ is maximum torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.
Plot air mass map - Plot table
button

Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.
Air mass flow map, f_air_3d - 3D lookup table
M-by-N-by-L array

Input Command Setting Description

Fuel mass	The air mass flow lookup table is a function of commanded fuel mass and engine speed, $\dot{m}_{\text {intk }}=f\left(F_{\text {max }}, N, T e m p_{\text {Eng }}\right)$, where: - $\dot{m}_{\text {intk }}$ is engine air mass flow, in kg / s. - $F_{\max }$ is commanded fuel mass, in mg per injection. - N is engine speed, in rpm. - $T e m p_{\text {Eng }}$ is engine temperature, in K .
Torque	The air mass flow lookup table is a function of maximum torque and engine speed, $\dot{m}_{\text {intk }}=f\left(T_{\text {max }}, N, T e m p_{\text {Eng }}\right)$, where:

- $\dot{m}_{i n t k}$ is engine air mass flow, in kg / s.
- $T_{\max }$ is maximum torque, in $\mathrm{N} \cdot \mathrm{m}$.
- $\quad N$ is engine speed, in rpm.
- $\mathrm{Temp}_{\text {Eng }}$ is engine temperature, in K .

Dependencies

To enable this parameter, select Input engine temperature.

Fuel

Fuel flow map, f_fuel - 2D lookup table
M-by-N matrix

Input Command Setting	Description
Fuel mass	The engine fuel flow lookup table is a function of commanded fuel mass and engine speed, MassFlow $=f(F, N)$, where: - MassFlow is engine fuel mass flow, in kg / s. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm. Commanded Fuel (mg/inj)
Torque	The engine fuel flow lookup table is a function of target torque and engine speed, MassFlow $=f\left(T_{\text {target }}, N\right)$, where: - MassFlow is engine fuel mass flow, in kg / s. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.

Plot fuel flow map - Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.
Fuel flow map, f_fuel_3d - 3D lookup table
M-by-N-by-L array

Input Command Setting	Description
Fuel mass	The engine fuel flow lookup table is a function of commanded fuel mass, engine speed, and engine temperature, MassFlow $=f\left(F, N, T e m p_{\text {Eng }}\right)$, where: - MassFlow is engine fuel mass flow, in kg / s. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm. - $T e m p_{\text {Eng }}$ is engine temperature, in K .
Torque	The engine fuel flow lookup table is a function of target torque and engine speed, and engine temperature, MassFlow $=f\left(T_{\text {target, }}, N, T e m p_{\text {Eng }}\right)$, where: - MassFlow is engine fuel mass flow, in kg / s. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm. - $T e m p_{\text {Eng }}$ is engine temperature, in K.

Dependencies

To enable this parameter, select Input engine temperature.

Temperature

Exhaust temperature map, f_texh - 2D lookup table
M-by-N matrix

Input Command Setting	Description
Fuel mass	The engine exhaust temperature table is a function of commanded fuel mass and engine speed, $T_{\text {exh }}=f(F, N)$, where: - $T_{e x h}$ is exhaust temperature, in K. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm.

Input Command Setting	Description
Torque	The engine exhaust temperature table is a function of target torque and engine speed, $T_{\text {exh }}=f\left(T_{\text {target }}, N\right)$, where: - $T_{\text {exh }}$ is exhaust temperature, in K . - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.
Plot exhaust temperature map - Plot table
button
Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.
Exhaust temperature map, f_texh_3d - 3D lookup table
M-by-N-by-L array

Input Command Setting	Description
Fuel mass	The engine exhaust temperature table is a function of commanded fuel mass and engine speed, $T_{\text {exh }}=f\left(F, N, T e m p_{\text {Eng }}\right)$, where: - $T_{\text {exh }}$ is exhaust temperature, in K. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm. - $T e m p_{\text {Eng }}$ is engine temperature, in K .
Torque	The engine exhaust temperature table is a function of target torque and engine speed, $T_{\text {exh }}=f\left(T_{\text {target, }}, N, T e m p_{\text {Eng }}\right)$, where: - $T_{\text {exh }}$ is exhaust temperature, in K . - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm. - Temp $_{\text {Eng }}$ is engine temperature, in K .

Dependencies

To enable this parameter, select Input engine temperature.

Efficiency

BSFC map, f_eff - 2D lookup table
M-by-N matrix

Input Command Setting	Description
Fuel mass	The brake-specific fuel consumption (BSFC) efficiency is a function of commanded fuel mass and engine speed, $B S F C=f(F, N)$, where: - BSFC is BSFC, in $\mathrm{g} / \mathrm{kWh}$. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm. Commanded Fuel (mg/inj)
Torque	The brake-specific fuel consumption (BSFC) efficiency is a function of target torque and engine speed, $B S F C=f\left(T_{\text {target }}, N\right)$, where: - BSFC is BSFC, in $\mathrm{g} / \mathrm{kWh}$. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.
Plot BSFC map - Plot table
button
Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.
BSFC map, f_eff_3d - 3D lookup table
M-by-N-by-L array

Input Command Setting	Description
Fuel mass	The brake-specific fuel consumption (BSFC) efficiency is a function of commanded fuel mass and engine speed, $B S F C=f\left(F, N, T e m p_{\text {Eng }}\right)$, where: - BSFC is BSFC, in $\mathrm{g} / \mathrm{kWh}$. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm. - $T e m p_{\text {Eng }}$ is engine temperature, in K .

Input Command Setting	Description

Torque	The brake-specific fuel consumption (BSFC) efficiency is a function of target torque and engine speed, $B S F C=f\left(T_{\text {target }}, N, T e m p_{\text {Eng }}\right)$, where: - $B S F C$ is BSFC , in $\mathrm{g} / \mathrm{kWh}$. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm. - Temp $_{\text {Eng }}$ is engine temperature, in K .

Dependencies

To enable this parameter, select Input engine temperature.
HC
EO HC map, f_hc - 2D lookup table
M-by-N matrix

Input Command Setting	Description
Fuel mass	The engine-out hydrocarbon emissions are a function of commanded fuel mass and engine speed, $E O H C=f(F, N)$, where: - EO HC is engine-out hydrocarbon emissions, in kg/s. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm.
Torque	The engine-out hydrocarbon emissions are a function of target torque and engine speed, EO HC $=f\left(T_{\text {target }}, N\right)$, where: - EO HC is engine-out hydrocarbon emissions, in kg / s. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.
Plot EO HC map - Plot table
button

Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.
EO HC map, f_hc_3d - 3D lookup table
M-by-N-by-L array

Input Command Setting	Description
Fuel mass	The engine-out hydrocarbon emissions are a function of commanded fuel mass and engine speed, $E O H C=f\left(F, N, T e m p_{\text {Eng }}\right)$, where: - EO HC is engine-out hydrocarbon emissions, in kg/s. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm. - Temp $_{\text {Eng }}$ is engine temperature, in K .
Torque	The engine-out hydrocarbon emissions are a function of target torque and engine speed, $E O H C=f\left(T_{\text {target }}, N, T e m p_{\text {Eng }}\right)$, where: - EO HC is engine-out hydrocarbon emissions, in kg/s. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm. - $T e m p_{\text {Eng }}$ is engine temperature, in K .

Dependencies

To enable this parameter, select Input engine temperature.

CO

EO CO map, f_co - 2D lookup table
M-by-N matrix

Input Command Setting	Description
Fuel mass	The engine-out carbon monoxide emissions are a function of commanded fuel mass and engine speed, $E O C O=f(F, N)$, where: - EO CO is engine-out carbon monoxide emissions, in kg / s. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm.
Torque	The engine-out carbon monoxide emissions are a function of target torque and engine speed, $E O C O=f\left(T_{\text {target }}, N\right)$, where: - EO CO is engine-out carbon monoxide emissions, in kg / s. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.

Plot EO CO map - Plot table

button
Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.
EO CO map, f_co_3d - 3D lookup table
M-by-N-by-L array

Input Command Setting	Description
Fuel mass	The engine-out carbon monoxide emissions are a function of commanded fuel mass and engine speed, $E O C O=f\left(F, N, T e m p_{\text {Eng }}\right)$, where: - EO CO is engine-out carbon monoxide emissions, in kg / s. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm. - $T e m p_{\text {Eng }}$ is engine temperature, in K .
Torque	The engine-out carbon monoxide emissions are a function of target torque and engine speed, $E O C O=f\left(T_{\text {target, }}, N, T e m p_{\text {Eng }}\right)$, where: - EO CO is engine-out carbon monoxide emissions, in kg / s. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm. - $T e m p_{\text {Eng }}$ is engine temperature, in K .

Dependencies

To enable this parameter, select Input engine temperature.
NOx
EO NOx map, f_nox - 2D lookup table
M-by-N matrix

Input Command Setting	Description
Fuel mass	The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded fuel mass and engine speed, $E O$ NOx $=f(F, N)$, where: - EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg / s. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm.

Input Command Setting
Torque

Description

The engine-out nitric oxide and nitrogen dioxide emissions are a function of target torque and engine speed, EO NOx $=f\left(T_{\text {target }}, N\right)$, where:

- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg / s.
- $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.
Plot EO NOx map - Plot table
button
Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.
EO NOx map, f_nox_3d - 3D lookup table
M-by-N-by-L array

Input Command Setting	Description
Fuel mass	The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded fuel mass, engine speed, and engine temperature, EO $N O x=f\left(F, N, T e m p_{\text {Eng }}\right)$, where: - EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm. - $T e m p_{\text {Eng }}$ is engine temperature, in K .
Torque	The engine-out nitric oxide and nitrogen dioxide emissions are a function of target torque, engine speed, and engine temperature, EO NOx = $\mathrm{f}\left(T_{\text {target }}, N, \operatorname{Temp}_{\text {Eng }}\right)$, where: - EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg / s. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm. - $T e m p_{\text {Eng }}$ is engine temperature, in K .

Dependencies

To enable this parameter, select Input engine temperature.

CO2
EO CO2 map, f_co2 - 2D lookup table
M-by-N matrix

Input Command Setting	Description
Fuel mass	The engine-out carbon dioxide emissions are a function of commanded fuel mass and engine speed, $E O C O 2=f(F, N)$, where: - EO CO2 is engine-out carbon dioxide emissions, in kg / s. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm.
Torque	The engine-out carbon dioxide emissions are a function of target torque and engine speed, EO CO2 $=f\left(T_{\text {target }}, N\right)$, where: - EO CO2 is engine-out carbon dioxide emissions, in kg / s. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.
Plot CO2 map - Plot table
button
Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.
EO CO2 map, f_co2_3d - 3D lookup table
M-by-N-by-L array

Input Command Setting	Description
Fuel mass	The engine-out carbon dioxide emissions are a function of commanded fuel mass, engine speed, and engine temperature, $E O C O 2=f(F, N$, Temp $p_{\text {Eng }}$), where: - EO CO2 is engine-out carbon dioxide emissions, in kg / s. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm. - $T e m p_{\text {Eng }}$ is engine temperature, in K.
Torque	The engine-out carbon dioxide emissions are a function of target torque, engine speed, and engine temperature, EO CO2 $=\mathrm{f}\left(T_{\text {target, }}, N, T e m p_{\text {Eng }}\right)$, where: - EO CO2 is engine-out carbon dioxide emissions, in kg / s. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm. - $\mathrm{Temp}_{\text {Eng }}$ is engine temperature, in K .

Dependencies

To enable this parameter, select Input engine temperature.
PM
EO PM map, f_pm - 2D lookup table
M-by-N matrix

Input Command Setting	Description
Fuel mass	The engine-out PM emissions are a function of commanded fuel mass and engine speed, where: - EO PM is engine-out PM emissions, in kg / s. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm.
Torque	The engine-out PM emissions are a function of target torque and engine speed, EO PM $=f\left(T_{\text {target, }}, N\right)$, where: - EO PM is engine-out PM emissions, in kg/s. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.
Plot EO PM map - Plot table
button
Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.
EO PM map, f_pm_3d - 3D lookup table
M-by-N-by-L array

Input Command Setting	Description
Fuel mass	The engine-out PM emissions are a function of commanded fuel mass, engine speed, and engine temperature, where: - EO PM is engine-out PM emissions, in kg/s. - F is commanded fuel mass, in mg per injection. - N is engine speed, in rpm. - $T e m p_{\text {Eng }}$ is engine temperature, in K.
Torque	The engine-out PM emissions are a function of target torque, engine speed, and engine temperature, $E O P M=f\left(T_{\text {target }}, N, T\right)$, where: - EO PM is engine-out PM emissions, in kg / s. - $T_{\text {target }}$ is target torque, in $\mathrm{N} \cdot \mathrm{m}$. - N is engine speed, in rpm. - $T e m p_{\text {Eng }}$ is engine temperature, in K .

Dependencies

To enable this parameter, select Input engine temperature.

Version History

Introduced in R2017a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Mapped Motor | Mapped SI Engine

Topics

"Engine Calibration Maps"
"Model-Based Calibration Toolbox"

Mapped SI Engine

Spark-ignition engine model using lookup tables

Libraries:

Powertrain Blockset / Propulsion / Combustion Engines
Vehicle Dynamics Blockset / Powertrain / Propulsion

Description

The Mapped SI Engine block implements a mapped spark-ignition (SI) engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:

- Hardware-in-the-loop (HIL) engine control design
- Vehicle-level fuel economy and performance simulations

The block enables you to specify lookup tables for these engine characteristics. The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of commanded torque, $T_{\text {cmd }}$, brake torque, $T_{\text {brake }}$, and engine speed, N. If you select Input engine temperature, the tables are also a function of engine temperature, $\mathrm{Temp}_{\text {Eng }}$.

Table	Input Engine Temperature Parameter Setting	
	off	on
Power	$f\left(T_{\text {cmd }}, N\right)$	$f\left(T_{\text {cmd }}, N, T e m p_{\text {Eng }}\right)$
Air	$f\left(T_{\text {brake }}, N\right)$	$f\left(T_{\text {brake }}, N\right.$, Temp $\left._{\text {Eng }}\right)$
Fuel		
Temperature		
Efficiency		
HC		
CO		
NOx		
CO2		
PM		

To bound the Mapped SI Engine block output, the block does not extrapolate the lookup table data.

Virtual Calibration

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.

Task	Description	
Import firing data	Import this loss data from a file. For example, open <matlabroot>/ toolbox/mbc/mbctraining/SiEngineData.xlsx. For more information, see "Using Data" (Model-Based Calibration Toolbox).	
	Required Data	Optional D
	$\begin{array}{ll}\text { - Engine speed, } \mathrm{rpm} \\ \text { - } & \text { Engine torque, } \mathrm{N} \cdot \mathrm{m}\end{array}$	- Air mass flow rate, kg/s - Brake specific fuel consumption, $\mathrm{g} /(\mathrm{kW} \cdot \mathrm{h})$ - CO2 mass flow rate, kg / s - CO mass flow rate, kg / s - Exhaust temperature, K - Fuel mass flow rate, kg/s - HC mass flow rate, kg / s - NOx mass flow rate, kg / s - Particulate matter mass flow rate, kg / s
	Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque. To filter or edit the data, select Edit in Application. The Model-Based Calibration Toolbox Data Editor opens.	
Import non-firing data	Import this non-firing data from a file. For example, open <matlabroot>/ toolbox/mbc/mbctraining/SiEngineData.xlsx. - Engine speed, rpm - Engine torque, $\mathrm{N} \cdot \mathrm{m}$ Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.	
Generate response models	For both firing and non-firing data, the Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).	
Generate calibration	Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables. To assess or adjust the calibration, select Edit in Application. The ModelBased Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).	
Update block parameters	Update the block lookup table and breakpoint parameters with the calibration.	

Cylinder Air Mass

The block calculates the normalized cylinder air mass using these equations.

$$
\begin{aligned}
& M_{\text {Nom }}=\frac{P_{\text {std }} V_{d}}{N_{\text {cyl }} R_{\text {air }} T_{\text {std }}} \\
& L=\frac{\left(\frac{60 s}{m i n}\right) C p s \cdot \dot{m}_{\text {air }}}{\left(\frac{1000 g}{K g}\right) N_{\text {cyl }} \cdot N \cdot M_{\text {Nom }}}
\end{aligned}
$$

The equations use these variables.
$L \quad$ Normalized cylinder air mass
$M_{\text {Nom }} \quad$ Nominal engine cylinder air mass at standard temperature and pressure, piston at bottom dead center (BDC) maximum volume, in kg
Cps Crankshaft revolutions per power stroke, rev/stroke
$P_{s t d} \quad$ Standard pressure
$T_{\text {std }} \quad$ Standard temperature
$R_{\text {air }} \quad$ Ideal gas constant for air and burned gas mixture
$V_{d} \quad$ Displaced volume
$N_{\text {cyl }} \quad$ Number of engine cylinders
$N \quad$ Engine speed
$\dot{m}_{\text {intk }} \quad$ Engine air mass flow, in g / s

Turbocharger Lag

To model turbocharger lag, select Include turbocharger lag effect. During throttle control, the time constant models the manifold filling and emptying dynamics. When the torque request requires a turbocharger boost, the block uses a larger time constant to represent the turbocharger lag. The block uses these equations.

Dynamic torque	$\frac{d T_{\text {brake }}}{d t}=\frac{1}{\tau_{\text {eng }}}\left(T_{\text {stdy }}-T_{\text {brake }}\right)$
Boost time constant	$\tau_{\text {bst }}=\left\{\begin{array}{ll\|}\tau_{\text {bst, rising }} & \text { when } T_{\text {stdy }}>T_{\text {brake }} \\ \tau_{\text {bst, falling }} & \text { when } T_{\text {stdy }} \leq T_{\text {brake }}\end{array}\right.$
Final time constant	$\tau_{\text {eng }}= \begin{cases}\tau_{\text {thr }} & \text { when } T_{\text {brake }}<f_{\text {bst }}(N) \\ \tau_{\text {bst }} & \text { when } T_{\text {brake }} \geq f_{\text {bst }}(N)\end{cases}$

The equations use these variables.

$T_{\text {brake }}$	Brake torque
$T_{\text {stdy }}$	Steady-state target torque
$\tau_{\text {bst }}$	Boost time constant
$\tau_{\text {bst,rising, }}$	Boost rising and falling time constant, respectively
$\tau_{\text {bst,falling }}$	

$\tau_{\text {eng }}$	Final time constant
$\tau_{\text {thr }}$	Time constant during throttle control
$f_{\text {bst }}(N)$	Boost torque speed line
N	Engine speed

Fuel Flow

To calculate the fuel economy for high-fidelity models, the block uses the volumetric fuel flow.

$$
Q_{\text {fuel }}=\frac{\dot{m}_{\text {fuel }}}{\left(\frac{1000 \mathrm{~kg}}{\mathrm{~m}^{3}}\right) S g_{f u e l}}
$$

The equation uses these variables.

$\dot{m}_{\text {fuel }}$	Fuel mass flow
$S g_{\text {fuel }}$	Specific gravity of fuel
$Q_{\text {fuel }}$	Volumetric fuel flow

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations
PwrInf 0	PwrTrnsfrd - Power transferred between blocks - Positive signals indicate flow into block - Negative signals indicate flow out of block	PwrCrkshft	Crankshaft power	$-\tau_{\text {eng }} \omega$
	PwrNotTrnsfrd - Power crossing the block boundary, but not transferred	PwrFuel	Fuel input power	$\dot{m}_{\text {fuel }}$ LHV
	- Positive signals indicate an input - Negative signals indicate a loss	PwrLoss	Power loss	$\begin{aligned} & \tau_{\text {eng }} \omega \\ & -\dot{m}_{\text {fuel }} L H V \end{aligned}$
	PwrStored - Stored energy rate of chan - Positive signals indicate an increase - Negative signals indicate a decrease		Not used	

The equations use these variables.

LHV	Fuel lower heating value
ω	Engine speed, rad/s
$\dot{m}_{\text {fuel }}$	Fuel mass flow
$\tau_{\text {eng }}$	Fuel mass per injection time constant

Ports

Input

TrqCmd - Commanded torque
scalar
Torque, $T_{\text {cmd }}$, in $\mathrm{N} \cdot \mathrm{m}$.
EngSpd - Engine speed
scalar
Engine speed, N, in rpm.
EngTemp - Engine temperature
scalar
Engine temperature, $\operatorname{Temp}_{\text {Eng, }}$, in K .

Dependencies

To enable this port, select Input engine temperature.

Output

Info - Bus signal
bus
Bus signal containing these block calculations.

Signal	Description	Units
IntkGassMassFlw	Engine air mass flow output	kg / s
NrmlzdAirChrg	Normalized engine cylinder air mass	N / A
Afr	Air-fuel ratio (AFR)	N / A
FuelMassFlw	Engine fuel flow output	kg / s
FuelVolFlw	Volumetric fuel flow	m / s
ExhManGasTemp	Engine exhaust gas temperature	K
EngTrq	Engine torque output	$\mathrm{N} \cdot \mathrm{m}$
EngSpd	Engine speed	rpm
CrkAng	Engine crankshaft absolute angle $(360) C p s$ \int_{0} EngSpd $\frac{180}{30} d \theta$ where $C p s$ is crankshaft revolutions per	degrees crank angle
power stroke.		

Signal	Description	Units
EoHC		Engine out hydrocarbon emission mass flow
EoC0	Engine out carbon monoxide emission mass flow rate	kg / s
EoN0x	Engine out nitric oxide and nitrogen dioxide emissions mass flow	kg / s
EoC02		Engine out carbon dioxide emission mass flow
EoPM	Engine out particulate matter emission mass flow	kg / s
PwrInfo	PwrTrnsfrd	PwrCrkshft

EngTrq - Engine brake torque scalar

Engine brake torque, $T_{\text {brake }}$, in $\mathrm{N} \cdot \mathrm{m}$.

Parameters

Block Options

Include turbocharger lag effect - Increase time constant
off (default)

To model turbocharger lag, select Include turbocharger lag effect. During throttle control, the time constant models the manifold filling and emptying dynamics. When the torque request requires a turbocharger boost, the block uses a larger time constant to represent the turbocharger lag. The block uses these equations.

Dynamic torque	$\frac{d T_{\text {brake }}}{d t}=\frac{1}{\tau_{\text {eng }}}\left(T_{\text {stdy }}-T_{\text {brake }}\right)$
Boost time constant	$\tau_{\text {bst }}=\left\{\begin{array}{ll\|}\tau_{\text {bst, rising }} & \text { when } T_{\text {stdy }}>T_{\text {brake }} \\ \tau_{\text {bst, falling }} & \text { when } T_{\text {stdy }} \leq T_{\text {brake }}\end{array}\right.$
Final time constant	$\tau_{\text {eng }}= \begin{cases}\tau_{\text {thr }} & \text { when } T_{\text {brake }}<f_{\text {bst }}(N) \\ \tau_{\text {bst }} & \text { when } T_{\text {brake }} \geq f_{\text {bst }}(N)\end{cases}$

The equations use these variables.

$T_{\text {brake }}$	Brake torque
$T_{\text {stdy }}$	Steady-state target torque
$\tau_{\text {bst }}$	Boost time constant

$\tau_{\text {bst,rising }}$	Boost rising and falling time constant, respectively
$\tau_{\text {bst,falling }}$	
$\tau_{\text {eng }}$	Final time constant
$\tau_{\text {thr }}$	Time constant during throttle control
$f_{\text {bst }}(N)$	Boost torque speed line
N	Engine speed
Dependencies	

Selecting Include turbocharger lag effect enables these parameters:

- Boost torque line, f_tbrake_bst
- Time constant below boost line, tau_thr
- Rising torque boost time constant, tau_bst_rising
- Falling torque boost time constant, tau_bst_falling

Input engine temperature - Create input port
off (default) | on
Select this to create the EngTemp input port.
The block enables you to specify lookup tables for these engine characteristics. The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of commanded torque, $T_{\text {cmd }}$, brake torque, $T_{\text {brake }}$, and engine speed, N. If you select Input engine temperature, the tables are also a function of engine temperature, $\mathrm{Temp}_{\text {Eng }}$.

Table	Input Engine Temperature Parameter Setting	
	off	on
Power	$f\left(T_{\text {cmd }}, N\right)$	$f\left(T_{\text {cmd }}, N, T e m p_{\text {Eng }}\right)$
Air	$f\left(T_{\text {brake }}, N\right)$	$f\left(T_{\text {brake }}, N, T e m p_{\text {Eng }}\right)$
Fuel		
Temperature		
Efficiency		
HC		
CO		
NOx		
CO2		
PM		

Configuration

Calibrate Maps - Calibrate tables with measured data selection

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.

Task	Description	
Import firing data	Import this loss data from a file. For example, open <matlabroot>/ toolbox/mbc/mbctraining/SiEngineData.xlsx. For more information, see "Using Data" (Model-Based Calibration Toolbox).	
	Required Data	Optional D
	$\begin{array}{ll}\text { - Engine speed, } \mathrm{rpm} \\ \text { - } & \text { Engine torque, } \mathrm{N} \cdot \mathrm{m}\end{array}$	- Air mass flow rate, kg/s - Brake specific fuel consumption, $\mathrm{g} /(\mathrm{kW} \cdot \mathrm{h})$ - CO2 mass flow rate, kg / s - CO mass flow rate, kg / s - Exhaust temperature, K - Fuel mass flow rate, kg/s - HC mass flow rate, kg / s - NOx mass flow rate, kg / s - Particulate matter mass flow rate, kg / s
	Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque. To filter or edit the data, select Edit in Application. The Model-Based Calibration Toolbox Data Editor opens.	
Import non-firing data	Import this non-firing data from a file. For example, open <matlabroot>/ toolbox/mbc/mbctraining/SiEngineData.xlsx. - Engine speed, rpm - Engine torque, $\mathrm{N} \cdot \mathrm{m}$ Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.	
Generate response models	For both firing and non-firing data, the Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).	
Generate calibration	Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables. To assess or adjust the calibration, select Edit in Application. The ModelBased Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).	
Update block parameters	Update the block lookup table and breakpoint parameters with the calibration.	

Dependencies

To enable this parameter, clear Input engine temperature.
Breakpoints for commanded torque, f_tbrake_t_bpt - Breakpoints
1-by-M vector
Breakpoints, in $\mathrm{N} \cdot \mathrm{m}$.
Breakpoints for engine speed input, f_tbrake_n_bpt - Breakpoints
1-by-N vector
Breakpoints, in rpm.
Breakpoints for temperature input, f_tbrake_engtmp_bpt - Breakpoints
[233.15 273.15 373.15] (default) | $\overline{1}$-by-L vector
Breakpoints, in K.
Dependencies
To enable this parameter, select Input engine temperature.
Number of cylinders, NCyI - Number
4 (default) | scalar
Number of cylinders.
Crank revolutions per power stroke, Cps - Crank revolutions
2 (default) | scalar
Crank revolutions per power stroke.
Total displaced volume, Vd - Volume
0.0015 (default) | scalar

Volume displaced by engine, in $\mathrm{m}^{\wedge} 3$.
Fuel lower heating value, Lhv - Heating value
45e6 (default) | scalar
Fuel lower heating value, $L H V$, in J / kg.
Fuel specific gravity, $\mathbf{S g}$ - Specific gravity
0.745 (default) | scalar

Specific gravity of fuel, $S g_{\text {fuel }}$, dimensionless.

Ideal gas constant air, Rair - Constant

287 (default) | scalar
Ideal gas constant of air and residual gas entering the engine intake port, in $\mathrm{J} /(\mathrm{kg} * \mathrm{~K})$.
Air standard pressure, Pstd - Pressure
101325 (default) | scalar
Standard air pressure, in Pa.

Air standard temperature, Tstd - Temperature
293. 15 (default) | scalar

Standard air temperature, in K.
Boost torque line, f_tbrake_bst - Boost lag
1-by-M vector
Boost torque line, $f_{b s t}(N)$, in $N \cdot \mathrm{~m}$.

Dependencies

To enable this parameter, select Include turbocharger lag effect.
Time constant below boost line - Time constant below
0.2 (default) | scalar

Time constant below boost line, $\tau_{t h r}$, in s .
Dependencies
To enable this parameter, select Include turbocharger lag effect.
Rising torque boost time constant, tau_bst_rising - Rising time constant
1.5 (default) | scalar

Rising torque boost time constant, $\tau_{\text {bst,rising }}$, in s .
Dependencies
To enable this parameter, select Include turbocharger lag effect.
Falling torque boost time constant, tau_bst_falling - Falling time constant
1 (default) | scalar
Falling torque boost time constant, $\tau_{\text {bst,falling }}$, in s.
Dependencies
To enable this parameter, select Include turbocharger lag effect.

Power

Brake torque map, f_tbrake - 2D lookup table
M-by-N matrix
The engine torque lookup table is a function of commanded engine torque and engine speed, $T=$ $f\left(T_{c m d}, N\right)$, where:

- T is engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- $T_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- $\quad N$ is engine speed, in rpm.

Plot brake torque map - Plot table
button
Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.
Brake torque map, f_tbrake_3d - 3D lookup table
M-by-N-by-L array
The engine torque lookup table is a function of commanded engine torque, engine speed, and engine temperature, $T=f\left(T_{c m d}, N, T e m p_{\text {Eng }}\right)$, where:

- T is engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- $T_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.
- $\mathrm{Temp}_{\text {Eng }}$ is engine temperature, in K .

Dependencies

To enable this parameter, select Input engine temperature.

Air

Air mass flow map, f_air - 2D lookup table
M-by-N matrix
The engine air mass flow lookup table is a function of commanded engine torque and engine speed, $\dot{m}_{\text {intk }}=f\left(T_{\text {cmd }}, N\right)$, where:

- $\dot{m}_{\text {intk }}$ is engine air mass flow, in kg / s.
- $T_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.
Plot air mass map - Plot table
button
Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.

Air mass flow map, f_air_3d - 3D lookup table

M-by-N-by-L array
The engine air mass flow lookup table is a function of commanded engine torque, engine speed, and engine temperature, $\dot{m}_{\text {intk }}=f\left(T_{\text {cmd }}, N, T e m p_{\text {Eng }}\right)$, where:

- $\dot{m}_{\text {intk }}$ is engine air mass flow, in kg / s.
- $T_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.
- $T e m p_{\text {Eng }}$ is engine temperature, in K .

Dependencies

To enable this parameter, select Input engine temperature.

Fuel

Fuel flow map, f_fuel - 2D lookup table
M-by-N matrix
The engine fuel mass flow lookup table is a function of commanded engine torque and engine speed, MassFlow $=f\left(T_{\text {cmd }}, N\right)$, where:

- MassFlow is engine fuel mass flow, in kg / s.
- $T_{\text {cmd }}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.
Plot fuel flow map - Plot table
button
Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.
Fuel flow map, f_fuel_3d - 3D lookup table

M-by-N-by-L array

The engine fuel mass flow lookup table is a function of commanded engine torque, engine speed, and engine temperature, MassFlow $=f\left(T_{\text {cmd }}, N, T e m p_{\text {Eng }}\right)$, where:

- MassFlow is engine fuel mass flow, in kg / s.
- $T_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.
- Temp $p_{\text {Eng }}$ is engine temperature, in K .

Dependencies

To enable this parameter, select Input engine temperature.

Temperature

Exhaust temperature map, f_texh - 2D lookup table
M-by-N matrix
The engine exhaust temperature lookup table is a function of commanded engine torque and engine speed, $T_{\text {exh }}=f\left(T_{c m d}, N\right)$, where:

- $T_{\text {exh }}$ is exhaust temperature, in K.
- $T_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.

Plot exhaust temperature map - Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.
Exhaust temperature map, f_texh_3d - 3D lookup table array

The engine exhaust temperature lookup table is a function of commanded engine torque, engine speed, and engine temperature, $T_{\text {exh }}=f\left(T_{\text {cmd }}, N, T e m p_{\text {Eng }}\right)$, where:

- $T_{\text {exh }}$ is exhaust temperature, in K.
- $T_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.
- $T e m p_{\text {Eng }}$ is engine temperature, in K .

Dependencies

To enable this parameter, select Input engine temperature.

Efficiency

BSFC map, f_eff - 2D lookup table
M-by-N-by-L array
The brake-specific fuel consumption (BSFC) efficiency is a function of commanded engine torque and engine speed, $B S F C=f\left(T_{\text {cmd }}, N\right)$, where:

- BSFC is BSFC, in $\mathrm{g} / \mathrm{kWh}$.
- $T_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.
Plot BSFC map - Plot table
button
Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.
BSFC map, f_eff_3d - 3D lookup table

M-by-N-by-L array

The brake-specific fuel consumption (BSFC) efficiency is a function of commanded engine torque, engine speed, and engine temperature, $B S F C=f\left(T_{c m d}, N, T e m p_{\text {Eng }}\right)$, where:

- $B S F C$ is BSFC, in $\mathrm{g} / \mathrm{kWh}$.
- $T_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.
- $T_{e m p}^{\text {Eng }}$ is engine temperature, in K .

Dependencies

To enable this parameter, select Input engine temperature.
HC
EO HC map, f_hc - 2D lookup table

M-by-N matrix

The engine-out hydrocarbon emissions are a function of commanded engine torque and engine speed, EO HC $=f\left(T_{\text {cmd }}, N\right)$, where:

- EO HC is engine-out hydrocarbon emissions, in kg / s.
- $T_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.

Plot EO HC map - Plot table

button
Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.
EO HC map, f_hc_3d - 3D lookup table
M-by-N-by-L array
The engine-out hydrocarbon emissions are a function of commanded engine torque, engine speed, and engine temperature, EO HC $=f\left(T_{\text {cmd }}, N, T e m p_{\text {Eng }}\right)$, where:

- EO HC is engine-out hydrocarbon emissions, in kg / s.
- $T_{\text {cmd }}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.
- $T e m p_{\text {Eng }}$ is engine temperature, in K .

Dependencies

To enable this parameter, select Input engine temperature.
CO
EO CO map, f_co - 2D lookup table
M-by-N matrix
The engine-out carbon monoxide emissions are a function of commanded engine torque and engine speed, $E O C O=f\left(T_{c m d}, N\right)$, where:

- EO CO is engine-out carbon monoxide emissions, in kg / s.
- $T_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.
Plot EO CO map - Plot table
button
Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.
EO HC map, f_hc_3d - 3D lookup table
M-by-N-by-L array
The engine-out hydrocarbon emissions are a function of commanded engine torque, engine speed, and engine temperature, EO HC $=f\left(T_{c m d}, N, T e m p_{\text {Eng }}\right)$, where:

- EO HC is engine-out hydrocarbon emissions, in kg / s.
- $T_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.
- $T e m p_{\text {Eng }}$ is engine temperature, in K .

Dependencies

To enable this parameter, select Input engine temperature.

NOx

EO NOx map, f_nox - 2D lookup table
M-by-N matrix
The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded engine torque and engine speed, $E O N O x=f\left(T_{\text {cmd }}, N\right)$, where:

- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s.
- $T_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.
Plot EO NOx map - Plot table
button
Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.
EO NOx map, f_nox_3d - 3D lookup table
M-by-N-by-L array
The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded engine torque, engine speed, and engine temperature, EO NOx $=f\left(T_{c m d}, N, T e m p_{E n g}\right)$, where:

- EO NOX is engine-out nitric oxide and nitrogen dioxide emissions, in kg / s.
- $T_{\text {cmd }}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.
- $T e m p_{\text {Eng }}$ is engine temperature, in K .

Dependencies

To enable this parameter, select Input engine temperature.
CO2
EO CO2 map, f_co2 - 2D lookup table
M-by-N matrix
The engine-out carbon dioxide emissions are a function of commanded engine torque and engine speed, $E O$ CO2 $=f\left(T_{\text {cmd }}, N\right)$, where:

- EO CO2 is engine-out carbon dioxide emissions, in kg / s.
- $T_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.
Plot CO2 map - Plot table
button
Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.

EO CO2 map, f_co2_3d - 3D lookup table

M-by-N-by-L array

The engine-out carbon dioxide emissions are a function of commanded engine torque, engine speed, and engine temperature, EO CO2 $=f\left(T_{c m d}, N, T e m p_{\text {Eng }}\right)$, where:

- EO CO2 is engine-out carbon dioxide emissions, in kg / s.
- $T_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.
- $T e m p_{\text {Eng }}$ is engine temperature, in K.

Dependencies

To enable this parameter, select Input engine temperature.

PM

EO PM map, f_pm - 2D lookup table
M-by-N matrix
The engine-out particulate matter emissions are a function of commanded engine torque and engine speed, where:

- EO PM is engine-out PM emissions, in kg/s.
- $T_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- N is engine speed, in rpm.

Dependencies

To enable this parameter, clear Input engine temperature.

Plot EO PM map - Plot table

button

Click to plot table.

Dependencies

To enable this parameter, clear Input engine temperature.
EO PM map, f_pm_3d - 3D lookup table
M-by-N-by-L array
The engine-out particulate matter emissions are a function of commanded engine torque, engine speed, and engine temperature, where:

- EO PM is engine-out PM emissions, in kg / s.
- $T_{c m d}$ is commanded engine torque, in $\mathrm{N} \cdot \mathrm{m}$.
- $\quad N$ is engine speed, in rpm.
- $T e m p_{\text {Eng }}$ is engine temperature, in K .

Dependencies

To enable this parameter, select Input engine temperature.

Version History

Introduced in R2017a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Mapped Motor | Mapped CI Engine
Topics
"Engine Calibration Maps"
"Model-Based Calibration Toolbox"

Vehicle Dynamics Blocks

Vehicle Body Total Road Load

Vehicle motion using coast-down testing coefficients

Libraries:

Powertrain Blockset / Vehicle Dynamics
Vehicle Dynamics Blockset / Vehicle Body

Description

The Vehicle Body Total Road Load block implements a one degree-of-freedom (1DOF) rigid vehicle model using coast-down testing coefficients. You can use this block in a vehicle model to represent the load that the driveline and chassis applies to a transmission or engine. It is suitable for systemlevel performance, component sizing, fuel economy, or drive cycle tracking studies. The block calculates the dynamic powertrain load with minimal parameterization or computational cost.

You can configure the block for kinematic, force, or total power input.

- Kinematic - Block uses the vehicle longitudinal velocity and acceleration to calculate the tractive force and power.
- Force - Block uses the tractive force to calculate the vehicle longitudinal displacement and velocity.
- Power - Block uses the engine or transmission power to calculate the vehicle longitudinal displacement and velocity.

Dynamics

To calculate the total road load acting on the vehicle, the block implements this equation.

$$
F_{\text {road }}=a+b \dot{x}+c \dot{x}^{2}+m g \sin (\theta)
$$

To determine the coefficients a, b, and c, you can use a test procedure similar to the one described in Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques. You can also use Simulink ${ }^{\circledR}$ Design Optimization ${ }^{\text {TM }}$ to fit the coefficients to measured data.

To calculate the vehicle motion, the block uses Newton's law for rigid bodies.

$$
F_{\text {total }}=m \ddot{x}+F_{\text {road }}
$$

Total power input is a product of the total force and longitudinal velocity. Power due to road and gravitational forces is a product of the road force and longitudinal velocity.

$$
\begin{aligned}
& P_{\text {total }}=F_{\text {total }} \dot{x} \\
& P_{\text {road }}=F_{\text {road }} \dot{x}
\end{aligned}
$$

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Variable	Equations
PwrInfo	PwrTrnsfrd - Power transferred between blocks - Positive signals indicate flow into block - Negative signals indicate flow out of block	$\begin{aligned} & \text { PwrFxE } \\ & \text { xt } \end{aligned}$	Externally applied force power	$P_{\text {FXEXt }}$	$P_{\text {FxExt }}=F_{\text {total }} \dot{x}$
	PwrNotTrnsfrd - Power crossing the block boundary, but not transferred - Positive signals indicate an input - Negative signals indicate a loss	$\begin{aligned} & \text { PwrFxD } \\ & \text { rag } \end{aligned}$	Drag force power	P_{D}	$P_{d}=-\left(a+b \dot{x}+c \dot{x}^{2}\right) \dot{x}$
	PwrStored - Stored energy rate of change - Positive signals indicate an increase	wrStor edGrvt Y	Rate change in gravitational potential energy	P_{g}	$P_{g}=-m g \dot{Z}$
	- Negative signals indicate a decrease	PwrSto redxdo t	Rate in change of longitudinal kinetic energy	$P_{\text {xdot }}$	$P_{\dot{\chi}}=m \ddot{\chi} \dot{\chi}$

The equations use these variables.

a	Steady-state rolling resistance coefficient
b	Viscous driveline and rolling resistance coefficient
c	Aerodynamic drag coefficient
g	Gravitational acceleration
x	Vehicle longitudinal displacement with respect to ground, in the vehicle-fixed
\dot{x}	frame
$\ddot{\chi}$	Vehicle longitudinal velocity with respect to ground, in the vehicle-fixed frame
m	Vehicle longitudinal acceleration with respect to ground, vehicle-fixed frame
Θ	Vehicle body mass
$F_{\text {total }}$	Road grade angle
$F_{\text {road }}$	Total force acting on vehicle
$P_{\text {total }}$	Resistive road load due to losses and gravitational load
$P_{\text {road }}$	Total tractive input power
\dot{Z}	Total power due to losses and gravitational load

Ports

Input

xdot - Vehicle longitudinal velocity
scalar
Vehicle total longitudinal velocity, \dot{x}, in m / s.

Dependencies

To enable this port, for the Input Mode parameter, select Kinematic.
xddot - Vehicle longitudinal acceleration
scalar
Vehicle total longitudinal acceleration, \ddot{x}, in $\mathrm{m} / \mathrm{s}^{\wedge} 2$.

Dependencies

To enable this port, for the Input Mode parameter, select Kinematic.
PwrTot - Tractive input power
scalar
Tractive input power, $P_{\text {total }}$, in W.

Dependencies

To enable this port, for the Input Mode parameter, select Power.
ForceTot - Tractive input force
scalar
Tractive input force, $F_{\text {total }}$, in N .

Dependencies

To enable this port, for the Input Mode parameter, select Force.
Grade - Road grade angle
scalar
Road grade angle, Θ, in deg.

Output

Info - Bus signal
bus
Bus signal containing these block calculations.

Signal		Description	Value	Units	
In er	Cg	Disp	X	Vehicle CG displacement along earth- fixed X-axis	Computed

Signal				Description	Value	Units
$\begin{aligned} & \mathrm{tF} \\ & \mathrm{rm} \end{aligned}$			Y	Vehicle CG displacement along earthfixed Y-axis	0	m
			Z	Vehicle CG displacement along earthfixed Z-axis	Computed	m
		Vel	Xdot	Vehicle CG velocity along earth-fixed X-axis	Computed	m/s
			Ydot	Vehicle CG velocity along earth-fixed Y-axis	0	m/s
			Zdot	Vehicle CG velocity along earth-fixed Z-axis	Computed	m/s
		Ang	phi	Rotation of vehicle-fixed frame about the earth-fixed X-axis (roll)	0	rad
			theta	Rotation of vehicle-fixed frame about the earth-fixed Y -axis (pitch)	Computed	rad
			psi	Rotation of vehicle-fixed frame about the earth-fixed Z-axis (yaw)	0	rad
$\begin{aligned} & \mathrm{Bd} \\ & \mathrm{yF} \\ & \mathrm{rm} \end{aligned}$	Cg	Disp	x	Vehicle CG displacement along the vehicle-fixed x-axis	Computed	m
			y	Vehicle CG displacement along the vehicle-fixed y-axis	0	m
			z	Vehicle CG displacement along the vehicle-fixed z-axis	0	m
		Vel	xdot	Vehicle CG velocity along the vehiclefixed x-axis	Computed	m/s
			ydot	Vehicle CG velocity along the vehiclefixed y-axis	0	m/s
			zdot	Vehicle CG velocity along the vehiclefixed z-axis	0	m/s
		Acc	ax	Vehicle CG acceleration along the vehicle-fixed x-axis	Computed	gn
			ay	Vehicle CG acceleration along the vehicle-fixed y-axis	0	gn
			az	Vehicle CG acceleration along the vehicle-fixed z-axis	0	gn
	Forc es	Body	Fx	Net force on vehicle CG along the vehicle-fixed x -axis	Computed	N
			Fy	Net force on vehicle CG along the vehicle-fixed y-axis	0	N
			Fz	Net force on vehicle CG along the vehicle-fixed z-axis	0	N
		Ext	FX	External force on vehicle CG along the vehicle-fixed x-axis	Computed	N

Signal		Description	Value	Units	
			Fy	External force on vehicle CG along the vehicle-fixed y-axis	0
			Fz	External force on vehicle CG along the vehicle-fixed z-axis	0

xdot - Vehicle longitudinal velocity
scalar
Vehicle total longitudinal velocity, \dot{x}, in m / s.

Dependencies

To enable this port, for the Input Mode parameter, select Power or Force.
ForceTot - Tractive input force
scalar
Tractive input force, $F_{\text {total }}$, in N .

Dependencies

To enable this port, for the Input Mode parameter, select Kinematic.

Parameters

Input Mode - Specify input mode
Kinematic (default) | Force | Power
Specify the input type.

- Kinematic - Block uses the vehicle longitudinal velocity and acceleration to calculate the tractive force and power. Use this configuration for powertrain, driveline, and braking system design, or component sizing.
- Force - Block uses the tractive force to calculate the vehicle longitudinal displacement and velocity. Use this configuration for system-level performance, fuel economy, or drive cycle tracking studies.
- Power - Block uses the engine or transmission power to calculate the vehicle longitudinal displacement and velocity. Use this configuration for system-level performance, fuel economy, or drive cycle tracking studies.

Dependencies

This table summarizes the port and input mode configurations.

Input Mode	Creates Ports
Kinematic	xdot
	xddot
Force	Force
Power	Power

Mass - Vehicle body mass
1200 (default) | scalar
Vehicle body mass, m, in kg .
Rolling resistance coefficient, a-Rolling
196 (default) | scalar
Steady-state rolling resistance coefficient, a, in N .
Rolling and driveline resistance coefficient, \mathbf{b} - Rolling and driveline
2.232 (default) | scalar

Viscous driveline and rolling resistance coefficient, b, in $\mathrm{N}^{*} \mathrm{~s} / \mathrm{m}$.

Aerodynamic drag coefficient, c - Drag

0.389 (default) | scalar

Aerodynamic drag coefficient, c, in $\mathrm{N} \cdot \mathrm{s}^{\wedge} 2 / \mathrm{m}$.
Gravitational acceleration, g - Gravity
9.81 (default) | scalar

Gravitational acceleration, g, in $\mathrm{m} / \mathrm{s}^{\wedge} 2$.

Initial position, x_o - Position
0 (default) | scalar
Vehicle longitudinal initial position, in m.
Initial velocity, xdot_o - Velocity
0 (default) | scalar
Vehicle longitudinal initial velocity with respect to ground, in m/s.

Version History

Introduced in R2017a

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.
[2] Light Duty Vehicle Performance And Economy Measure Committee. Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques. Standard J1263_201003. SAE International, March 2010.

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }_{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Drive Cycle Source | Vehicle Body 1DOF Longitudinal | Vehicle Body 3DOF Longitudinal
Topics
"Coordinate Systems in Vehicle Dynamics Blockset"

Vehicle Body 1DOF Longitudinal

Two-axle vehicle in forward and reverse motion

Libraries:

Powertrain Blockset / Vehicle Dynamics
Vehicle Dynamics Blockset / Vehicle Body

Description

The Vehicle Body 1DOF Longitudinal block implements a one degree-of-freedom (1DOF) rigid vehicle body with constant mass undergoing longitudinal (that is, forward and reverse) motion. Use the block:

- In powertrain and fuel economy studies to represent the vehicle inertial and drag loads when weight transfer from vertical and pitch motions are negligible.
- To determine the engine torque and power required for the vehicle to follow a specified drive cycle.

You can select block options to create input ports for external forces, moments, air temperature, and wind speed.

Block Option Setting	External Input Ports	Description
External forces	FExt	External force applied to vehicle CG in the vehicle-fixed frame.
External moments	MExt	External moment about vehicle CG in the vehicle-fixed frame.
Air temperature	AirTemp	Ambient air temperature. Consider this option if you want to vary the temperature during run-time.
Wind $\mathbf{X , Y , Z}$	WindXYZ	Wind speed along earth-fixed X-, Y-, and Z-axes. If you do not select this option, the block implements input port WindX - Longitudinal wind speed along the earth-fixed X-axis.

Vehicle Body Model

The vehicle axles are parallel and form a plane. The longitudinal direction lies in this plane and is perpendicular to the axles. If the vehicle is traveling on an inclined slope, the normal direction is not parallel to gravity but is always perpendicular to the axle-longitudinal plane.

The block uses the net effect of all the forces and torques acting on it to determine the vehicle motion. The longitudinal tire forces push the vehicle forward or backward. The weight of the vehicle acts through its center of gravity (CG). The grade angle changes the direction of the resolved gravitational force acting on the vehicle CG. Similarly, the block resolves the resistive aerodynamic drag force on the vehicle CM.

The Vehicle Body 1DOF Longitudinal block implements these equations.

$$
\begin{aligned}
& F_{b}=m \ddot{x} \\
& F_{b}=F_{\chi F}+F_{\chi R}-F_{d, x}+F_{e x t, x}-m g \sin \gamma
\end{aligned}
$$

Zero normal acceleration and zero pitch torque determine the normal force on each front and rear axles.

$$
\begin{aligned}
& F_{z F}=\frac{-M_{e x t, y}-M_{d, y}+b\left(F_{d, z}+F_{e x t, z}+m g \cos \gamma\right)-h\left(-F_{e x t, x}+F_{d, x}+m g \sin \gamma+m \ddot{x}\right)}{N_{F}(a+b)} \\
& F_{z R}=\frac{M_{e x t, y}+M_{d, y}+a\left(F_{d, z}+F_{e x t, z}+m g \cos \gamma\right)+h\left(-F_{e x t, x}+F_{d, x}+m g \sin \gamma+m \ddot{x}\right)}{N_{R}(a+b)}
\end{aligned}
$$

The wheel normal forces satisfy this equation.

$$
N_{F} F_{z F}+N_{R} F_{z R}-F_{e x t, z}=m g \cos \gamma
$$

Wind and Drag Forces

The block subtracts the wind speeds from the vehicle velocity components to obtain a net relative airspeed. To calculate the drag force and moments acting on the vehicle, the block uses the net relative airspeed.

$$
\begin{aligned}
& F_{d, x}=\frac{1}{2 T R} C_{d} A_{f} P_{a b s}{ }^{\dot{X}} \\
& F_{d, z}=\frac{1}{2 T R} C_{l} A_{f} P_{a b s}{ }^{\dot{x}} \\
& M_{d, y}=\frac{1}{2 T R} C_{p m} A_{f} P_{a b s}\left(^{\dot{x}}(a+b)\right.
\end{aligned}
$$

By default, to calculate the wind speed along the vehicle-fixed x-axis, the block uses the longitudinal wind speed along the earth-fixed X-axis. If you select WindX,Y,Z, the block uses the wind speed along the earth-fixed X-, Y-, Z-axes.

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations
PwrInf 0	PwrTrnsfrd Power transferred between blocks	PwrFxExt	Externally applied force power	$P_{\text {FxExt }}=F_{\chi E x t} \dot{\chi}$
	between blocks - Positive signals indicate flow	PwrFwFx	Longitudinal force power applied at the front axle	$P_{F w F X}=F_{w F \bar{X}}$
	into block - Negative signals indicate flow out of block	PwrFwRx	Longitudinal force power applied at the rear axle	$P_{F w R \chi}=F_{w R} \dot{X}$
	PwrNotTrnsfrd Power crossing the block boundary, but not transferred - Positive signals indicate an input - Negative signals indicate a loss	PwrFxDrag	Drag force power	$P_{d}=-\frac{0.5 C_{d} A_{f} P_{a b s}\left(\dot{x}^{2}-w_{x}\right)^{2}}{287.058 T} \dot{x}$
	PwrStored Stored energy rate of change	wrStoredGrvty	Rate change in gravitational potential energy	$P_{g}=-m g \dot{Z}$
	- Positive signals indicate an increase - Negative signals indicate a decrease	PwrStoredxdot	Rate in change of longitudinal kinetic energy	$P_{\dot{\chi}}=m \ddot{x} \dot{\chi}$

The equations use these variables.
$F_{x f}, F_{x r} \quad$ Longitudinal forces on each wheel at the front and rear ground contact points, respectively

$F_{z f}, F_{z r}$	Normal load forces on each wheel at the front and rear ground contact points, respectively
$F_{w F}, F_{w R}$	Longitudinal force on front and rear axles along vehicle-fixed x-axis
$F_{\chi E x t}, F_{w R}$	External force along the vehicle-fixed x-axis
$F_{d, \chi}, F_{d, z}$	Longitudinal and normal drag force on vehicle CG
$M_{d, y}$	Torque due to drag on vehicle about the vehicle-fixed y-axis
F_{d}	Aerodynamic drag force
V_{χ}	Velocity of the vehicle. When $V_{x}>0$, the vehicle moves forward. When $V_{x}<0$, the vehicle moves backward.
N_{f}, N_{r}	Number of wheels on front and rear axle, respectively
γ	Angle of road grade
m	Vehicle body mass
a, b	Distance of front and rear axles, respectively, from the normal projection point of vehicle CG onto the common axle plane
h	Height of vehicle CG above the axle plane
$C_{\text {d }}$	Frontal air drag coefficient
A_{f}	Frontal area
$P_{a b s}$	Absolute pressure
ρ	Mass density of air
$x, \dot{\chi}, \ddot{\chi}$	Vehicle longitudinal position, velocity, and acceleration along the vehicle-fixed x axis
w_{x}	Wind speed along the vehicle-fixed x-axis
\dot{Z}	Vehicle vertical velocity along the vehicle-fixed z-axis

Limitations

The Vehicle Body 1DOF Longitudinal block lets you model only longitudinal dynamics, parallel to the ground and oriented along the direction of motion. The vehicle is assumed to be in pitch and normal equilibrium. The block does not model pitch or vertical movement. To model a vehicle with three degrees-of-freedom (DOF), use the Vehicle Body 3DOF Longitudinal.

Ports

Input
FExt - External force on vehicle CG
array
External forces applied to vehicle CG, $F_{\text {xext }}, F_{\text {yext }}, F_{\text {zext }}$, in vehicle-fixed frame, in N. Signal vector dimensions are [1×3] or [3x1].

Dependencies

To enable this port, select External forces.

MExt - External moment about vehicle CG
array
External moment about vehicle CG, M_{x}, M_{y}, M_{z}, in the vehicle-fixed frame, in $\mathrm{N} \cdot \mathrm{m}$. Signal vector dimensions are [1×3] or [3×1].

Dependencies
To enable this port, select External moments.
FwF - Total longitudinal force on front axle scalar

Longitudinal force on the front axle, $F_{x f}$, along vehicle-fixed x-axis, in N .
FwR - Total longitudinal force on rear axle
scalar
Longitudinal force on the rear axle, $F w_{R}$, along vehicle-fixed x-axis, in N.
Grade - Road grade angle scalar

Road grade angle, γ, in deg.
WindX - Longitudinal wind speed
scalar
Longitudinal wind speed, W_{w}, along earth-fixed X-axis, in m/s.

Dependencies

To enable this port, clear Wind X, Y, Z components.
WindXYZ - Wind speed
array
Wind speed, $W_{w}, W_{w Y}, W_{w Z}$ along inertial X-, Y-, and Z-axes, in m / s. Signal vector dimensions are [1×3] or [3x1].

Dependencies

To enable this port, select Wind $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ components.
AirTemp - Ambient air temperature
scalar
Ambient air temperature, $T_{\text {air }}$, in K . Considering this option if you want to vary the temperature during run-time.

Dependencies

To enable this port, select Air temperature.

Output

Info - Bus signal
bus

Bus signal containing these block values.

Signal				Description	Value	Units
InertFrm	Cg	Disp	X	Vehicle CG displacement along earth-fixed X -axis	Computed	m
			Y	Vehicle CG displacement along earth-fixed Y-axis	0	m
			Z	Vehicle CG displacement along earth-fixed Z-axis	Computed	m
		Vel	Xdot	Vehicle CG velocity along earth-fixed X-axis	Computed	m/s
			Ydot	Vehicle CG velocity along earth-fixed Y-axis	0	m/s
			Zdot	Vehicle CG velocity along earth-fixed Z-axis	Computed	m/s
		Ang	phi	Rotation of vehicle-fixed frame about the earth-fixed X-axis (roll)	0	rad
			theta	Rotation of vehicle-fixed frame about the earth-fixed Y -axis (pitch)	Computed (input grade angle)	rad
			psi	Rotation of vehicle-fixed frame about the earth-fixed Z-axis (yaw)	0	rad
	FrntAxl	Disp	X	Front axle displacement along the earth-fixed X -axis	Computed	m
			Y	Front axle displacement along the earth-fixed Y -axis	0	m
			Z	Front axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	Xdot	Front axle velocity along the earth-fixed X -axis	Computed	m/s
			Ydot	Front axle velocity along the earth-fixed Y -axis	0	m/s
			Zdot	Front axle velocity along the earth-fixed Z-axis	Computed	m/s
	RearAxl	Disp	X	Rear axle displacement along the earth-fixed X-axis	Computed	m
			Y	Rear axle displacement along the earth-fixed Y-axis	0	m
			Z	Rear axle displacement along the earth-fixed Z-axis	Computed	m

Signal			Description	Value	Units
		Fz	External moment on vehicle CG about the vehicle-fixed z-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
FrntAxl	Disp	x	Front axle displacement along the vehicle-fixed x axis	Computed	m
		y	Front axle displacement along the vehicle-fixed y axis	0	m
		z	Front axle displacement along the vehicle-fixed z axis	Computed	m
	Vel	xdot	Front axle velocity along the vehicle-fixed x-axis	Computed	m/s
		ydot	Front axle velocity along the vehicle-fixed y-axis	0	m/s
		zdot	Front axle velocity along the vehicle-fixed z-axis	Computed	m/s
	Steer	WhlAngFL	Front left wheel steering angle	Computed	rad
		WhlAngFR	Front right wheel steering angle	Computed	rad
RearAxl	Disp	x	Rear axle displacement along the vehicle-fixed x axis	Computed	m
		y	Rear axle displacement along the vehicle-fixed y axis	0	m
		z	Rear axle displacement along the vehicle-fixed z axis	Computed	m
	Vel	xdot	Rear axle velocity along the vehicle-fixed x-axis	Computed	m/s
		ydot	Rear axle velocity along the vehicle-fixed y-axis	0	m/s
		zdot	Rear axle velocity along the vehicle-fixed z-axis	Computed	m/s
	Steer	WhlAngRL	Rear left wheel steering angle	Computed	rad
		WhlAngRR	Rear right wheel steering angle	Computed	rad
Pwr	PwrExt		Applied external power	Computed	W
	Drag		Power loss due to drag	Computed	W

Signal			Description	Value	Units
PwrInfo	PwrTrns frd	PwrFxExt	Externally applied force power	Computed	W
		PwrFwFx	Longitudinal force power applied at the front axle	Computed	W
		PwrFwRx	Longitudinal force power applied at the rear axle	Computed	W
	PwrNotT rnsfrd	PwrFxDrag	Drag force power	Computed	W
	PwrStor ed	wrStoredGrvty	Rate change in gravitational potential energy	Computed	W
		PwrStoredxdot	Rate in change of longitudinal kinetic energy	Computed	W

xdot - Vehicle body longitudinal velocity
scalar
Vehicle body longitudinal velocity along the vehicle-fixed reference frame x-axis, in m / s.
FzF - Front axle normal force
scalar
Normal load force on the front axle, $F_{z f}$, along vehicle-fixed z-axis, in N .
FzR - Rear axle normal force
scalar
Normal force on rear axle, $F_{z r}$, along the vehicle-fixed z-axis, in N .

Parameters

Options

External forces - FExt input port
off (default) | on
Specify to create input port FExt.
External moments - MExt input port
off (default) |on
Specify to create input port MExt.
Air temperature - AirTemp input port
off (default) |on
Specify to create input port AirTemp.
Wind $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ components - WindXYZ input port
off (default) |on

Specify to create input port WindXYZ.

Longitudinal

Number of wheels on front axle, NF - Front wheel count
2 (default) | scalar
Number of wheels on front axle, N_{F}. The value is dimensionless.
Number of wheels on rear axle, NR - Rear wheel count
2 (default) | scalar
Number of wheels on rear axle, N_{R}. The value is dimensionless.
Mass, m - Vehicle mass
1500 (default) | scalar
Vehicle mass, M, in kg.
Horizontal distance from CG to front axle, a - Front axle distance 1.4 (default) | scalar

Horizontal distance a from the vehicle CG to the front wheel axle, in m.
Horizontal distance from CG to rear axle, b-Rear axle distance
1.8 (default) | scalar

Horizontal distance b from the vehicle CG to the rear wheel axle, in m.
CG height above axles, \mathbf{h} - Height
. 35 (default) | scalar
Height of vehicle CG above the ground, h, in m.
Longitudinal drag coefficient, Cd - Drag
. 3 (default) | scalar
Air drag coefficient, C_{d}. The value is dimensionless.
Longitudinal lift coefficient, CI - Lift
0 (default) | scalar
Air lift coefficient, C_{l}. The value is dimensionless.
Longitudinal drag pitch moment, Cpm - Pitch drag
0 (default) | scalar
Pitch drag moment coefficient, $C_{p m}$. The value is dimensionless.

Frontal area, Af - Area

4 (default) | scalar
Effective vehicle cross-sectional area, A, to calculate the aerodynamic drag force on the vehicle, in m^{2}.

Initial position, x_o - Position
0 (default) | scalar

Vehicle body longitudinal initial position along the vehicle-fixed x -axis, χ_{0}, in m .
Initial velocity, xdot_o - Velocity
0 (default) | scalar
Vehicle body longitudinal initial velocity along the vehicle-fixed x-axis, \dot{x}_{0}, in m / s.

Environment

Absolute air pressure, Pabs - Pressure
101325 (default) | scalar
Environmental air absolute pressure, $P_{a b s}$, in Pa .
Air temperature, \mathbf{T} - Ambient air temperature
273 (default) | scalar
Ambient air temperature, $T_{\text {air }}$, in K .
Dependencies
To enable this parameter, clear Air temperature.
Gravitational acceleration, g - Gravity
9.81 (default) | scalar

Gravitational acceleration, g, in $\mathrm{m} / \mathrm{s}^{2}$.

Version History
 Introduced in R2017a

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Vehicle Body 3DOF Longitudinal | Vehicle Body Total Road Load

Topics

"Coordinate Systems in Vehicle Dynamics Blockset"

Vehicle Body 3DOF Longitudinal

3DOF rigid vehicle body to calculate longitudinal, vertical, and pitch motion

Libraries:

Powertrain Blockset / Vehicle Dynamics
Vehicle Dynamics Blockset / Vehicle Body

Description

The Vehicle Body 3DOF Longitudinal block implements a three degrees-of-freedom (3DOF) rigid vehicle body model with configurable axle stiffness to calculate longitudinal, vertical, and pitch motion. The block accounts for body mass, aerodynamic drag, road incline, and weight distribution between the axles due to acceleration and the road profile.

You can specify the type of axle attachment to the vehicle:

- Grade angle - Vertical axle displacement from road surface to axles remains constant. The block uses tabular stiffness and damping parameters to model the suspension forces acting between the vehicle body and axles.
- Axle displacement - Axles have input-provided vertical displacement and velocity with respect to the road grade. The block uses tabular stiffness and damping parameters to model the suspension forces acting between the vehicle body and axle.
- External suspension - Axles have externally applied forces for coupling the vehicle body to custom suspension models.

If the weight transfer from vertical and pitch motions are not negligible, consider using this block to represent vehicle motion in powertrain and fuel economy studies. For example, in studies with heavy breaking or acceleration or road profiles that contain larger vertical changes.

The block uses rigid-body vehicle motion, suspension system forces, and wind and drag forces to calculate the normal forces on the front and rear axles. The block resolves the force components and moments on the rigid vehicle body frame:

$$
\begin{aligned}
& F_{x}=F_{w F}+F_{w R}-F_{d, x}-F_{s x, F}-F_{s X, R}+F_{g, x} \\
& F_{z}=F_{d, z}-F_{s z, F}-F_{s z, R}+F_{g, z} \\
& M_{y}=a F_{s z, F}-b F_{s z, R}+h\left(F_{w F}+F_{w R}+F_{s x, F}+F_{s x, R}\right)-M_{d, y}
\end{aligned}
$$

Rigid-Body Vehicle Motion

The vehicle axles are parallel and form a plane. The longitudinal direction lies in this plane and is perpendicular to the axles. If the vehicle is traveling on an inclined slope, the normal direction is not parallel to gravity but is always perpendicular to the axle-longitudinal plane.

The block uses the net effect of all the forces and torques acting on it to determine the vehicle motion. The longitudinal tire forces push the vehicle forward or backward. The weight of the vehicle acts through its center of gravity (CG). Depending on the inclined angle, the weight pulls the vehicle to the ground and either forward or backward. Whether the vehicle travels forward or backward, aerodynamic drag slows it down. For simplicity, the drag is assumed to act through the CG.

The Vehicle Body 3DOF Longitudinal implements these equations.

$$
\begin{aligned}
& \ddot{x}=\frac{F_{x}}{m}-q z \\
& \ddot{z}=\frac{F_{z}}{m}-q x \\
& \dot{q}=\frac{M_{y}}{I_{y y}} \\
& \dot{\theta}=q
\end{aligned}
$$

Suspension System Forces

If you configure the block with the Ground interaction type parameter Grade angle or Axle displacement, velocity, the block uses nonlinear stiffness and damping parameters to model the suspension system.

The front and rear axle suspension forces are given by:

$$
\begin{aligned}
& F s_{F}=N_{F}\left[F k_{F}+F b_{F}\right] \\
& F s_{R}=N_{R}\left[F k_{R}+F b_{R}\right]
\end{aligned}
$$

The block uses lookup tables to implement the front and rear suspension stiffness. To account for kinematic and material nonlinearities, including collisions with end-stops, the tables are functions of the stroke.

$$
\begin{aligned}
& F k_{F}=f\left(d Z_{F}\right) \\
& F k_{R}=f\left(d Z_{R}\right)
\end{aligned}
$$

The block uses lookup tables to implement the front and rear suspension damping. To account for nonlinearities, compression, and rebound, the tables are functions of the stroke rate.

$$
\begin{aligned}
& F b_{F}=f\left(d \dot{Z}_{F}\right) \\
& F b_{R}=f\left(d \dot{Z}_{R}\right)
\end{aligned}
$$

The stroke is the difference in the vehicle vertical and axle positions. The stroke rate is the difference in the vertical and axle velocities.

$$
\begin{aligned}
& d Z_{F}=Z_{F}-\bar{Z}_{F} \\
& d Z_{R}=Z_{R}-\bar{Z}_{R} \\
& d \dot{Z}_{F}=\dot{Z}_{F}-\dot{\bar{Z}}_{F} \\
& d \dot{Z}_{R}=\dot{Z}_{R}-\dot{\bar{Z}}_{R}
\end{aligned}
$$

When the Ground interaction type parameter is Grade angle, the axle vertical positions $\left(\bar{Z}_{F}, \bar{Z}_{R}\right)$ and velocities $\left(\dot{\bar{Z}}_{F}, \dot{\bar{Z}}_{R}\right)$ are set to 0 .

Wind and Drag Forces

The block subtracts the wind speeds from the vehicle velocity components to obtain a net relative airspeed. To calculate the drag force and moments acting on the vehicle, the block uses the net relative airspeed:

$$
\begin{aligned}
& F_{d, x}=\frac{1}{2 T R} C_{d} A_{f} P_{a b s}{ }^{\dot{x}} \\
& F_{d, z}=\frac{1}{2 T R} C_{l} A_{f} P_{a b s} 1^{\dot{x}} \\
& M_{d, y}=\left.\frac{1}{2 T R} C_{p m} A_{f} P_{a b s}\right|^{\dot{x}}(a+b)
\end{aligned}
$$

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal			Description	Equations
PwrInf 0	PwrTrnsfrd Power transferred between blocks - Positive signals indicate flow into block - Negative signals indicate flow out of block	PwrFxExt	Externally applied longitudinal force power	$P_{F x E x t}=F_{x E x t} \dot{\chi}$
		PwrFzExt	Externally applied longitudinal force power	$P_{F z E x t}=F_{z E x t} \dot{z}$
		PwrMyExt	Externally applied pitch moment power	$P_{M z E x t}=M_{z E x t} \dot{\theta}$
		PwrFwFx	Longitudinal force applied at the front axle	$P_{F w F x}=F_{w F} \dot{X}$
		PwrFwRx	Longitudinal force applied at the rear axle	$P_{F w R x}=F_{w R} \dot{X}$
	PwrNotTrnsfrd - Power crossing the block boundary, but not transferred - Positive signals indicate an input - Negative signals indicate a loss	PwrFsF	Internal power transferred between suspension and vehicle body at the front axle	$\begin{aligned} & P_{F s, F}=-P_{F w F X}+P_{F s b F} \\ & +P_{F s k, F}+F_{X F} \dot{\mathrm{X}}_{F}+F_{z F} \dot{z}_{F} \end{aligned}$
		PwrFsR	Internal power transferred between suspension and vehicle body at the rear axle	$\begin{aligned} & P_{F s, R}=-P_{F w R x}+P_{F s b, R} \\ & +P_{F s k, R}+F_{x F} \dot{\chi}_{F}+F_{z F} \dot{z}_{F} \end{aligned}$
		PwrFxDrag	Longitudinal drag force power	$P_{d, x}=F_{d, x} \dot{\chi}$
		PwrFzDrag	Vertical drag force power	$P_{d, z}=F_{d, z} \dot{z}$
		PwrMyDrag	Drag pitch moment power	$P_{d, M y}=M_{d, y} \dot{\theta}$
		PwrFsb	Total suspension damping power	$P_{F s b}=\sum_{i=F, R} F_{s b, i} \dot{z}_{i}$
	PwrStored Stored energy rate of change - Positive signals indicate an increase - Negative signals indicate a decrease	PwrStoredGrvty	Rate change in gravitational potential energy	$P_{g}=-m g \dot{Z}$
		PwrStoredxdot	Rate of change of longitudinal kinetic energy	$P_{\dot{\chi}}=m \ddot{\chi} \dot{\chi}$
		PwrStoredzdot	Rate of change of longitudinal kinetic energy	$P_{\dot{z}}=m \ddot{z} \dot{z}$

Bus Signal		Description	Equations	
	PwrStoredq	Rate of change of rotational pitch kinetic energy	$P_{\dot{\theta}}=I_{y y} \ddot{\theta} \dot{\theta}$	
		PwrStoredFsFzSp rng	Stored spring energy from front suspension	$P_{F s k F}=F_{s k, F} \dot{z}_{F}$
	Stored spring energy from rear suspension	$P_{F s k F}=F_{s k, R} \dot{z}_{R}$		

The equations use these variables.
$F_{x} \quad$ Longitudinal force on vehicle
$F_{z} \quad$ Normal force on vehicle
$M_{y} \quad$ Torque on vehicle about the vehicle-fixed y-axis
$F_{w F}, F_{w R} \quad$ Longitudinal force on front and rear axles along vehicle-fixed x-axis
$F_{d, x}, F_{d, z} \quad$ Longitudinal and normal drag force on vehicle CG
$F_{s x, F,}, F_{s x, R} \quad$ Longitudinal suspension force on front and rear axles
$F_{s z, F}, F_{s z, R} \quad$ Normal suspension force on front and rear axles
$F_{g, x} F_{g, z} \quad$ Longitudinal and normal gravitational force on vehicle along the vehicle-fixed frame
$M_{d, y} \quad$ Torque due to drag on vehicle about the vehicle-fixed y-axis
a, b
h
$F s_{F}, F s_{R}$
$Z_{w F}, Z_{w R}$
Θ
m
N_{F}, N_{R}
$I_{y y}$
$x, \dot{x}, \ddot{x} \quad$ Vehicle longitudinal position, velocity, and acceleration along the vehicle-fixed x axis
$z, \dot{z}, \ddot{z} \quad$ Vehicle normal position, velocity, and acceleration along the vehicle-fixed z-axis
$F k_{F}, F k_{R} \quad$ Front and rear wheel suspension stiffness force along vehicle-fixed z-axis
$F b_{F}, F b_{R} \quad$ Front and rear wheel suspension damping force along vehicle-fixed z-axis
Z_{F}, Z_{R}
\dot{Z}_{F}, \dot{Z}_{R}
\bar{Z}_{F}, \bar{Z}_{R}
Front and rear vehicle vertical position along earth-fixed Z-axis
Front and rear vehicle vertical velocity along vehicle-fixed z-axis
Front and rear wheel axle vertical position along vehicle-fixed z-axis
$\dot{\bar{Z}}_{F}, \dot{\bar{Z}}_{R}$
Front and rear wheel axle vertical velocity along earth-fixed z-axis

$d Z_{F}, d Z_{R}$	Front and rear axle suspension deflection along vehicle-fixed z-axis
$d \dot{Z}_{F}, d \dot{Z}_{R}$	Front and rear axle suspension deflection rate along vehicle-fixed z-axis
C_{d}	Frontal air drag coefficient acting along the vehicle-fixed x-axis
C_{l}	Lateral air drag coefficient acting along the vehicle-fixed z-axis
$C_{p m}$	Air drag pitch moment acting about the vehicle-fixed y-axis
A_{f}	Frontal area
$P_{a b s}$	Environmental absolute pressure
R	Atmospheric specific gas constant
T	Environmental air temperature
w_{χ}	Wind speed along the vehicle-fixed x-axis

Ports

Input
FExt - External force on vehicle CG
array
External forces applied to vehicle CG, $F_{\text {xext }}, F_{\text {yext }}, F_{\text {zext }}$, in vehicle-fixed frame, in N. Signal vector dimensions are [1×3] or [3x1].
Dependencies
To enable this port, select External forces.
MExt - External moment about vehicle CG
array
External moment about vehicle CG, M_{x}, M_{y}, M_{z}, in the vehicle-fixed frame, in $N \cdot m$. Signal vector dimensions are [1x3] or [3x1].

Dependencies

To enable this port, select External moments.
FwF - Total longitudinal force on the front axle scalar

Longitudinal force on the front axle, $F w_{F}$, along vehicle-fixed x-axis, in N .
FwR - Total longitudinal force on the rear axle
scalar
Longitudinal force on the rear axle, $F w_{R}$, along vehicle-fixed x-axis, in N .
Grade - Road grade angle scalar

Road grade angle, γ, in deg.
FsF - Suspension force on front axle per wheel vector

Suspension force on front axle, $F s_{F}$, along the vehicle-fixed z-axis, in N.

Dependencies

To enable this port, for the Ground interaction type parameter, select External suspension.
FsR - Suspension force on rear axle per wheel
vector
Suspension force on rear axle, $F s_{R}$, along the vehicle-fixed z-axis, in N .

Dependencies

To enable this port, for the Ground interaction type parameter, select External suspension.
WindXYZ - Wind speed
array
Wind speed, W_{X}, W_{Y}, W_{Z} along earth-fixed X-, Y-, and Z-axes, in m/s. Signal vector dimensions are [1x3] or [3x1].

AirTemp - Ambient air temperature
scalar
Ambient air temperature, $T_{\text {air }}$, in K . Considering this option if you want to vary the temperature during run-time.

Dependencies

To enable this port, select Air temperature.
$\mathbf{z F}, \mathbf{R}$ - Forward and rear axle positions
vector
Forward and rear axle positions along the vehicle-fixed z-axis, \bar{Z}_{F}, \bar{Z}_{R}, in m .

Dependencies

To enable this port, for the Ground interaction type parameter, select Axle displacement, velocity.
zdotF,R - Forward and rear axle velocities
vector
Forward and rear axle velocities along the vehicle-fixed z-axis, $\dot{\bar{Z}}_{F}, \dot{\bar{Z}}_{R}$, in m/s.

Dependencies

To enable this port, for the Ground interaction type parameter, select Axle displacement, velocity.

Output

Info - Bus signal
bus
Bus signal containing these block values.

Signal				Description	Value	Units
InertFrm	Cg	Disp	X	Vehicle CG displacement along earth-fixed X-axis	Computed	m
			Y	Vehicle CG displacement along earth-fixed Y-axis	0	m
			Z	Vehicle CG displacement along earth-fixed Z-axis	Computed	m
		Vel	Xdot	Vehicle CG velocity along earth-fixed X-axis	Computed	m/s
			Ydot	Vehicle CG velocity along earth-fixed Y-axis	0	m/s
			Zdot	Vehicle CG velocity along earth-fixed Z-axis	Computed	m/s
		Ang	phi	Rotation of vehicle-fixed frame about the earth-fixed X-axis (roll)	0	rad
			theta	Rotation of vehicle-fixed frame about the earth-fixed Y-axis (pitch)	Computed	rad
			psi	Rotation of vehicle-fixed frame about the earth-fixed Z-axis (yaw)	0	rad
	FrntAxl	Disp	X	Front axle displacement along the earth-fixed X-axis	Computed	m
			Y	Front axle displacement along the earth-fixed Y-axis	0	m
			Z	Front axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	Xdot	Front axle velocity along the earth-fixed X-axis	Computed	m / s
			Ydot	Front axle velocity along the earth-fixed Y-axis	0	m/s
			Zdot	Front axle velocity along the earth-fixed Z-axis	Computed	m/s
	RearAxl	Disp	X	Rear axle displacement along the earth-fixed X-axis	Computed	m
			Y	Rear axle displacement along the earth-fixed Y-axis	0	m
			Z	Rear axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	Xdot	Rear axle velocity along the earth-fixed X-axis	Computed	m/s
			Ydot	Rear axle velocity along the earth-fixed Y-axis	0	m/s

Signal				Description	Value	Units
			Zdot	Rear axle velocity along the earth-fixed Z-axis	Computed	m/s
BdyFrm	Cg	Disp	x	Vehicle CG displacement along the vehicle-fixed x axis	Computed	m
			y	Vehicle CG displacement along the vehicle-fixed y axis	0	m
			z	Vehicle CG displacement along the vehicle-fixed z axis	Computed	m
		Vel	xdot	Vehicle CG velocity along the vehicle-fixed x-axis	Computed	m/s
			ydot	Vehicle CG velocity along the vehicle-fixed y-axis	0	m/s
			zdot	Vehicle CG velocity along the vehicle-fixed z-axis	Computed	m/s
		AngVel	p	Vehicle angular velocity about the vehicle-fixed x axis (roll rate)	0	$\mathrm{rad} / \mathrm{s}$
			q	Vehicle angular velocity about the vehicle-fixed y axis (pitch rate)	Computed	rad/s
			r	Vehicle angular velocity about the vehicle-fixed z axis (yaw rate)	0	rad/s
		Accel	ax	Vehicle CG acceleration along the vehicle-fixed x axis	Computed	gn
			ay	Vehicle CG acceleration along the vehicle-fixed y axis	0	gn
			az	Vehicle CG acceleration along the vehicle-fixed z axis	Computed	gn
	Forces	Body	FX	Net force on vehicle CG along the vehicle-fixed x axis	Computed	N
			Fy	Net force on vehicle CG along the vehicle-fixed y axis	0	N
			Fz	Net force on vehicle CG along the vehicle-fixed z axis	Computed	N

Signal			Description	Value	Units
		Fy	Drag force on vehicle CG along the vehicle-fixed y axis	Computed	N
		Fz	Drag force on vehicle CG along the vehicle-fixed z axis	Computed	N
	Grvty	Fx	Gravity force on vehicle CG along the vehicle-fixed x axis	Computed	N
		Fy	Gravity force on vehicle CG along the vehicle-fixed y axis	0	N
		Fz	Gravity force on vehicle CG along the vehicle-fixed z axis	Computed	N
Moments	Body	Mx	Body moment on vehicle CG about the vehicle-fixed x-axis	0	$\mathrm{N} \cdot \mathrm{m}$
		My	Body moment on vehicle CG about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz	Body moment on vehicle CG about the vehicle-fixed z-axis	0	$\mathrm{N} \cdot \mathrm{m}$
	Drag	Mx	Drag moment on vehicle CG about the vehicle-fixed x-axis	0	$\mathrm{N} \cdot \mathrm{m}$
		My	Drag moment on vehicle CG about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz	Drag moment on vehicle CG about the vehicle-fixed z-axis	0	$\mathrm{N} \cdot \mathrm{m}$
	Ext	Fx	External moment on vehicle CG about the vehicle-fixed x-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Fy	External moment on vehicle CG about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Fz	External moment on vehicle CG about the vehicle-fixed z-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
FrntAxl	Disp	x	Front axle displacement along the vehicle-fixed x axis	Computed	m

Signal		Description	Value	Units
	PwrFwFx	Longitudinal force applied at the front axle	Computed	W
	PwrFwRx	Longitudinal force applied at the rear axle	Computed	W
PwrNotT rnsfrd	PwrFsF	Internal power transferred between suspension and vehicle body at the front axle	Computed	W
	PwrFsR	Internal power transferred between suspension and vehicle body at the rear axle	Computed	W
	PwrFxDrag	Longitudinal drag force power	Computed	W
	PwrFzDrag	Vertical drag force power	Computed	W
	PwrMyDrag	Drag pitch moment power	Computed	W
	PwrFsb	Total suspension damping power	Computed	W
PwrStor ed	PwrStoredGrvty	Rate change in gravitational potential energy	Computed	W
	PwrStoredxdot	Rate of change of longitudinal kinetic energy	Computed	W
	PwrStoredzdot	Rate of change of longitudinal kinetic energy	Computed	W
	PwrStoredq	Rate of change of rotational pitch kinetic energy	Computed	W
	PwrStoredFsFzSprng	Stored spring energy from front suspension	Computed	W
	PwrStoredFsRzSprng	Stored spring energy from rear suspension	Computed	W

xdot - Vehicle longitudinal velocity
scalar
Vehicle CG velocity along the vehicle-fixed x-axis, in m / s.
FzF - Front axle normal force
scalar
Normal force on front axle, $F z_{F}$, along the vehicle-fixed z-axis, in N .
FzR - Rear axle normal force
scalar
Normal force on rear axle, $F z_{R}$, along the vehicle-fixed z-axis, in N .

Parameters

Options

External forces - FExt input port
off (default) | on
Specify to create input port FExt.
External moments - MExt input port
off (default) | on
Specify to create input port MExt.
Air temperature - AirTemp input port
off (default) | on
Specify to create input port AirTemp.

Longitudinal

Number of wheels on front axle, NF - Front wheel count
2 (default) | scalar
Number of wheels on front axle, N_{F}. The value is dimensionless.
Number of wheels on rear axle, NR - Rear wheel count
2 (default) | scalar
Number of wheels on rear axle, N_{R}. The value is dimensionless.
Mass, \mathbf{m} - Vehicle mass
1200 (default) | scalar
Vehicle mass, m, in kg.
Horizontal distance from CG to front axle, a - Front axle distance
1.4 (default) | scalar

Horizontal distance a from the vehicle CG to the front wheel axle, in m.
Horizontal distance from CG to rear axle, b-Rear axle distance
1.8 (default) | scalar

Horizontal distance b from the vehicle CG to the rear wheel axle, in m .
CG height above axles, \mathbf{h} - Height
0.35 (default) | scalar

Height of vehicle CG above the axles, h, in m.

Longitudinal drag coefficient, Cd - Drag

. 3 (default) | scalar
Air drag coefficient, C_{d}. The value is dimensionless.

Frontal area, Af - Area

2 (default) | scalar
Effective vehicle cross-sectional area, A_{f} to calculate the aerodynamic drag force on the vehicle, in $\mathrm{m}^{\wedge} 2$.

Initial position, x_0-Position
0 (default) | scalar
Vehicle body longitudinal initial position along earth-fixed x-axis, χ_{0}, in m .
Initial velocity, xdot_o - Velocity
0 (default) | scalar
Vehicle body longitudinal initial velocity along earth-fixed x-axis, \dot{x}_{0}, in m / s.

Vertical

Longitudinal lift coefficient, CI - Lift
. 1 (default) | scalar
Lift coefficient, C_{l}. The value is dimensionless.
Initial vertical position, z_o - Position
-. 35 (default) | scalar
Initial vertical CG position, z_{0}, along the vehicle-fixed z-axis, in m .
Initial vertical velocity, zdot_o - Velocity
0 (default) | scalar
Initial vertical CG velocity, $z d o t_{o}$, along the vehicle-fixed z-axis, in m .
Pitch
Inertia, lyy - About body y-axis
3500 (default) | scalar
Vehicle body moment of inertia about body z-axis.
Longitudinal drag pitch moment, Cpm - Drag coefficient
. 1 (default) | scalar
Pitch drag moment coefficient. The value is dimensionless.
Initial pitch angle, theta_o - Pitch
0 (default) | scalar
Initial pitch angle about body z-axis, in rad.
Initial angular velocity, q_o - Pitch velocity
0 (default) | scalar
Initial vehicle body angular velocity about body z-axis, in rad/s.

Suspension

Front axle stiffness force data, FskF - Force

$[-50,-1,0,2,3,52] . * 1.5 e 4$ (default) | vector
Front axle stiffness force data, $F k_{F}$, in N.

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Front axle displacement data, dzsF - Displacement
[-5e-3, -1e-4, 0, .2, .2001, .2051] (default) | vector
Front axle displacement data, in m .

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Front axle damping force data, FsbF - Damping force

```
[-10000 -100 -10 0 10 100 10000] (default)|vector
```

Front axle damping force, in N.

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Front axle velocity data, dzdotsF - Velocity

```
[-10 -1 -. 1 0 . 1 1 10] (default)|vector
```

Front axle velocity data, in m/s.

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Rear axle stiffness force data, FskR - Force
[-50, -1, 0, 2, 3, 52].*le4 (default)| vector
Rear axle stiffness force data, in N .

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Rear axle displacement data, dzsR - Displacement
[-5e-3, -1e-4, 0, .2, .2001, .2051] (default)|vector
Rear axle displacement data, in m .

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Rear axle damping force data, FsbR - Damping force
[-10000-100 -10 010100 10000] (default) |vector
Rear axle damping force, in N .

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Rear axle velocity data, dzdotsR - Velocity
[-10 -1 -. 1 0 . 11 10] (default)| vector
Rear axle velocity data, in m/s.

Dependencies

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Environment

Absolute air pressure, Pabs - Pressure
101325 (default) | scalar
Environmental air absolute pressure, $P_{\text {abs }}$, in Pa.
Air temperature, Tair - Ambient air temperature
273 (default) | scalar
Ambient air temperature, $T_{\text {air }}$, in K.
Dependencies
To enable this parameter, clear Air temperature.
Gravitational acceleration, \mathbf{g} - Gravity
9.81 (default)

Gravitational acceleration, g, in $\mathrm{m} / \mathrm{s}^{2}$.

Version History

Introduced in R2017a

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
[2] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
[3] Technical Committee. Road vehicles - Vehicle dynamics and road-holding ability - Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Vehicle Body 1DOF Longitudinal | Vehicle Body Total Road Load

Topics

"Coordinate Systems in Vehicle Dynamics Blockset"

Vehicle Body 3DOF

3DOF rigid vehicle body to calculate longitudinal, lateral, and yaw motion

Libraries:

Vehicle Dynamics Blockset / Vehicle Body

Description

The Vehicle Body 3DOF block implements a rigid two-axle vehicle body model to calculate longitudinal, lateral, and yaw motion. The block accounts for body mass and aerodynamic drag between the axles due to acceleration and steering.

Use this block in vehicle dynamics and automated driving studies to model nonholonomic vehicle motion when vehicle pitch, roll, and vertical motion are not significant.

In the Vehicle Dynamics Blockset library, there are two types of Vehicle Body 3DOF blocks that model longitudinal, lateral, and yaw motion.

Use the Axle forces parameter to specify the type of force.

Axle Forces Setting	Implementation
External longitudinal velocity	- The block assumes that the external longitudinal velocity is in a quasi-steady state, so the longitudinal acceleration is approximately zero. - Because the motion is quasi-steady, the block calculates lateral forces using the tire slip angles and linear cornering stiffness. - Consider this setting when you want to: - Generate virtual sensor signal data. - Conduct high-level software studies that are not impacted by driveline or nonlinear tire responses.
External longitudinal forces	- The block uses the external longitudinal force to accelerate or brake the vehicle. - The block calculates lateral forces using the tire slip angles and linear cornering stiffness. - Consider this setting when you want to: - Account for changes in the longitudinal velocity on the lateral and yaw motion. - Specify the external longitudinal motion through a force instead of an external longitudinal velocity. - Connect the block to tractive actuators, wheels, brakes, and hitches.
External forces	- The block uses the external lateral and longitudinal forces to steer, accelerate, or brake the vehicle. - The block does not use the steering input to calculate vehicle motion. - Consider this setting when you need tire models with more accurate nonlinear combined lateral and longitudinal slip.

You can use these block parameters to create additional input ports. This table summarizes the settings.

Input Signals Pane Parameter	Input Port	Description
Front wheel steering	WhlAngF	Front wheel angle, δ_{F}
External wind	WindXYZ	Wind speed, W_{X}, W_{Y}, W_{Z}, in the inertial reference frame
External forces	FExt	External force on vehicle center of gravity (CG), F_{x}, F_{y}, F_{z}, in the vehicle-fixed frame
Rear wheel steering	WhlAngR	Rear wheel angle, δ_{R}
External friction	Mu	Friction coefficient
External moments	MExt	External moment about vehicle CG, M_{x}, M_{y}, M_{z} in vehicle-fixed frame

Input Signals Pane Parameter	Input Port	Description
Hitch forces	Fh	Hitch force applied to the body at the hitch location, $F h_{x}, F h_{y}$, and $F h_{z}$, in the vehicle-fixed frame
Hitch moments	Mh	Hitch moment at the hitch location, $M h_{x}, M h_{y}$ and $M h_{z}$, about the vehicle-fixed frame
Initial longitudinal position	X_0	Initial vehicle CG displacement along the earthfixed X-axis, in m
Initial lateral position	Y_0	Initial vehicle CG displacement along the earthfixed Y-axis, in m
Initial longitudinal velocity	xdot_o	Initial vehicle CG velocity along the vehiclefixed x-axis, in m / s
Initial lateral velocity	ydot_0	Initial vehicle CG velocity along the vehiclefixed y-axis, in m / s
Initial yaw angle	psi_o	Initial rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw), in rad
Initial yaw rate	r_o	Initial vehicle angular velocity about the vehicle-fixed z-axis (yaw rate), in rad/s
Air temperature	AirTemp	Ambient air temperature. Considering this option if you want to vary the temperature during run-time.

Theory

The Vehicle Body 3DOF block implements a rigid two-axle vehicle body model to calculate longitudinal, lateral, and yaw motion. The block accounts for body mass, aerodynamic drag, and weight distribution between the axles due to acceleration and steering. To determine the vehicle motion, the block implements these equations for the single track, dual track, and drag calculations.

Single Track

Calculation	Description
Dynamics	The block uses these equations to calculate the rigid body planar dynamics. $\ddot{y}=-\dot{x} r+\frac{F_{y f}+F_{y r}+F_{y e x t}}{m}$ $\dot{r}=\frac{a F_{y f}-b F_{y r}+M_{z e x t}}{I_{z z}}$ $r=\dot{\psi}$
	If you set Axle forces to either External longitudinal forces or External forces, the block uses this equation for the longitudinal acceleration. $\ddot{x}=\dot{y} r+\frac{F_{\chi f}+F_{x r}+F_{\chi e x t}}{m}$ If you set Axle forces to External longitudinal velocity, the block assumes a quasi-steady state for the longitudinal acceleration. $\ddot{x}=0$

Calculation	Description
External forces	External forces include both drag and external force inputs. The forces act on the vehicle CG. $\begin{aligned} & F_{x, y, z e x t}=F_{d x, y, z}+F_{x, y, z \text { input }} \\ & M_{x, y, z e x t}=M_{d x, y, z}+M_{x, y, z \text { input }} \end{aligned}$ If you set Axle forces to External longitudinal forces, the block uses these equations. $\begin{aligned} & F_{x f t}=F_{x f i n p u t} \\ & F_{y f t}=-C_{y f} \alpha_{f} \mu_{f} \frac{F_{z f}}{F_{z n o m}} \\ & F_{x r t}=F_{x r i n p u t} \\ & F_{y r t}=-C_{y r} \alpha_{r} \mu_{r} \frac{F_{z r}}{F_{z n o m}} \end{aligned}$ If you set Axle forces to External longitudinal velocity, the block uses these equations. $\begin{aligned} & F_{x f t}=0 \\ & F_{y f t}=-C_{y f} \alpha_{f} \mu_{f} \frac{F_{z f}}{F_{z n o m}} \\ & F_{x r t}=0 \\ & F_{y r t}=-C_{y r} \alpha_{r} \mu_{r} \frac{F_{z r}}{F_{z n o m}} \end{aligned}$ The block divides the normal forces by the nominal normal load to vary the effective friction parameters during weight and load transfer. The block uses these equations to maintain pitch and roll equilibrium. $\begin{aligned} & F_{z f}=\frac{b m g-(\ddot{x}-\dot{y} r) m h+h F_{\text {xext }}+b F_{z e x t}-M_{y e x t}}{a+b} \\ & F_{z r}=\frac{a m g+(\ddot{x}-\dot{y} r) m h-h F_{\text {xext }}+a F_{z e x t}+M_{\text {yext }}}{a+b} \end{aligned}$

Calculation	Description
Tire forces	The block uses the ratio of the local and longitudinal and lateral velocities to determine the slip angles. $\alpha_{f}=\operatorname{atan}\left(\frac{\dot{y}+a r}{\dot{x}}\right)-\delta_{f}$ $\alpha_{r}=\operatorname{atan}\left(\frac{\dot{y}-b r}{\dot{x}}\right)-\delta_{r}$ To determine the tire forces, the block uses the slip angles. $F_{x f}=F_{x f t} \cos \left(\delta_{f}\right)-F_{y f t} \sin \left(\delta_{f}\right)$ $F_{y f}=-F_{x f t} \sin \left(\delta_{f}\right)+F_{y f t} \cos \left(\delta_{f}\right)$ $F_{x r}=F_{x r t} \cos \left(\delta_{r}\right)-F_{y r t} \sin \left(\delta_{r}\right)$ $F_{y r}=-F_{x r t} \sin \left(\delta_{r}\right)+F_{y r t} \cos \left(\delta_{r}\right)$ If you set Axle forces to External forces, the block sets the tire forces equal to the external input force. $F_{x f}=F_{x f t}=F_{x f i n p u t}$ $F_{y f}=F_{y f t}=F_{y f i n p u t}$ $F_{x r}=F_{x r t}=F_{x r i n p u t}$ $F_{y r}=F_{y r t}=F_{y r i n p u t}$

Dual Track

Calculation	Description
Dynamics	$\ddot{x}=\dot{y} r+\frac{F_{x f l}+F_{x f r}+F_{x r l}+F_{x r r}+F_{x e x t}}{m}$ $\ddot{y}=-\dot{x} r+\frac{F_{y f l}+F_{y f r}+F_{y r l}+F_{y r r}+F_{y e x t}}{m}$ $\dot{r}=\frac{a\left(F_{y f l}+F_{y f r}\right)-b\left(F_{y r l}+F_{y r r}\right)+\frac{w_{f}\left(F_{x f l}-F_{x f r}\right)}{2}+\frac{w_{r}\left(F_{x r l}-F_{x r r}\right)}{2}+M_{z e x t}}{I_{z z}}$ $r=\dot{\psi}$ If you set Axle forces to External longitudinal velocity, the block assumes a quasi-steady state for the longitudinal acceleration. $\ddot{x}=0$

Calculation	Description
External forces	External forces include both drag and external force inputs. The forces act on the vehicle CG. $\begin{aligned} & F_{x, y, z e x t}=F_{d x, y, z}+F_{x, y, z \text { input }} \\ & M_{x, y, z e x t}=M_{d x, y, z}+M_{x, y, z \text { input }} \end{aligned}$ If you set Axle forces to External longitudinal forces, the block uses these equations. $\begin{aligned} & F_{x f l t}=F_{x f l i n p u t} \\ & F_{y f l t}=-C_{y f l} \alpha_{f l} \mu_{f l} \frac{F_{z f l}}{2 F_{z n o m}} \\ & F_{x f r t}=F_{x l r i n p u t} \\ & F_{y f r t}=-C_{y f r} \alpha_{f r} \mu_{f r} \frac{F_{z f r}}{2 F_{z n o m}} \\ & F_{x r l t}=F_{x r l i n p u t} \\ & F_{y r l t}=-C_{y r l} \alpha_{r l} \mu_{r l} \frac{F_{z r l}}{2 F_{z n o m}} \\ & F_{x r r t}=F_{x r r i n p u t} \\ & F_{y r r t}=-C_{y r r} \alpha_{r r} \mu_{r r} \frac{F_{z r r}}{2 F_{z n o m}} \end{aligned}$ If you set Axle forces to External longitudinal velocity, the block uses these equations. $\begin{aligned} & F_{x f l t}=0 \\ & F_{y f l t}=-C_{y f l} \alpha_{f l} \mu_{f l} \frac{F_{z f l}}{2 F_{z n o m}} \\ & F_{x f r t}=0 \\ & F_{y f r t}=-C_{y f r} \alpha_{f r} \mu_{f r} \frac{F_{z f r}}{2 F_{z n o m}} \\ & F_{x r l t}=0 \\ & F_{y r l t}=-C_{y r l} \alpha_{r l} \mu_{r l} \frac{F_{z r l}}{2 F_{z n o m}} \\ & F_{x r r t}=0 \\ & F_{y r r t}=-C_{y r r} \alpha_{r r} \mu_{r r} \frac{F_{z r r}}{2 F_{z n o m}} \end{aligned}$ The block divides the normal forces by the nominal normal load to vary the effective friction parameters during weight and load transfer. The block uses these equations to maintain pitch and roll equilibrium.

Calculation	Description
	$\begin{aligned} & F_{z f}=\frac{b m g-(\ddot{x}-\dot{y} r) m h+h F_{x e x t}+b F_{z e x t}-M_{y e x t}}{a+b} \\ & F_{z r}=\frac{a m g+(\ddot{x}-\dot{y} r) m h-h F_{x e x t}+a F_{z e x t}+M_{y e x t}}{(a+b)} \\ & F_{z f l}=F_{z f}+\left(m h(\ddot{y}+\dot{x} r)-h F_{y e x t}-M_{x e x t}\right) \frac{2}{w_{f}} \\ & F_{z f r}=F_{z f}+\left(-m h(\ddot{y}+\dot{x} r)+h F_{y e x t}+M_{x e x t}\right) \frac{2}{w_{f}} \\ & F_{z r l}=F_{z r}+\left(m h(\ddot{y}+\dot{x} r)-h F_{y e x t}-M_{x e x t}\right) \frac{2}{w_{r}} \\ & F_{z r r}=F_{z r}+\left(-m h(\ddot{y}+\dot{x} r)+h F_{y e x t}+M_{x e x t}\right) \frac{2}{w_{r}} \end{aligned}$
Tire forces	The block uses the ratio of the local and longitudinal and lateral velocities to determine the slip angles. $\begin{aligned} & \alpha_{f l}=\operatorname{atan}\left(\frac{\dot{y}+a r}{\dot{x}+r \frac{w_{f}}{2}}\right)-\delta_{f l} \\ & \alpha_{f r}=\operatorname{atan}\left(\frac{\dot{y}+a r}{\dot{x}-r \frac{w_{f}}{2}}\right)-\delta_{f r} \\ & \alpha_{r l}=\operatorname{atan}\left(\frac{\dot{y}-a r}{\dot{x}+r \frac{w_{r}}{2}}\right)-\delta_{r l} \\ & \alpha_{r r}=\operatorname{atan}\left(\frac{\dot{y}-a r}{\dot{x}-r \frac{w_{r}}{2}}\right)-\delta_{r r} \end{aligned}$ The block uses the steering angles to transform the tire forces to the vehiclefixed frame. $\begin{aligned} & F_{x f}=F_{x f t} \cos \left(\delta_{f}\right)-F_{y f t} \sin \left(\delta_{f}\right) \\ & F_{y f}=-F_{x f t} \sin \left(\delta_{f}\right)+F_{y f t} \cos \left(\delta_{f}\right) \\ & F_{x r}=F_{x r t} \cos \left(\delta_{r}\right)-F_{y r t} \sin \left(\delta_{r}\right) \\ & F_{y r}=-F_{x r t} \sin \left(\delta_{r}\right)+F_{y r t} \cos \left(\delta_{r}\right) \end{aligned}$ If you set Axle forces to External forces, the block uses these equations. The blocks assumes that the externally provided forces are in the vehiclefixed frame at the axle-wheel location. $\begin{aligned} & F_{x f}=F_{x f t}=F_{x f \text { input }} \\ & F_{y f}=F_{y f t}=F_{y f i n p u t} \\ & F_{x r}=F_{x r t}=F_{x r i n p u t} \\ & F_{y r}=F_{y r t}=F_{y r i n p u t} \end{aligned}$

Drag

Calculation	Description
Coordinate transformation	The block transforms the wind speeds from the inertial frame to the vehiclefixed frame. $\begin{aligned} & w_{\chi}=W_{\chi} \cos (\psi)+W_{y} \sin (\psi) \\ & w_{y}=W_{y} \cos (\psi)-W_{\chi} \sin (\psi) \\ & w_{z}=W_{z} \end{aligned}$
Drag forces	To determine a relative airspeed, the block subtracts the wind speed from the CG vehicle velocity. Using the relative airspeed, the block determines the drag forces. $\begin{aligned} & \bar{w}=\sqrt{\left(\dot{x}-w_{\chi}\right)^{2}+\left(\dot{x}-w_{\chi}\right)^{2}+\left(w_{z}\right)^{2}} \\ & F_{d x}=-\frac{1}{2 T R} C_{d} A_{f} P_{a b s}{ }^{(\bar{w}} \\ & F_{d y}=-\frac{1}{2 T R} C_{s} A_{f} P_{a b s}{ }^{(\bar{w}} \\ & F_{d z}=-\left.\frac{1}{2 T R} C_{l} A_{f} P_{a b s}\right\|^{\bar{w}} \end{aligned}$
Drag moments	Using the relative airspeed, the block determines the drag moments. $\begin{aligned} & M_{d r}=-\frac{1}{2 T R} C_{r m} A_{f} P_{a b s}\left(^{(\bar{w}}(a+b)\right. \\ & M_{d p}=-\frac{1}{2 T R} C_{p m} A_{f} P_{a b s}{ }^{\left({ }^{\bar{w}}\right.}(a+b) \\ & M_{d y}=-\frac{1}{2 T R} C_{y m} A_{f} P_{a b s}{ }^{\bar{w}}(a+b) \end{aligned}$

Lateral Corner Stiffness and Relaxation Dynamics

Description	Implementation
Constant values.	The block uses constant stiffness values for $C y_{f}$ and $C y_{r}$.
Lookup tables as a	The block uses lookup tables that are functions of the corner stiffness data
function of corner	
stiffness data and slip	and slip angles.
angles.	$C y_{f}=f\left(\alpha_{f}, C y_{f d a t a}\right)$
	$C y_{r}=f\left(\alpha_{r}, C y_{r d a t a}\right)$

Description
Lookup tables as a
function of corner
stiffness data and slip
angles.
Slip angles include the relaxation length dynamic settings.

Implementation

The block uses lookup tables that are functions of the corner stiffness data and slip angles. The slip angles include the relaxation length dynamic settings. The relaxation length approximates an effective corner stiffness force that is a function of wheel travel.

$$
\begin{aligned}
& C y_{f}=f\left(\alpha_{f \sigma}, C y_{f d a t a}\right) \\
& C y_{r}=f\left(\alpha_{r \sigma}, C y_{r d a t a}\right) \\
& \alpha_{f \sigma}=\frac{1}{s}\left[\frac{\left(\alpha_{f}-\alpha_{f \sigma}\right) v_{w f}}{\alpha_{f}}\right] \\
& \alpha_{r \sigma}=\frac{1}{s}\left[\frac{\left(\alpha_{r}-\alpha_{r \sigma}\right) v_{w r}}{\alpha_{r}}\right]
\end{aligned}
$$

The equations use these variables.

x, \dot{x}, \ddot{x}	Vehicle CG displacement, velocity, and acceleration, along the vehicle-fixed x-axis
y, \dot{y}, \ddot{y}	Vehicle CG displacement, velocity, and acceleration, along the vehicle-fixed y-axis
ψ	Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw)
$r, \dot{\Psi}$	Vehicle angular velocity, about the vehicle-fixed z-axis (yaw rate)
$F_{x f}, F_{x r}$	Longitudinal forces applied to front and rear wheels, along the vehiclefixed x-axis
$F_{y f}, F_{y r}$	Lateral forces applied to front and rear wheels, along vehicle-fixed y-axis
$F_{x e x t}, F_{y e x t}, F_{z e x t}$	External forces applied to vehicle CG, along the vehicle-fixed $x-, y$-, and z axes
$F_{d x}, F_{d y}, F_{d z}$	Drag forces applied to vehicle CG, along the vehicle-fixed x-, y-, and z-axes
$F_{\text {xinput }}, F_{\text {yinput }}, F_{\text {zinput }}$	Input forces applied to vehicle CG, along the vehicle-fixed x-, y-, and z-axes
$M_{\text {xext }}, M_{y e x t}, M_{z e x t}$	External moment about vehicle CG, about the vehicle-fixed x-, y-, and z axes
$M_{d x}, M_{d y}, M_{d z}$	Drag moment about vehicle CG, about the vehicle-fixed x-, y-, and z-axes
$M_{\text {xinput }}, M_{\text {yinput }}, M_{\text {zinput }}$	Input moment about vehicle CG, about the vehicle-fixed x-, y-, and z-axes
$I_{z z}$	Vehicle body moment of inertia about the vehicle-fixed z-axis
$F_{x f t}, F_{x r t}$	Longitudinal tire force applied to front and rear wheels, along the vehiclefixed x-axis
$F_{y f t}, F_{y f t}$	Lateral tire force applied to front and rear wheels, along vehicle-fixed y axis
$F_{x f l}, F_{x f r}$	Longitudinal force applied to front left and front right wheels, along the vehicle-fixed x-axis
$F_{y f f}, F_{y f r}$	Lateral force applied to front left and front right wheels, along the vehiclefixed y-axis
$F_{x r l}, F_{x r r}$	Longitudinal force applied to rear left and rear right wheels, along the vehicle-fixed x-axis

$F_{y r l}, F_{y r r}$	Lateral force applied to rear left and rear right wheels, along the vehiclefixed y-axis
$F_{x f l t}, F_{x f r t}$	Longitudinal tire force applied to front left and front right wheels, along the vehicle-fixed x-axis
$F_{y f t}, F_{y f r t}$	Lateral force tire applied to front left and front right wheels, along the vehicle-fixed y-axis
$F_{x r l t}, F_{x r r t}$	Longitudinal tire force applied to rear left and rear right wheels, along the vehicle-fixed x-axis
$F_{y r l t}, F_{y r r t}$	Lateral force applied to rear left and rear right wheels, along the vehiclefixed y-axis
$F_{z f}, F_{z r}$	Normal force applied to front and rear wheels, along vehicle-fixed z-axis
$F_{\text {znom }}$	Nominal normal force applied to axles, along the vehicle-fixed z-axis
$F_{z f l}, F_{z f r}$	Normal force applied to front left and right wheels, along vehicle-fixed z axis
$F_{z r l}, F_{z r r}$	Normal force applied to rear left and right wheels, along vehicle-fixed z axis
m	Vehicle body mass
a, b	Distance of front and rear wheels, respectively, from the normal projection point of vehicle CG onto the common axle plane
h	Height of vehicle CG above the axle plane
d	Lateral distance from the geometric centerline to the center of mass along the vehicle-fixed y-axis
hh	Height of the hitch above the axle plane along the vehicle-fixed z-axis
$d h$	Longitudinal distance of the hitch from the normal projection point of tractor CG onto the common axle plane
hl	Lateral distance from center of mass to hitch along the vehicle-fixed y-axis.
α_{f}, α_{r}	Front and rear wheel slip angles
$\alpha_{f l}, \alpha_{f r}$	Front left and right wheel slip angles
$\alpha_{r l}, \alpha_{r r}$	Rear left and right wheel slip angles
δ_{f}, δ_{r}	Front and rear wheel steering angles
$\delta_{r l}, \delta_{r r}$	Rear left and right wheel steering angles
$\delta_{f l}, \delta_{f r}$	Front left and right wheel steering angles
w_{f}, w_{r}	Front and rear track widths
$C y_{f}, C y_{r}$	Front and rear wheel cornering stiffness
$C y_{\text {fdata }}, C y_{\text {rdata }}$	Front and rear wheel cornering stiffness data
σ_{f}, σ_{r}	Front and rear wheel relaxation length
$\alpha_{f \sigma}, \alpha_{r \sigma}$	Front and rear wheel slip angles that include relaxation length
$v_{w f}, v_{w r}$	Magnitude of front and rear wheel hardpoint velocity
μ_{f}, μ_{r}	Front and rear wheel friction coefficient
$\mu_{f l}, \mu_{f r}$	Front left and right wheel friction coefficient
$\mu_{r l}, \mu_{r r}$	Rear left and right wheel friction coefficient

C_{d}	Air drag coefficient acting along vehicle-fixed x-axis
C_{s}	Air drag coefficient acting along vehicle-fixed y-axis
C_{l}	Air drag coefficient acting along vehicle-fixed z-axis
$C_{r m}$	Air drag roll moment acting about the vehicle-fixed x-axis
$C_{p m}$	Air drag pitch moment acting about the vehicle-fixed y-axis
$C_{y m}$	Air drag yaw moment acting about the vehicle-fixed z-axis
A_{f}	Frontal area
R	Atmospheric specific gas constant
T	Environmental air temperature
$P_{a b s}$	Environmental absolute pressure
w_{x}, w_{y}, w_{z}	Wind speed, along the vehicle-fixed x-, y-, and z-axes
W_{x}, W_{y}, W_{z}	Wind speed, along inertial X-, Y-, and Z-axes

Ports

Input
WhIAngF - Front wheel steering angles
scalar|array
Front wheel steering angles, δ_{F}, in rad.

Vehicle Track Setting	Variable	Signal Dimension
Single (bicycle)	δ_{F}	Scalar - 1
Dual	$\delta_{F}=\left[\delta_{f l} \delta_{f r}\right]$ or $\left[\begin{array}{l}\delta_{f l} \\ \delta_{f r}\end{array}\right]$	Array - [1x2] or [2x1]

Dependencies

To enable this port, on the Input signals pane, select Front wheel steering.
WhIAngR - Rear wheel steering angles
scalar|array
Rear wheel steering angles, δ_{R}, in rad.

Vehicle Track Setting	Variable	Signal Dimension
Single (bicycle)	δ_{R}	Scalar - 1
Dual	$\delta_{R}=\left[\delta_{r l} \delta_{r r}\right]$ or $\left[\begin{array}{l}\delta_{r l} \\ \delta_{r r}\end{array}\right]$	Array - [1x2] or [2×1]

Dependencies

To enable this port, on the Input signals pane, select Rear wheel steering.
xdotin - Longitudinal velocity
scalar

Vehicle CG velocity along the vehicle-fixed x-axis, in m / s.

Dependencies

To enable this port, set Axle forces to External longitudinal velocity.
FwF - Total force on the front wheels
scalar|array
Force on the front wheels, $F w_{F}$, along the vehicle-fixed axis, in N.

Vehicle Track Setting	Axle Forces Setting	Description	Variable	Signal Dimension
Single (bicycle)	External longitudinal forces	Longitudinal force on the front wheel	$F w F=F x_{f}$	Scalar - 1
	External forces	Longitudinal and lateral forces on the front wheel	$F w F=\left[\begin{array}{lll}F x_{f} & F y_{f}\end{array}\right]$ or $\left[\begin{array}{l}F x_{f} \\ F y_{f}\end{array}\right]$	$\begin{array}{\|l\|} \hline \text { Array }-[1 \times 2] \text { or } \\ {[2 \times 1]} \end{array}$
Dual	External longitudinal forces	Longitudinal force on the front wheels	$F w F=\left[\begin{array}{l} F_{x f l} \\ F_{x f r} \end{array}\right] \text { or }\left[\begin{array}{l} F_{x f l} \\ F_{x f r} \end{array}\right.$	$\begin{aligned} & \text { Array - }[1 \times 2] \text { or } \\ & {[2 \times 1]} \end{aligned}$
	External forces	Longitudinal and lateral forces on the front wheels	$F w F=\left[\begin{array}{lll}F_{\chi f l} & F_{x f r} \\ F_{y f l} & F_{y f r}\end{array}\right]$	Array - [2x2]

Dependencies

To enable this port, set Axle forces to one of these options:

- External longitudinal forces
- External forces

FwR - Total force on the rear wheels
scalar|array
Force on the rear wheels, $F w_{R}$, along the vehicle-fixed axis, in N.

Vehicle Track Setting	Axle Forces Setting	Description	Variable	Signal Dimension
Single (bicycle)	External longitudinal forces	Longitudinal force on the rear wheel	$F w R=F x_{r}$	Scalar - 1
	External forces	Longitudinal and lateral forces on the rear wheel	$F w R=\left[F x_{r} F y_{r}\right]$ or $\left[\begin{array}{ll}F x_{r} \\ F y_{r}\end{array}\right]$	Array - [1x2] or $[2 \times 1]$

Vehicle Track Setting	Axle Forces Setting	Description	Variable	Signal Dimension
Dual	External longitudinal forces	Longitudinal force on the rear wheels	$F w R=\left[F_{x r l} F_{x r r}\right] \text { or }\left[\begin{array}{l} F_{x r l} \\ F_{x r r} \end{array}\right.$	$\begin{aligned} & \text { Array - [1×2] or } \\ & {[2 \times 1]} \end{aligned}$
	External forces	Longitudinal and lateral forces on the rear wheels	$F w R=\left[\begin{array}{ll} F_{x r l} & F_{x r r} \\ F_{y r l} & F_{y r r} \end{array}\right]$	Array - [2x2]

Dependencies

To enable this port, set Axle forces to one of these options:

- External longitudinal forces
- External forces

FExt - External force on vehicle CG
array
External forces applied to vehicle CG, $F_{\text {xext }}, F_{\text {yext }}, F_{\text {zext }}$, in vehicle-fixed frame, in N. Signal vector dimensions are [1×3] or [3×1].

Dependencies

To enable this port, on the Input signals pane, select External forces.

MExt - External moment about vehicle CG

array
External moment about vehicle CG, M_{x}, M_{y}, M_{z}, in the vehicle-fixed frame, in $N \cdot m$. Signal vector dimensions are [1×3] or [3x1].

Dependencies

To enable this port, on the Input signals pane, select External moments.
Fh - Hitch force on the body
array
Hitch force applied to the body at the hitch location, $F h_{x}, F h_{y}, F h_{z}$, in the vehicle-fixed frame, in N, specified as a 1-by-3 or 3-by-1 array.

Dependencies

To enable this port, under Input signals, select Hitch forces.
Mh - Hitch moment about body
array
Hitch moment at the hitch location, $M h_{x}, M h_{y}, M h_{z}$, about the vehicle-fixed frame, in $\mathrm{N} \cdot \mathrm{m}$, specified as a 1-by-3 or 3-by-1 array.

Dependencies

To enable this port, under Input signals, select Hitch moments.
WindXYZ - Wind speed
array
Wind speed, W_{x}, W_{y}, W_{z} along inertial X-, Y-, and Z-axes, in m / s. Signal vector dimensions are [1x3] or [3x1].

Dependencies

To enable this port, on the Input signals pane, select External wind.
$\mathbf{M u}$ - Tire friction coefficient
scalar
Tire friction coefficient, μ. The value is dimensionless.

Vehicle Track Setting	Description	Variable	Signal Dimension
Single (bicycle)	Longitudinal force on the front wheel	$M u=\left[\begin{array}{ll}\mu_{f} & \mu_{r}\end{array}\right]$ or $\left[\begin{array}{l}\mu_{f} \\ \mu_{r}\end{array}\right]$	Array - [1x2] or [2x1]
Dual	Longitudinal force on the front wheels	$M u=\left[\begin{array}{ll}\mu_{f l} & \mu_{f r} \\ \mu_{r l} & \mu_{r r}\end{array}\right]$	Array - [2x2]

Dependencies

To enable this port, on the Input signals pane, select External friction.

AirTemp - Ambient air temperature

scalar

Ambient air temperature, in K.
Dependencies
To enable this port, on the Input signals pane, select Air temperature.
X_0 - Initial longitudinal position
scalar
Initial vehicle CG displacement along the earth-fixed X-axis, in m.

Dependencies

To enable this port, on the Input signals pane, select Initial longitudinal position.
$\mathbf{Y} \mathbf{0}$ - Initial lateral position
scalar

Initial vehicle CG displacement along the earth-fixed Y-axis, in m.

Dependencies

To enable this port, on the Input signals pane, select Initial lateral position.
xdot_o - Initial longitudinal position

scalar

Initial vehicle CG velocity along the vehicle-fixed x-axis, in m / s.

Dependencies

To enable this port:
1 Set Axle forces to one of these options:

- External longitudinal forces
- External forces

2 On the Input signals pane, select Initial longitudinal velocity
ydot_o - Initial lateral position
scalar
Initial vehicle CG velocity along the vehicle-fixed y-axis, in m / s.

Dependencies

To enable this port, on the Input signals pane, select Initial lateral velocity.
psi_o - Initial yaw angle
scalar
Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw), in rad.

Dependencies

To enable this port, on the Input signals pane, select Initial yaw angle.
r_o - Initial yaw rate
scalar
Vehicle angular velocity about the vehicle-fixed z-axis (yaw rate), in rad/s.

Dependencies

To enable this port, on the Input signals pane, select Initial yaw rate.

Output

Info - Bus signal
bus
Bus signal containing these block values.

Signal			Description	Value	Units	
InertFrm	Cg	Disp	X	Vehicle CG displacement along the earth-fixed $X-$ axis	Computed	m

Signal				Description	Value	Units
Signal			Y	Front right wheel displacement along the earth-fixed Y-axis	Computed	m
			Z	Front right wheel displacement along the earth-fixed Z-axis	0	m
		Vel	$\begin{aligned} & \text { Xdo } \\ & \mathrm{t} \end{aligned}$	Front right wheel velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \mathrm{Ydo} \\ & \mathrm{t} \end{aligned}$	Front right wheel velocity along the earth-fixed Y axis	Computed	m/s
			$\begin{aligned} & \mathrm{Zdo} \\ & \mathrm{t} \end{aligned}$	Front right wheel velocity along the earth-fixed Zaxis	0	m/s
RearAxl	Lft	Disp	X	Rear left wheel displacement along the earth-fixed X-axis	Computed	m
			Y	Rear left wheel displacement along the earth-fixed Y-axis	Computed	m
			Z	Rear left wheel displacement along the earth-fixed Z-axis	0	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Rear left wheel velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \mathrm{Ydo} \\ & \mathrm{t} \end{aligned}$	Rear left wheel velocity along the earth-fixed Y axis	Computed	m/s
			$\underset{t}{Z d o}$	Rear left wheel velocity along the earth-fixed Zaxis	0	m/s
	Rght	Disp	X	Rear right wheel displacement along the earth-fixed X-axis	Computed	m
			Y	Rear right wheel displacement along the earth-fixed Y-axis	Computed	m
			Z	Rear right wheel displacement along the earth-fixed Z-axis	0	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Rear right wheel velocity along the earth-fixed X axis	Computed	m/s

Signal					Description	Value	Units
				$\begin{aligned} & \mathrm{Ydo} \\ & \mathrm{t} \end{aligned}$	Rear right wheel velocity along the earth-fixed Y axis	Computed	m / s
				$\underset{+}{Z \mathrm{Zdo}}$	Rear right wheel velocity along the earth-fixed Zaxis	0	m/s
	Hitch	Disp	X		Hitch offset from axle plane along the earthfixed X-axis	Computed	m
			Y		Hitch offset from center plane along the earthfixed Y-axis	Computed	m
			Z		Hitch offset from axle plane along the earthfixed Z-axis	Computed	m
		Vel	Xdot		Hitch offset velocity from axle plane along the earth-fixed X-axis	Computed	m
			Ydot		Hitch offset velocity from center plane along the earth-fixed Y-axis	Computed	m
			Zdot		Hitch offset velocity from axle plane along the earth-fixed Z-axis	Computed	m
	Geom	Disp	X		Vehicle chassis offset from axle plane along the earth-fixed X-axis	Computed	m
			Y		Vehicle chassis offset from center plane along the earth-fixed Y-axis	Computed	m
			Z		Vehicle chassis offset from axle plane along the earth-fixed Z-axis	Computed	m
		Vel	Xdot		Vehicle chassis offset velocity along the earthfixed X-axis	Computed	m/s
			Ydot		Vehicle chassis offset velocity along the earthfixed Y-axis	Computed	m / s
			Zdot		Vehicle chassis offset velocity along the earthfixed Z-axis	Computed	m/s
BdyFrm	Cg	Vel	xdot		Vehicle CG velocity along the vehicle-fixed x-axis	Computed	m/s

Signal				Description	Value	Units
	DCM	Direction cosine matrix			Computed	rad
Forces	Body	Fx		Net force on vehicle CG along the vehicle-fixed x axis	Computed	N
		Fy		Net force on vehicle CG along the vehicle-fixed y axis	Computed	N
		Fz		Net force on vehicle CG along the vehicle-fixed z axis	0	N
	Ext	Fx		External force on vehicle CG along the vehicle-fixed x-axis	Computed	N
		Fy		External force on vehicle CG along the vehicle-fixed y-axis	Computed	N
		Fz		External force on vehicle CG along the vehicle-fixed z-axis	0	N
	Hitch	FX		Hitch force applied to body at the hitch location along the vehicle-fixed x axis	Input	N
		Fy		Hitch force applied to body at the hitch location along the vehicle-fixed y axis	Input	N
		Fz		Hitch force applied to body at the hitch location along the vehicle-fixed z axis	Input	N
	FrntAxl	Lft	FX	Longitudinal force on left front wheel, along the vehicle-fixed x-axis	Computed	N
			Fy	Lateral force on left front wheel along the vehiclefixed y-axis	Computed	N
			Fz	Normal force on left front wheel, along the vehiclefixed z-axis	Computed	N
		Rght	FX	Longitudinal force on right front wheel, along the vehicle-fixed x-axis	Computed	N

Signal			Description	Value	Units
		Fy	Lateral force on right front wheel along the vehicle-fixed y-axis	Computed	N
		Fz	Normal force on right front wheel, along the vehicle-fixed z-axis	Computed	N
RearAxl	Lft	Fx	Longitudinal force on left rear wheel, along the vehicle-fixed x-axis	Computed	N
		Fy	Lateral force on left rear wheel along the vehiclefixed y-axis	Computed	N
		Fz	Normal force on left rear wheel, along the vehiclefixed z-axis	Computed	N
	Rght	Fx	Longitudinal force on right rear wheel, along the vehicle-fixed x-axis	Computed	N
		Fy	Lateral force on right rear wheel along the vehiclefixed y-axis	Computed	N
		Fz	Normal force on right rear wheel, along the vehiclefixed z-axis	Computed	N
Tires	FrntTir es		Front left tire force, along the vehicle-fixed x-axis	Computed	N
		t $\begin{aligned} & \text { F } \\ & \text { y }\end{aligned}$	Front left tire force, along the vehicle-fixed y-axis	Computed	N
		F	Front left tire force, along the vehicle-fixed z-axis	Computed	N
			Front right tire force, along the vehicle-fixed x axis	Computed	N
		t $\begin{aligned} & \text { F } \\ & \text { y }\end{aligned}$	Front right tire force, along the vehicle-fixed y axis	Computed	N
		F	Front right tire force, along the vehicle-fixed z axis	Computed	N
	$\begin{aligned} & \text { RearTir } \\ & \text { es } \end{aligned}$	L F f X 	Rear left tire force, along the vehicle-fixed x-axis	Computed	N
		tF y	Rear left tire force, along the vehicle-fixed y-axis	Computed	N

Signal				Description	Value	Units
			$\begin{aligned} & \mathrm{F} \\ & \mathrm{z} \end{aligned}$	Rear left tire force, along the vehicle-fixed z-axis	Computed	N
			R F g x h 	Rear right tire force, along the vehicle-fixed x axis	Computed	N
			$\mathrm{t} \stackrel{\mathrm{~F}}{\mathrm{~F}} \mathrm{y}$	Rear right tire force, along the vehicle-fixed y axis	Computed	N
			$\begin{aligned} & \mathrm{F} \\ & \mathrm{z} \end{aligned}$	Rear right tire force, along the vehicle-fixed z axis	Computed	
	Drag	FX		Drag force on vehicle CG along the vehicle-fixed x axis	Computed	N
		Fy		Drag force on vehicle CG along the vehicle-fixed y axis	Computed	N
		Fz		Drag force on vehicle CG along the vehicle-fixed z axis	Computed	N
	Grvty	FX		Gravity force on vehicle CG along the vehicle-fixed x-axis	Computed	N
		Fy		Gravity force on vehicle CG along the vehicle-fixed y-axis	Computed	N
		Fz		Gravity force on vehicle CG along the vehicle-fixed z-axis	Computed	N
Moments	Body	Mx		Body moment on vehicle CG about the vehicle-fixed x-axis	0	$\mathrm{N} \cdot \mathrm{m}$
		My		Body moment on vehicle CG about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz		Body moment on vehicle CG about the vehicle-fixed z-axis	0	$\mathrm{N} \cdot \mathrm{m}$
	Drag	Mx		Drag moment on vehicle CG about the vehicle-fixed x-axis	0	$\mathrm{N} \cdot \mathrm{m}$
		My		Drag moment on vehicle CG about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$

				Description	Value	Units
Signal			z	Front right wheel displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{aligned} & \hline x d o \\ & t \end{aligned}$	Front right wheel velocity along the vehicle-fixed x axis	Computed	m/s
			$\begin{aligned} & \text { ydo } \\ & \text { t } \end{aligned}$	Front right wheel velocity along the vehicle-fixed y axis	Computed	m/s
			$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Front right wheel velocity along the vehicle-fixed z axis	0	m/s
	Steer	WhlAngFL		Front left wheel steering angle	Computed	rad
		WhlAngFR		Front right wheel steering angle	Computed	rad
RearAxl	Lft	Disp	x	Rear left wheel displacement along the vehicle-fixed x-axis	Computed	m
			y	Rear left wheel displacement along the vehicle-fixed y-axis	Computed	m
			z	Rear left wheel displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Rear left wheel velocity along the vehicle-fixed x axis	Computed	m/s
			$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Rear left wheel velocity along the vehicle-fixed y axis	Computed	m/s
			$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Rear left wheel velocity along the vehicle-fixed z axis	0	m/s
	Rght	Disp	x	Rear right wheel displacement along the vehicle-fixed x-axis	Computed	m
			y	Rear right wheel displacement along the vehicle-fixed y-axis	Computed	m
			z	Rear right wheel displacement along the vehicle-fixed z-axis	Computed	m

				Description	Value	Units
Signal		Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Rear right wheel velocity along the vehicle-fixed x axis	Computed	m/s
			$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Rear right wheel velocity along the vehicle-fixed y axis	Computed	m/s
			$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Rear right wheel velocity along the vehicle-fixed z axis	0	m/s
	Steer	WhlangRL		Rear left wheel steering angle	Computed	rad
		WhlangRR		Rear right wheel steering angle	Computed	rad
Hitch	Disp		X	Hitch offset from axle plane along the vehiclefixed x-axis	Input	m
			y	Hitch offset from center plane along the vehiclefixed y-axis	Input	m
			z	Hitch offset from axle plane along the earthfixed z-axis	Input	m
	Vel		$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Hitch offset velocity along the vehicle-fixed x-axis	Computed	m/s
			$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Hitch offset velocity along the vehicle-fixed y-axis	Computed	m/s
			$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Hitch offset velocity along the vehicle-fixed z-axis	Computed	m/s
Pwr	Ext			Applied external power	Computed	W
	Hitch			Power loss due to hitch	Computed	W
	Drag			Power loss due to drag	Computed	W
Geom	Disp		x	Vehicle chassis offset from axle plane along the vehicle-fixed x-axis	Input	m
			y	Vehicle chassis offset from center plane along the vehicle-fixed y-axis	Input	m
			z	Vehicle chassis offset from axle plane along the earth-fixed z-axis	Input	m
	Vel		$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Vehicle chassis offset velocity along the vehiclefixed x-axis	Computed	m/s

Signal			Description	Value	Units
		$\begin{aligned} & \text { ydo } \\ & t \end{aligned}$	Vehicle chassis offset velocity along the vehiclefixed y-axis	Computed	m/s
		$\begin{aligned} & \text { zdo } \\ & t \end{aligned}$	Vehicle chassis offset velocity along the vehiclefixed z-axis	0	m/s
	Beta	Bet a	Body slip angle, β $\beta=\frac{V_{y}}{V_{x}}$	Computed	rad

Signal			Description	Value	Units
PwrInfo	PwrTrnsfrd	PwrFxExt	Externally applied longitudinal force power	Comp uted	W
		PwrFyExt	Externally applied lateral force power	Comp uted	W
		PwrMzExt	Externally applied roll moment power	Comp uted	W
		PwrFwFLx	Longitudinal force applied at the front left axle power	Comp uted	W
		PwrFwFLy	Lateral force applied at the front left axle power	Comp uted	W
		PwrFwFRx	Longitudinal force applied at the front right axle power	Comp uted	W
		PwrFwFRy	Lateral force applied at the front right axle power	Comp uted	W
		PwrFwRLx	Longitudinal force applied at the rear left axle power	Comp uted	W
		PwrFwRLy	Lateral force applied at the rear left axle power	Comp uted	W
		PwrFwRRx	Longitudinal force applied at the rear right axle power	Comp uted	W
		PwrFwRRy	Lateral force applied at the rear right axle power	Comp uted	W
	PwrNotTrnsfr d	PwrFxDrag	Longitudinal drag force power	Comp uted	W
		PwrFyDrag	Lateral drag force power	Comp uted	W
		PwrMzDrag	Drag pitch moment power	Comp uted	W
	PwrStored	PwrStoredGrvty	Rate change in gravitational potential energy	Comp uted	W

Signal		Description	Value	Units	
		PwrStoredxdot	Rate of change of longitudinal kinetic energy	Comp uted	W
		PwrStoredydot	Rate of change of lateral kinetic energy	Comp uted	W
		PwrStoredr	Rate of change of rotational yaw kinetic energy	Comp uted	W

xdot - Vehicle longitudinal velocity
scalar
Vehicle CG velocity along the vehicle-fixed x-axis, in m / s.
ydot - Vehicle lateral velocity
scalar
Vehicle CG velocity along the vehicle-fixed y-axis, in m / s.
psi - Yaw
scalar
Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw), in rad.
\mathbf{r} - Yaw rate
scalar
Vehicle angular velocity, r , about the vehicle-fixed z-axis (yaw rate), in rad/s.
FzF - Normal force on front wheels
scalar|array
Normal force on front wheels, $F z_{F}$, along the vehicle-fixed z-axis, in N .

Vehicle Track Setting	Description	Variable	Signal Dimension
Single (bicycle)	Normal force on front axle	$F z F=F z_{f}$	Scalar - 1
Dual	Normal force on the front wheels	$F z F=\left[F z_{f l} F z_{f r}\right]$	Array - [1×2]

FzR - Normal force on rear wheels
scalar|array
Normal force on rear wheels, $F z_{R}$, along the vehicle-fixed z-axis, in N .

Vehicle Track Setting	Description	Variable	Signal Dimension
Single (bicycle)	Normal force on rear wheel	$F z R=F z_{r}$	Scalar - 1

Vehicle Track Setting	Description	Variable	Signal Dimension
Dual	Normal force on the rear wheels	$F z R=\left[F z_{r l} F z_{r r}\right]$	Array - [1x2]

Parameters

Options

Vehicle track - Number of wheels
Single (bicycle)|Dual
In the Vehicle Dynamics Blockset library, there are two types of Vehicle Body 3DOF blocks that model longitudinal, lateral, and yaw motion.

Block	Vehicle Track Setting	Implementation
Vehicle Body 3DOF Single Track	Single (bicycle)	Forces act along the center line at the front and rear axles. No lateral load transfer.
Vehicle Body 3DOF Dual Track	Dual	Forces act at the four vehicle corners or hard points.
Wwhing		

Axle forces - Type of axle force
External longitudinal velocity|External longitudinal forces|External forces
Use the Axle forces parameter to specify the type of force.

Axle Forces Setting	Implementation
External longitudinal velocity	- The block assumes that the external longitudinal velocity is in a quasi-steady state, so the longitudinal acceleration is approximately zero. - Because the motion is quasi-steady, the block calculates lateral forces using the tire slip angles and linear cornering stiffness. - Consider this setting when you want to: - Generate virtual sensor signal data. - Conduct high-level software studies that are not impacted by driveline or nonlinear tire responses.
External longitudinal forces	- The block uses the external longitudinal force to accelerate or brake the vehicle. - The block calculates lateral forces using the tire slip angles and linear cornering stiffness. - Consider this setting when you want to: - Account for changes in the longitudinal velocity on the lateral and yaw motion. - Specify the external longitudinal motion through a force instead of an external longitudinal velocity. - Connect the block to tractive actuators, wheels, brakes, and hitches.
External forces	- The block uses the external lateral and longitudinal forces to steer, accelerate, or brake the vehicle. - The block does not use the steering input to calculate vehicle motion. - Consider this setting when you need tire models with more accurate nonlinear combined lateral and longitudinal slip.

Input Signals
Front wheel steering - WhlAngF input port
on (default) | off
Specify to create input port WhlAngF.
External wind - WindXYZ input port
off (default) | on
Specify to create input port WindXYZ.
External forces - FExt input port
off (default) | on
Specify to create input port FExt.
External moments - MExt input port
off (default) | on

Specify to create input port MExt.
Rear wheel steering - WhlAngR input port off (default) | on

Specify to create input port WhlAngR.
External friction - Mu input port
off (default) | on
Specify to create input port Mu.
Hitch forces - Fh input port
on (default) | off
Select to create input port Fh.
Hitch moments - Mh input port
on (default) | off
Specify to create input port Mh.
Initial longitudinal position - X_o input port
off (default) | on
Specify to create input port X_0.
Initial lateral position - Y _o input port
off (default) | on
Specify to create input port Y_o.
Initial longitudinal velocity — xdot_o input port
off (default) | on
Specify to create input port xdot_o.
Initial lateral velocity - ydot_o input port
off (default) | on
Specify to create input port ydot_o.
Initial yaw angle - psi_o input port
off (default)|on
Specify to create input port psi_o.
Initial yaw rate - r_o input port
off (default) |on
Specify to create input port r_o.
Air temperature - AirTemp input port
off (default) |on
Specify to create input port AirTemp.

Longitudinal

Number of wheels on front axle, NF - Front wheel count
2 (default) | scalar
Number of wheels on front axle, N_{F}. The value is dimensionless.
Number of wheels on rear axle, NR - Rear wheel count
2 (default) | scalar
Number of wheels on rear axle, N_{R}. The value is dimensionless.
Vehicle mass, \mathbf{m} - Vehicle mass
2000 (default) | scalar
Vehicle mass, m, in kg .
Longitudinal distance from center of mass to front axle, a - Front axle distance 1.4 (default) | scalar

Horizontal distance a from the vehicle CG to the front wheel axle, in m.
Longitudinal distance from center of mass to rear axle, b - Rear axle distance 1.6 (default) | scalar

Horizontal distance b from the vehicle CG to the rear wheel axle, in m .
Vertical distance from center of mass to axle plane, \mathbf{h} - Height
0.35 (default) | scalar

Height of vehicle CG above the axles, h, in m.
Longitudinal distance from center of mass to hitch, $\mathbf{d h}$ - Distance from CM to hitch 1 (default) | scalar

Longitudinal distance from center of mass to hitch, $d h$, in m.

Dependencies

To enable this parameter, on the Input signals pane, select Hitch forces or Hitch moments.
Vertical distance from hitch to axle plane, hh - Distance from hitch to axle plane 0.2 (default) | scalar

Vertical distance from hitch to axle plane, $h h$, in m.

Dependencies

To enable this parameter, on the Input signals pane, select Hitch forces or Hitch moments.
Initial inertial frame longitudinal position, X_o - Position
0 (default) | scalar
Initial vehicle CG displacement along earth-fixed X-axis, in m.
Initial longitudinal velocity, xdot_o - Velocity
0 (default) | scalar

Initial vehicle CG velocity along vehicle-fixed x-axis, in m / s.

Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter, set Axle forces to one of these options:

- External longitudinal forces
- External forces

Lateral

Front tire corner stiffness, Cy_f - Stiffness
12e3 (default) | scalar
Front tire corner stiffness, $C y_{f}$, in $\mathrm{N} / \mathrm{rad}$.

Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter:

1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Clear Mapped corner stiffness.
Rear tire corner stiffness, Cy_r - Stiffness
11e3 (default) | scalar
Rear tire corner stiffness, $C y_{r}$, in N/rad.

Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter:

1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Clear Mapped corner stiffness.

Initial inertial frame lateral displacement, Y_o - Position
0 (default) | scalar
Initial vehicle CG displacement along earth-fixed Y-axis, in m.
Initial lateral velocity, ydot_o - Velocity
0 (default) | scalar
Initial vehicle CG velocity along vehicle-fixed y-axis, in m / s.
Mapped corner stiffness - Selection
off (default) | on

Enables mapped corner stiffness calculation.

Dependencies

To enable this parameter, set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

Include relaxation length dynamics - Enable relaxation length dynamics
on (default) | off
Enables relaxation length dynamics.

Dependencies

To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Clear Mapped corner stiffness.

Lateral distance from geometric centerline to center of mass, d - Distance
0 (default) | scalar
Lateral distance from geometric centerline to center of mass, d, in m, along the vehicle-fixed y. Positive values indicate that the vehicle CM is to the right of the geometric centerline. Negative values indicate that the vehicle CM is to the left of the geometric centerline.

Lateral distance from geometric centerline to hitch, hl - Distance
0 (default) | scalar
Lateral distance from geometric centerline to the hitch, $h l$, in m, along the vehicle-fixed y. Positive values indicate that the hitch is to the right of the geometric centerline. Negative values indicate that the hitch is to the left of the geometric centerline.

Dependencies

To enable this parameter, on the Input signals pane, select Hitch forces or Hitch moments.
Track width - Width
[1.4,1.4] (default)| 1-by-2 vector
Track width, w, in .

Dependencies

To enable this parameter, set Vehicle track to Dual.
Front tire(s) relaxation length, sigma_f - Relaxation length
. 1 (default) | scalar
Front tire relaxation length, σ_{f}, in m .

Dependencies

To enable this parameter:
1 Set Vehicle track to one of these options:

- Single 2-axle
- Dual 2-axle
- Single 3-axle
- Dual 3-axle

2 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

3 Do either of these:

- Select Mapped corner stiffness.
- Clear Mapped corner stiffness and select Include relaxation length dynamics.

Rear tire(s) relaxation length, sigma_r - Relaxation length
. 1 (default) | scalar
Rear tire relaxation length, σ_{r}, in m .

Dependencies

To enable this parameter:
1 Set Vehicle track to one of these options:

- Single 2-axle
- Dual 2-axle
- Single 3-axle
- Dual 3-axle

2 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

3 Do either of these:

- Select Mapped corner stiffness.
- Clear Mapped corner stiffness and select Include relaxation length dynamics.

Front axle slip angle breakpoints, alpha_f_brk - Breakpoints

[-. 1 .1] (default)|vector
Front axle slip angle breakpoints, $\alpha_{f b r k}$, in rad.

Dependencies

To enable this parameter:

1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Select Mapped corner stiffness.
Front axle corner data, Cy_f_data - Breakpoints
[-9e3 9e3] (default) |vector
Front axle corner data, $C y_{f d a t a}$, in $\mathrm{N} / \mathrm{rad}$.

Dependencies

To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Select Mapped corner stiffness.
Rear axle slip angle breakpoints, alpha_r_brk - Breakpoints
[-. 1 .1] (default)|vector
Rear axle slip angle breakpoints, $\alpha_{r b r k}$, in rad.
Dependencies
To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Select Mapped corner stiffness.

Rear axle corner data, Cy_r_data - Data
[-9e3 9e3] (default) |vector
Rear axle corner data, $C y_{\text {rdata }}$, in $\mathrm{N} /$ rad.

Dependencies

To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Select Mapped corner stiffness.
Yaw
Yaw polar inertia, Izz - Inertia
4000 (default) | scalar

Yaw polar inertia, in $\mathrm{kg}^{*} \mathrm{~m}^{\wedge} 2$.
Initial yaw angle, psi_o - Psi rotation
0 (default) | scalar
Rotation of the vehicle-fixed frame about earth-fixed Z-axis (yaw), in rad.
Initial yaw rate, r_o - Yaw rate
0 (default) | scalar
Vehicle angular velocity about the vehicle-fixed z-axis (yaw rate), in rad/s.

Aerodynamic

Longitudinal drag area, Af - Effective vehicle cross-sectional area
2 (default) | scalar
Effective vehicle cross-sectional area, A_{f}, to calculate the aerodynamic drag force on the vehicle, in m^{2}.

Longitudinal drag coefficient, Cd - Air drag coefficient
. 3 (default) | scalar
Air drag coefficient, C_{d}. The value is dimensionless.
Longitudinal lift coefficient, CI - Air lift coefficient
. 1 (default) | scalar
Air lift coefficient, C_{l}. The value is dimensionless.

Longitudinal drag pitch moment, Cpm - Pitch drag

. 1 (default) | scalar
Longitudinal drag pitch moment coefficient, $C_{p m}$. The value is dimensionless.
Relative wind angle vector, beta_w - Wind angle
[0:0.01:0.3] (default) | vector
Relative wind angle vector, β_{w}, in rad.
Side force coefficient vector, Cs - Side force coefficient
[0:0.03:0.9] (default) | vector
Side force coefficient vector coefficient, C_{s}. The value is dimensionless.
Yaw moment coefficient vector, Cym - Yaw moment drag
[0:0.01:0.3] (default) | vector
Yaw moment coefficient vector coefficient, $C_{y m}$. The value is dimensionless.

Environment

Absolute air pressure, Pabs - Pressure
101325 (default) | scalar | scalar
Environmental absolute pressure, $P_{a b s}$, in Pa.

Air temperature, Tair - Temperature
273 (default) | scalar
Environmental absolute temperature, T, in K .

Dependencies

To enable this parameter, clear Air temperature.
Gravitational acceleration, g-Gravity
9.81 (default) | scalar

Gravitational acceleration, g, in $\mathrm{m} / \mathrm{s}^{\wedge} 2$.
Nominal friction scaling factor, mu - Friction scale factor
1 (default) | scalar
Nominal friction scale factor, μ. The value is dimensionless.

Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter:

1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Clear External Friction.

Simulation

Longitudinal velocity tolerance, xdot_tol - Tolerance

. 01 (default) | scalar

Longitudinal velocity tolerance, in m / s.
Nominal normal force, Fznom - Normal force
5000 (default) | scalar
Nominal normal force, in N .

Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter, set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

Geometric longitudinal offset from axle plane, longOff - Longitudinal offset 0 (default) | scalar

Vehicle chassis offset from axle plane along body-fixed x-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

Geometric lateral offset from center plane, latOff - Lateral offset
0 (default) | scalar
Vehicle chassis offset from center plane along body-fixed y-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

Geometric vertical offset from axle plane, vertOff - Vertical offset 0 (default) | scalar

Vehicle chassis offset from axle plane along body-fixed z-axis, in m . When you use the 3D visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

Wrap Euler angles, wrapAng - Selection
off (default) | on
Wrap the Euler angles to the interval [-pi, pi]. For vehicle maneuvers that might undergo vehicle yaw rotations that are outside of the interval, consider deselecting the parameter if you want to:

- Track the total vehicle yaw rotation.
- Avoid discontinuities in the vehicle state estimators.

Version History
 Introduced in R2018a

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Vehicle Body 3DOF Longitudinal | Vehicle Body 6DOF | Vector Concatenate, Matrix Concatenate
Topics
"Coordinate Systems in Vehicle Dynamics Blockset"

Vehicle Body 6DOF

Two-axle vehicle body with translational and rotational motion

Libraries:

Vehicle Dynamics Blockset / Vehicle Body

Description

The Vehicle Body 6DOF block implements a six degrees-of-freedom (DOF) rigid two-axle vehicle body model to calculate longitudinal, lateral, vertical, pitch, roll, and yaw motion. The block accounts for body mass, inertia, aerodynamic drag, road incline, and weight distribution between the axles due to suspension and external forces and moments. Use the Inertial Loads parameters to analyze the vehicle dynamics under different loading conditions.

You can connect the block to virtual sensors, suspension system, or external systems like body control actuators. Use the Vehicle Body 6DOF block in ride and handling studies to model the effects of drag forces, passenger loading, and suspension hardpoint locations.

To create additional input ports, under Input signals, select these block parameters.

Parameter	Input Port	Description
Front hitch forces	FhF	Hitch force applied to the body at the front hitch location, $F h F_{x}, F h F_{y}$, and $F h F_{z}$, in the vehicle-fixed frame
Front hitch moments	MhF	Hitch moment at the front hitch location, $M h F_{x}, M h F_{y}$, and $M h F_{z}$, about the vehicle-fixed frame
Rear hitch forces	FhR	Hitch force applied to the body at the rear hitch location, $F h R_{x}, F h R_{y}$, and $F h R_{z}$, in the vehicle-fixed frame
Rear hitch moments	MhR	Hitch moment at the rear hitch location, $M h R_{x}, M h R_{y}$, and $M h R_{z}$, about the vehicle-fixed frame

Inertial Loads

To analyze the vehicle dynamics under different loading conditions, use the Inertial Loads parameters. Specifically, you can specify these loads:

- Front powertrain
- Front and rear row passengers
- Overhead cargo
- Rear cargo

For each of the loads, you can specify the mass, location, and inertia.
The illustrations provide the load locations and vehicle parameter dimensions. The table provides the corresponding location parameter sign settings.

This table summarizes the parameter settings that specify the load locations indicated by the dots. For the location, the block uses this distance vector:

- Front suspension hardpoint to load, along the vehicle-fixed x-axis
- Vehicle centerline to load, along the vehicle-fixed y-axis
- Front suspension hardpoint to load, along the vehicle-fixed z-axis

Load	Parameter	Example Location
Front	Distance vector from front axle, z1R	- $\operatorname{z1R}(1,1)<0-$ Forward of the front axle - $\operatorname{z1R}(1,2)>0-$ Right of the vehicle centerline - $\operatorname{z1R}(1,3)>0-$ Above the front axle suspension hardpoint
Overhead	Distance vector from front axle, z2R	- $\operatorname{z2R}(1,1)>0-$ Rear of the front axle - $z 2 R(1,2)<0-$ Left of the vehicle centerline - $\operatorname{z2R}(1,3)>0-$ Above the front axle suspension hardpoint
Row 1, left side	Distance vector from front axle, z3R	- $\operatorname{z3R}(1,1)>0-$ Rear of the front axle - $z 3 R(1,2)<0-$ Left of the vehicle centerline - $z 3 R(1,3)>0-$ Above the front axle suspension hardpoint
Row 1, right side	Distance vector from front axle, z4R	- $\quad \operatorname{z4R}(1,1)>0-$ Rear of the front axle - $z 4 R(1,2)>0-$ Right of the vehicle centerline - $z 4 R(1,3)>0-$ Above the front axle suspension hardpoint
Row 2, left side	Distance vector from front axle, z5R	- $\quad \operatorname{z5R}(1,1)>0-$ Rear of the front axle - $z 5 R(1,2)<0-$ Left of the vehicle centerline - $z 5 R(1,3)>0-$ Above the front axle suspension hardpoint
Row 2, right side	Distance vector from front axle, z6R	- $\operatorname{z6R}(1,1)>0-$ Rear of the front axle - $z 6 R(1,2)>0-$ Right of the vehicle centerline - $\quad \operatorname{z6R}(1,3)>0-$ Above the front axle suspension hardpoint
Rear	Distance vector from front axle, z7R	- $\quad \operatorname{z7R}(1,1)>0-$ Rear of the front axle - $z 7 R(1,2)>0-$ Right of the vehicle centerline - $\quad \operatorname{z7R}(1,3)>0-$ Above the front axle suspension hardpoint

Equations of Motion

To determine the vehicle motion, the block implements calculations for the rigid body vehicle dynamics, wind drag, inertial loads, and coordinate transformations. The body-fixed and the vehiclefixed are the same coordinate systems.

The Vehicle Body 6DOF block considers the rotation of a body-fixed coordinate frame about a flat earth-fixed inertial reference frame. The origin of the body-fixed coordinate frame is the vehicle center of gravity of the body.

The block uses this equation to calculate the translational motion of the body-fixed coordinate frame, where the applied forces $\left[F_{x} F_{y} F_{z}\right]^{\mathrm{T}}$ are in the body-fixed frame, and the mass of the body, m, is assumed constant.

$$
\begin{aligned}
& \bar{F}_{b}=\left[\begin{array}{l}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right]=m\left(\dot{\bar{V}}_{b}+\bar{\omega} \times \bar{V}_{b}\right) \\
& \bar{M}_{b}=\left[\begin{array}{l}
L \\
M \\
N
\end{array}\right]=I \dot{\bar{\omega}}+\bar{\omega} \times(I \bar{\omega}) \\
& I=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{y x} & I_{y y} & -I_{y z} \\
-I_{z x} & -I_{z y} & I_{z z}
\end{array}\right]
\end{aligned}
$$

To determine the relationship between the body-fixed angular velocity vector, $\left[\begin{array}{l}p q r\end{array}\right]^{\mathrm{T}}$, and the rate of change of the Euler angles, $\left[\begin{array}{lll}\dot{\phi} & \dot{\theta} & \dot{\psi}\end{array}\right]^{T}$, the block resolves the Euler rates into the body-fixed frame.

$$
\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{l}
\dot{\phi} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
0 \\
\dot{\theta} \\
0
\end{array}\right]+\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
\dot{\psi}
\end{array}\right] \equiv J^{-1}\left[\begin{array}{c}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]
$$

Inverting J gives the required relationship to determine the Euler rate vector.

$$
\left[\begin{array}{c}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]=J\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{ccc}
1 & (\sin \phi \tan \theta) & (\cos \phi \tan \theta) \\
0 & \cos \phi & -\sin \phi \\
0 & \frac{\sin \phi}{\cos \theta} & \frac{\cos \phi}{\cos \theta}
\end{array}\right]\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]
$$

The applied forces and moments are the sum of the drag, gravitational, external, and suspension forces.

$$
\left.\begin{array}{l}
\bar{F}_{b}=\left[\begin{array}{l}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right]=\left[\begin{array}{l}
F_{d_{x}} \\
F_{d_{y}} \\
F_{d_{z}}
\end{array}\right]+\left[\begin{array}{l}
F_{g_{x}} \\
F_{g_{y}} \\
F_{g_{z}}
\end{array}\right]+\left[\begin{array}{l}
F_{\text {ext }}^{x} \\
F_{\text {ext }}^{y}
\end{array}\right. \\
F_{\text {ext }}^{z}
\end{array}\right]+\left[\begin{array}{l}
F_{F L_{x}} \\
F_{F L_{y}} \\
F_{F L_{z}}
\end{array}\right]+\left[\begin{array}{l}
F_{F R_{x}} \\
F_{F R_{y}} \\
F_{F R_{z}}
\end{array}\right]+\left[\begin{array}{l}
F_{R L_{x}} \\
F_{R L_{y}} \\
F_{R L_{z}}
\end{array}\right]+\left[\begin{array}{l}
F_{R R_{x}} \\
F_{R R_{y}} \\
F_{R R_{z}}
\end{array}\right] \quad\left[\begin{array}{l}
M_{x} \\
M_{y} \\
\bar{M}_{b}
\end{array}\right]\left[\begin{array}{l}
M_{d_{x}} \\
M_{d_{y}} \\
M_{d_{z}}
\end{array}\right]+\left[\begin{array}{l}
M_{e x t_{x}} \\
M_{e x t_{y}} \\
M_{e x t_{z}}
\end{array}\right]+\left[\begin{array}{l}
M_{F L_{x}} \\
M_{F L_{y}} \\
M_{F L_{z}}
\end{array}\right]+\left[\begin{array}{l}
M_{F R_{x}} \\
M_{F R_{y}} \\
M_{F R_{z}}
\end{array}\right]+\left[\begin{array}{l}
M_{R L_{x}} \\
M_{R L_{y}} \\
M_{R L_{z}}
\end{array}\right]+\left[\begin{array}{l}
M_{R R_{x}} \\
M_{R R_{y}} \\
M_{R R_{z}}
\end{array}\right]+\bar{M}_{F} .
$$

Calculation	Implementation Load masses and inertias
Gravitational forces, F_{g}	Block uses parallel axis theorem to resolve the individual load masses and inertias with the vehicle mass and inertia. $J_{i j}=I_{i j}+m\left(\|R\|^{2} \delta_{i j}-R_{i} R_{j}\right)$
Drag forces, F_{d}, and moments, M_{d} Block uses direction cosine matrix (DCM) to transform the gravitational vector in the inertial-fixed frame to the body-fixed frame.	
To determine a relative airspeed, the block subtracts the wind speed from the vehicle center of mass (CM) velocity. Using the relative airspeed, the block determines the drag forces.	
$\bar{w}=\sqrt{\left(\dot{x}-w_{\chi}\right)^{2}+\left(\dot{x}-w_{x}\right)^{2}+\left(w_{z}\right)^{2}}$ $F_{d x}=-\frac{1}{2 T R} C_{d} A_{f} P_{a b s}\left({ }^{\bar{w}}\right.$	
$F_{d y}=-\frac{1}{2 T R} C_{s} A_{f} P_{a b s}{ }^{(\bar{w}}$	
$F_{d z}=-\frac{1}{2 T R} C_{l} A_{f} P_{a b s}\left({ }^{\bar{w}}\right.$	
Using the relative airspeed, the block determines the drag moments.	
$M_{d r}=-\frac{1}{2 T R} C_{r m} A_{f} P_{a b s}\left({ }^{\bar{w}}(a+b)\right.$	
$M_{d p}=-\frac{1}{2 T R} C_{p m} A_{f} P_{a b s}\left({ }^{\bar{w}}(a+b)\right.$	
$M_{d y}=-\frac{1}{2 T R} C_{y m} A_{f} P_{a b s}\left({ }^{\bar{w}}(a+b)\right.$	

Calculation	Implementation
Suspension forces and moments	Block assumes that the suspension forces and moments act on these hardpoint locations: - $F_{F L}, M_{F L}$ - Front left - $F_{F R}, M_{F R}$ - Front right - $F_{R L}, M_{R L}$ - Rear left - $F_{R R}, M_{R R}$ - Rear right

The equations use these variables.

$x, \dot{\chi}, \ddot{\chi}$	Vehicle CM displacement, velocity, and acceleration along the vehicle-fixed x-axis
y, \dot{y}, \ddot{y}	Vehicle CM displacement, velocity, and acceleration along the vehicle-fixed y-axis
z, \dot{z}, \ddot{z}	Vehicle CM displacement, velocity, and acceleration along the vehicle-fixed z-axis
φ	Rotation of the vehicle-fixed frame about the earth-fixed X-axis (roll)
θ	Rotation of the vehicle-fixed frame about the earth-fixed Y-axis (pitch)
ψ	Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw)
$F_{F L x}, F_{F L y}, F_{F L z}$	Suspension forces applied to front left hardpoint along the vehicle-fixed x-, y-, and z-axes
$F_{F R X}, F_{F R y}, F_{F R z}$	Suspension forces applied to front right hardpoint along the vehicle-fixed x-, y-, and z-axes
$F_{R L x}, F_{R L y}, F_{R L z}$	Suspension forces applied to rear left hardpoint along the vehicle-fixed x-, y-, and z-axes
$F_{R R x}, F_{R R y}, F_{R R z}$	Suspension forces applied to rear right hardpoint along the vehicle-fixed x-, y-, and z-axes
$M_{F x}, F_{F y}, F_{F z}$	Suspension moments applied to vehicle CM about the vehicle-fixed $x-, y$-, and z-axes
$F_{e x t x}, F_{e x t y}, F_{e x t z}$	External forces applied to vehicle CM along the vehicle-fixed $x-, y$-, and z axes
$F_{d x}, F_{d y}, F_{d z}$	Drag forces applied to vehicle CM along the vehicle-fixed x-, y-, and z-axes
$M_{\text {extx }}, M_{\text {exty }}, M_{\text {extz }}$	External moment about vehicle CM about the vehicle-fixed x-, y-, and z-axes
$M_{d x}, M_{d y}, M_{d z}$	Drag moment about vehicle CM about the vehicle-fixed x-, y-, and z-axes
I	Vehicle body moments of inertia
a, b	Distance of front and rear wheels, respectively, from the normal projection point of vehicle CM onto the common axle plane
d	Lateral distance from the geometric centerline to the center of mass along the vehicle-fixed y-axis
h	Height of vehicle CM above the axle plane
hh	Height of the hitch above the axle plane along the vehicle-fixed z-axis
$d h$	Longitudinal distance of the hitch from the normal projection point of tractor CG onto the common axle plane

$h l$	Lateral distance from center of mass to hitch along the vehicle-fixed y-axis.
w_{F}, w_{R}	Front and rear track widths
C_{d}	Air drag coefficient acting along the vehicle-fixed x-axis
C_{s}	Air drag coefficient acting along the vehicle-fixed y-axis
C_{l}	Air drag coefficient acting along the vehicle-fixed z-axis
$C_{r m}$	Air drag roll moment acting about vehicle-fixed x-axis
$C_{p m}$	Air drag pitch moment acting about the vehicle-fixed y-axis
$C_{y m}$	Air drag yaw moment acting about vehicle-fixed z-axis
A_{f}	Frontal area
R	Atmospheric specific gas constant
T	Environmental air temperature
$P_{a b s}$	Environmental absolute pressure
w_{x}, w_{y}, w_{z}	Wind speed along the vehicle-fixed $x-, y$-, and z-axes
W_{x}, W_{y}, W_{z}	Wind speed along inertial X-, Y-, and Z-axes

Ports

Input

FSusp - Suspension forces on vehicle
array
Suspension longitudinal, lateral, and vertical suspension forces applied to the vehicle at the hardpoint location, in N. Signal dimensions are [3x4].

$$
F S u s p=\left[\begin{array}{llll}
F_{F L x} & F_{F R x} & F_{R L x} & F_{R R x} \\
F_{F L y} & F_{F R y} & F_{R L y} & F_{R R y} \\
F_{F L z} & F_{F R z} & F_{R L z} & F_{R R z}
\end{array}\right]
$$

Array Element	Axle	Wheel	Force Axis
FSusp (1,1)	Front	Left	Vehicle-fixed x-axis (longitudinal)
FSusp (1,2)	Front	Right	
FSusp (1,3)	Rear	Left	
FSusp (1,4)	Rear	Right	
FSusp (2,1)	Front	Left	Vehicle-fixed y-axis (lateral)
FSusp (2,2)	Front	Right	
FSusp (2,3)	Rear	Left	
FSusp (2,4)	Rear	Right	
FSusp (3,1)	Front	Left	Vehicle-fixed z-axis (vertical)
FSusp (3,2)	Front	Right	
FSusp (3,3)	Rear	Left	
FSusp (3,4)	Rear	Right	

MSusp - Suspension moment on vehicle
array
Suspension longitudinal, lateral, and vertical suspension moments applied about the vehicle at the hardpoint location, in $N \cdot m$. Signal dimensions are [3×4].

$$
M S u s p=\left[\begin{array}{llll}
M_{F L x} & M_{F R x} & M_{R L x} & M_{R R x} \\
M_{F L y} & M_{F R y} & M_{R L y} & M_{R R y} \\
M_{F L z} & M_{F R z} & M_{R L z} & M_{R R z}
\end{array}\right]
$$

Array Element	Axle	Wheel	Moment Axis
MSusp (1,1)	Front	Left	Vehicle-fixed x-axis (longitudinal)
MSusp (1,2)	Front	Right	
MSusp (1,3)	Rear	Left	
MSusp (1,4)	Rear	Right	
MSusp (2,1)	Front	Left	Vehicle-fixed y-axis (lateral)
MSusp (2,2)	Front	Right	
MSusp (2,3)	Rear	Left	
MSusp (2,4)	Rear	Right	
MSusp (3,1)	Front	Left	Vehicle-fixed z-axis (vertical)
MSusp (3,2)	Front	Right	
MSusp (3,3)	Rear	Left	
MSusp (3,4)	Rear	Right	

FExt - External forces acting on vehicle vector

External forces on the vehicle, in N, specified as a 1-by-3 or 3-by-1 vector.

$$
\text { FExt }=F_{\text {ext }}=\left[\begin{array}{llll}
F_{\text {ext }} & F_{\text {ext }}^{y} & F_{\text {ext }}
\end{array}\right] \text { or }\left[\begin{array}{l}
F_{\text {ext }}^{x} \\
F_{\text {ext }}^{y} \\
F_{\text {ext }}^{z}
\end{array}\right]
$$

Array Element	Force Axis
FExt $(1,1)$	Vehicle-fixed x-axis (longitudinal)
FExt $(1,2)$ or	Vehicle-fixed y-axis (lateral)
FExt $(2,1)$	
FExt $(1,3)$ or FExt $(3,1)$	Vehicle-fixed z-axis (vertical)

MExt - External moments acting on vehicle
vector
External moments acting on the vehicle, in $\mathrm{N} \cdot \mathrm{m}$, specified as a 1-by-3 or 3-by-1 vector.

$$
\text { MExt }=M_{e x t}=\left[\begin{array}{lll}
M_{e x t_{x}} & M_{e x t_{y}} & M_{e x t_{z}}
\end{array}\right] o r\left[\begin{array}{l}
M_{e x t_{x}} \\
M_{\text {ext }}^{y}
\end{array}\right]\left[\begin{array}{l}
M_{\text {ext }}^{z}
\end{array}\right]
$$

Array Element	Force Axis
MExt $(1,1)$	Vehicle-fixed x-axis (longitudinal)
MExt $(1,2)$ or MExt $(2,1)$	Vehicle-fixed y-axis (lateral)
MExt $(1,3)$ or MExt $(3,1)$	Vehicle-fixed z-axis (vertical)

Fh - Hitch force on the body
array
Hitch force applied to the body at the hitch location, $F h_{x}, F h_{y}, F h_{z}$, in the vehicle-fixed frame, in N, specified as a 1-by-3 or 3-by-1 array.

Dependencies

To enable this port, under Input signals, select Hitch forces.
Mh - Hitch moment about body
array
Hitch moment at the hitch location, $M h_{x}, M h_{y}, M h_{z}$, about the vehicle-fixed frame, in $\mathrm{N} \cdot \mathrm{m}$, specified as a 1-by-3 or 3-by-1 array.

Dependencies

To enable this port, under Input signals, select Hitch moments.

WindXYZ - Wind speed

array
Wind speed, W_{x}, W_{y}, W_{z} along inertial $X-, Y$-, and Z-axes, in m/s, specified as a 1-by-3 or 3-by-1 array.

AirTemp - Ambient air temperature
scalar
Ambient air temperature, $T_{\text {air }}$, in K, specified as a scalar.

Dependencies

To enable this port, under Environment, select Air temperature.

Output

Info - Bus signal
bus
Bus signal containing these block values.

Signal					Description	Value	Units
InertFrm	Cg	Disp	X		Vehicle CM displacement along the earth-fixed X axis	Computed	m
			Y		Vehicle CM displacement along the earth-fixed Y axis	Computed	m
			Z		Vehicle CM displacement along the earth-fixed Z axis	Computed	m
		Vel	Xdot		Vehicle CM velocity along the earth-fixed X-axis	Computed	m/s
			Ydot		Vehicle CM velocity along the earth-fixed Y-axis	Computed	m/s
			Zdot		Vehicle CM velocity along the earth-fixed Z-axis	Computed	m/s
		Ang	phi		Rotation of the vehiclefixed frame about the earth-fixed X-axis (roll)	Computed	rad
			theta		Rotation of the vehiclefixed frame about the earth-fixed Y-axis (pitch)	Computed	rad
			psi		Rotation of the vehiclefixed frame about the earth-fixed Z-axis (yaw)	Computed	rad
	FrntAxl	Lft	Disp	X	Front left axle displacement along the earth-fixed X-axis	Computed	m
				Y	Front left axle displacement along the earth-fixed Y-axis	Computed	m
				Z	Front left axle displacement along the earth-fixed Z-axis	Computed	m
			Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Front left axle velocity along the earth-fixed X axis	Computed	m/s
				$\begin{aligned} & \text { Ydo } \\ & \mathrm{t} \end{aligned}$	Front left axle velocity along the earth-fixed Y axis	Computed	m/s
				$\begin{aligned} & \mathrm{Zdo} \\ & \dagger \end{aligned}$	Front left axle velocity along the earth-fixed Zaxis	Computed	m/s

Signal				Description	Value	Units
	Rght	Disp	X	Front right axle displacement along the earth-fixed X-axis	Computed	m
			Y	Front right axle displacement along the earth-fixed Y-axis	Computed	m
			Z	Front right axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Front right axle velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \mathrm{Ydo} \\ & \mathrm{t} \end{aligned}$	Front right axle velocity along the earth-fixed Y axis	Computed	m/s
			$\begin{aligned} & \mathrm{Zdo} \\ & \mathrm{t} \end{aligned}$	Front right axle velocity along the earth-fixed Z axis	Computed	m/s
RearAxl	Lft	Disp	X	Rear left axle displacement along the earth-fixed X-axis	Computed	m
			Y	Rear left axle displacement along the earth-fixed Y-axis	Computed	m
			Z	Rear left axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Rear left axle velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \mathrm{Ydo} \\ & \mathrm{t} \end{aligned}$	Rear left axle velocity along the earth-fixed Y axis	Computed	m / s
			$\begin{aligned} & \text { Zdo } \\ & \dagger \end{aligned}$	Rear left axle velocity along the earth-fixed Zaxis	Computed	m/s
	Rght	Disp	X	Rear right axle displacement along the earth-fixed X-axis	Computed	m
			Y	Rear right axle displacement along the earth-fixed Y-axis	Computed	m
			Z	Rear right axle displacement along the earth-fixed Z-axis	Computed	m

Signal					Description	Value	Units
			Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Rear right axle velocity along the earth-fixed X axis	Computed	m / s
				$\begin{aligned} & \text { Ydo } \\ & \mathrm{t} \end{aligned}$	Rear right axle velocity along the earth-fixed Y axis	Computed	m / s
				$\begin{aligned} & \text { Zdo } \\ & \mathrm{t} \end{aligned}$	Rear right axle velocity along the earth-fixed Zaxis	Computed	m / s
	Hitch	Disp	X		Hitch offset from axle plane along the earthfixed X-axis	Computed	m
			Y		Hitch offset from axle plane along the earthfixed Y-axis	Computed	m
			Z		Hitch offset from axle plane along the earthfixed Z-axis	Computed	m
		Vel	Xdot		Hitch velocity along the earth-fixed X-axis	Computed	m/s
			Ydot		Hitch velocity along the earth-fixed Y-axis	Computed	m/s
			Zdot		Hitch velocity along the earth-fixed Z-axis	Computed	m/s
	Geom	Disp	X		Vehicle chassis offset from axle plane along the earth-fixed X-axis	Computed	m
			Y		Vehicle chassis offset from center plane along the earth-fixed Y-axis	Computed	m
			Z		Vehicle chassis offset from axle plane along the earth-fixed Z-axis	Computed	m
		Vel	Xdot		Vehicle chassis offset velocity along the earthfixed X-axis	Computed	m/s
			Ydot		Vehicle chassis offset velocity along the earthfixed Y-axis	Computed	m / s
			Zdot		Vehicle chassis offset velocity along the earthfixed Z-axis	Computed	m / s
BdyFrm	Cg	Vel	xdot		Vehicle CM velocity along the vehicle-fixed x-axis	Computed	m/s

Signal			Description	Value	Units
Signal		Fy	Drag force on vehicle CM along the vehicle-fixed y axis	Computed	N
		Fz	Drag force on vehicle CM along the vehicle-fixed z axis	Computed	N
	Grvty	Fx	Gravity force on vehicle CM along the vehiclefixed x-axis	Computed	N
		Fy	Gravity force on vehicle CM along the vehiclefixed y-axis	Computed	N
		Fz	Gravity force on vehicle CM along the vehiclefixed z-axis	Computed	N
Moments	Body	Mx	Body moment on vehicle CM about the vehiclefixed x-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		My	Body moment on vehicle CM about the vehiclefixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz	Body moment on vehicle CM about the vehiclefixed z-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
	Drag	Mx	Drag moment on vehicle CM about the vehiclefixed x-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		My	Drag moment on vehicle CM about the vehiclefixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz	Drag moment on vehicle CM about the vehiclefixed z-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
	Ext	Mx	External moment on vehicle CG about the vehicle-fixed x-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		My	External moment on vehicle CG about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz	External moment on vehicle CG about the vehicle-fixed z-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
	Hitch	Mx	Hitch moment at the hitch location about vehiclefixed x-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$

Signal				Description	Value	Units
		My		Hitch moment at the hitch location about vehiclefixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz		Hitch moment at the hitch location about vehiclefixed z-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
FrntAxl	Lft	Disp	x	Front left axle displacement along the vehicle-fixed x-axis	Computed	m
			y	Front left axle displacement along the vehicle-fixed y-axis	Computed	m
			z	Front left axle displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Front left axle velocity along the vehicle-fixed x axis	Computed	m/s
			$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Front left axle velocity along the vehicle-fixed y axis	Computed	m/s
			$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Front left axle velocity along the vehicle-fixed z axis	Computed	m/s
	Rght	Disp	X	Front right axle displacement along the vehicle-fixed x-axis	Computed	m
			y	Front right axle displacement along the vehicle-fixed y-axis	Computed	m
			z	Front right axle displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Front right axle velocity along the vehicle-fixed x axis	Computed	m/s
			$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Front right axle velocity along the vehicle-fixed y axis	Computed	m/s
			$\underset{+}{\mathrm{zdo}}$	Front right axle velocity along the vehicle-fixed z axis	Computed	m/s
RearAxl	Lft	Disp	X	Rear left axle displacement along the vehicle-fixed x-axis	Computed	m

Signal			Description	Value	Units
		$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Hitch offset velocity along the vehicle-fixed y-axis	Computed	m/s
		$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Hitch offset velocity along the vehicle-fixed z-axis	Computed	m/s
Pwr	PwrExt		Applied external power	Computed	W
	Drag		Power loss due to drag	Computed	W
Geom	Disp	x	Vehicle chassis offset from axle plane along the vehicle-fixed x-axis	Input	m
		y	Vehicle chassis offset from center plane along the vehicle-fixed y-axis	Input	m
		z	Vehicle chassis offset from axle plane along the vehicle-fixed z-axis	Input	m
	Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Vehicle chassis offset velocity along the vehiclefixed x-axis	Computed	m/s
		$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Vehicle chassis offset velocity along the vehiclefixed y-axis	Computed	m/s
		$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Vehicle chassis offset velocity along the vehiclefixed z-axis	Computed	m/s
	Ang	Bet a	Body slip angle, β $\beta=\frac{V_{y}}{V_{x}}$	Computed	rad

$\mathbf{V b}$ - Vehicle velocity along vehicle-fixed frame

vector

Vehicle CM velocity along the vehicle-fixed x-, y-, z-axes, respectively, in m / s, returned as a vector.
$\mathbf{p q r}$ - Vehicle angular velocity about vehicle-fixed frame
vector
Vehicle CM angular velocity about the vehicle-fixed x-(roll rate), y-(pitch rate), z-axes (yaw rate), respectively, in rad/s, returned as a vector.

DCM - Direction cosine matrix
array
Direction cosine matrix, in rad, returned as an array.
Euler - Euler angles
array

Euler angles, φ, θ, and ψ, respectively, in rad, returned as an array.
$\mathbf{X e}$ - Vehicle position in inertial reference frame vector

Vehicle CM position along inertial-fixed X-, Y-, Z-axes, respectively, in m, returned as a vector.
Ve - Vehicle velocity in inertial reference frame vector

Vehicle CM velocity along inertial-fixed X-, Y-, Z-axes, respectively, in m / s, returned as a vector.

Parameters

Block Options

Input Signals
Hitch forces - Create input port
off (default) | on
Select to create an input port, Fh, for the hitch forces.
Hitch moments - Create input port
off (default) |on
Select to create an input port, Mh, for the hitch moments.

Chassis

Vehicle mass, \mathbf{m} - Mass
2000 (default) | scalar
Vehicle mass, m, in kg.
Longitudinal distance from center of mass to front axle, a - Distance
1.4 (default) | scalar

Distance from vehicle CM to front axle, a, in m .

Longitudinal distance from center of mass to rear axle, b-Distance 1.6 (default) | scalar

Distance from vehicle CM to front axle, b, in m.

Lateral distance from geometric centerline to center of mass, \mathbf{d} - Distance
0 (default) | scalar
Lateral distance from geometric centerline to center of mass, d, in m, along the vehicle-fixed y. Positive values indicate that the vehicle CM is to the right of the geometric centerline. Negative values indicate that the vehicle CM is to the left of the geometric centerline.

Vertical distance from center of mass to axle plane, \mathbf{h} - Distance . 35 (default) | scalar

Vertical distance from vehicle CM to axle plane, h, in m .

Longitudinal distance from center of mass to hitch, $\mathbf{d h}$ - Longitudinal distance from CM to hitch 1 (default) | scalar

Longitudinal distance from center of mass to hitch, $d h$, in m.

Dependencies

To enable this parameter, on the Input signals pane, select Hitch forces or Hitch moments.
Longitudinal distance from center of mass to hitch, hl - Lateral distance from CM to hitch
0 (default) | scalar
Lateral distance from center of mass to hitch, $h l$, in m.

Dependencies

To enable this parameter, on the Input signals pane, select Hitch forces or Hitch moments.
Vertical distance from hitch to axle plane, $\mathbf{h h}$ - Distance from hitch to axle plane 0.1 (default) | scalar

Vertical distance from hitch to axle plane, $h h$, in m.

Dependencies

To enable this parameter, on the Input signals pane, select Hitch forces or Hitch moments.
Initial position in the inertial frame [Xeo,Yeo,Zeo], Xe_o - Position
[0,0,0] (default) | vector
Initial position of vehicle in the inertial frame, $X e_{o}$, in m.
Initial velocity in body axes [xdot_0,ydot_o,zdot_o], xbdot_o - Velocity
[0,0,0] (default) | vector
Initial vehicle CM velocity along the vehicle-fixed x, y-, and z-axes, respectively, in m / s.
Initial Euler orientation [roll, pitch, yaw], eul_o - Rotation
[0,0,0] (default) | vector
Initial Euler rotation of the vehicle-fixed frame about the earth-fixed X (roll)-, Y (pitch)-, Z (yaw)- axes, respectively, in rad.

Initial body rotation rates [p,q,r], p_o - Rotation rate
[0,0,0] (default) | vector
Initial vehicle CM angular velocity about the vehicle-fixed x (roll rate)-, y (pitch rate)-, z (yaw rate)axes, respectively, in rad/s.

Chassis inertia tensor, Iveh - Inertia
[430 0 0; 0 1900 0; 002100] (default)|array
Vehicle inertia tensor, $I_{v e h}$, in $\mathrm{kg}^{*} \mathrm{~m} \wedge 2$. Dimensions are [3-by-3].
Track widths [front,rear], w - Widths
[1.9,1.9] (default)| vector
Front and rear track width, in m. Dimensions are [1-by-2].
Inertial Loads
Front
Mass, z1m - Mass
0 (default) | scalar
Mass, $z 1 m$, in kg.
Distance vector from front axle, z1R - Distance
[-. 25,. 125, .15] (default) | vector
Distance vector from front axle to load, $z 1 R$, in m. Dimensions are [1-by-3].

Array Element	Description
$z 1 R(1,1)$	Front suspension hardpoint to load, along the vehicle-fixed x-axis
$z 1 R(1,2)$	Vehicle centerline to load, along the vehicle-fixed y - axis
$z 1 R(1,3)$	Front suspension hardpoint to load, along the vehicle-fixed z-axis

For example, this table summarizes the parameter settings that specify the load location indicated by the dots.

Example Location	Sign
- Forward of the front axle	- $\operatorname{z1R}(1,1)<0$
- Right of the vehicle centerline	- $z 1 R(1,2)>0$
- Above the front axle suspension hardpoint	- $\operatorname{z1R}(1,3)>0$

Inertia tensor, z1I - Inertia

[1.4,-.2,.1;-.2,1.4,.1;.1,.1,2.25].*0 (default)|array
Inertia tensor, $z 11$, in $\mathrm{kg} \cdot \mathrm{m} \wedge 2$. Dimensions are [3-by-3].

$$
z 1 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Overhead

Mass, z2m - Mass
0 (default) | scalar
Mass, $z 2 m$, in kg.
Distance vector from front axle, $\mathbf{z 2 R}$ - Distance
[1.4,0, .8] (default) |vector
Distance vector from front axle to load, $z 2 R$, in m. Dimensions are [1-by -3].

Array Element	Description
z2R $(1,1)$	Front suspension hardpoint to load, along the vehicle-fixed x-axis
z2R $(1,2)$	Vehicle centerline to load, along the vehicle-fixed y - axis
z2R $(1,3)$	Front suspension hardpoint to load, along the vehicle-fixed z-axis

For example, this table summarizes the parameter settings that specify the load location indicated by the dot.

Example Location	Sign
-	Rear of the front axle
-	Left of the vehicle centerline
-	Above the front axle suspension hardpoint

Inertia tensor, z2I - Inertia

[1.4,-.2,.1;-.2,1.4,.1;.1,.1,2.25].*0 (default)|array
Inertia tensor, $z 2 I$, in $\mathrm{kg} \cdot \mathrm{m} \wedge 2$. Dimensions are [3-by-3].

$$
z 2 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

5-112

Row 1, left side
Mass, $\mathbf{z 3 m}$ - Mass
0 (default) | scalar
Mass, $z 3 m$, in kg.
Distance vector from front axle, z3R - Distance
[.75, -. 5, . 4] (default) |vector
Distance vector from front axle to load, $z 3 R$, in m. Dimensions are [1-by-3].

Array Element	Description
$z 3 R(1,1)$	Front suspension hardpoint to load, along the vehicle-fixed x-axis
$z 3 R(1,2)$	Vehicle centerline to load, along the vehicle-fixed y - axis
$z 3 R(1,3)$	Front suspension hardpoint to load, along the vehicle-fixed z-axis

For example, this table summarizes the parameter settings that specify the load location indicated by the dot.

Example Location	Sign
-	Rear of the front axle
-	Left of the vehicle centerline
-	Above the front axle suspension hardpoint

Inertia tensor, z3I - Inertia
[5,-.1,-2;-2,9,.1;-.1,.1,6].*0 (default)|array
Inertia tensor, $z 3 I$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. Dimensions are [3-by-3].

$$
z 3 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Row 1, right side

Mass, $\mathbf{2 4 m}$ - Mass
0 (default) | scalar
Mass, $z 4 m$, in kg.
Distance vector from front axle, $\mathbf{z 4 R}$ - Distance
[.75, .5,.4] (default) | vector
Distance vector from front axle to load, $z 4 R$, in m. Dimensions are [1-by-3].

Array Element	Description
z4R $(1,1)$	Front suspension hardpoint to load, along the vehicle-fixed x-axis
z4R $(1,2)$	Vehicle centerline to load, along the vehicle-fixed y - axis
z4R $(1,3)$	Front suspension hardpoint to load, along the vehicle-fixed z-axis

For example, this table summarizes the parameter settings that specify the load location indicated by the dot.

Example Location	Sign
- Rear of the front axle	- $\mathrm{z4R}(1,1)>0$
- Right of the vehicle centerline	- $\mathrm{z4R}(1,2)>0$
- Above the front axle suspension hardpoint	- $\mathrm{z4R}(1,3)>0$

Inertia tensor, $\mathbf{z 4 I}$ - Inertia
[5,-.1,-2;-2,9,.1;-.1,.1,6].*0 (default)|array
Inertia tensor, $z 4 I$, in $\mathrm{kg} \cdot \mathrm{m} \wedge 2$. Dimensions are [3-by-3].

$$
z 4 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Row 2, left side
Mass, z5m - Mass
0 (default) | scalar
Mass, z5m, in kg.
Distance vector from front axle, z5R - Distance
[1.25,-.5,.4] (default)| vector
Distance vector from front axle to load, $z 5 R$, in m. Dimensions are [1-by-3].

Array Element	Description
$z 5 R(1,1)$	Front suspension hardpoint to load, along the vehicle-fixed x-axis
$z 5 R(1,2)$	Vehicle centerline to load, along the vehicle-fixed y - axis
$z 5 R(1,3)$	Front suspension hardpoint to load, along the vehicle-fixed z-axis

For example, this table summarizes the parameter settings that specify the load location indicated by the dot.

Example Location	Sign
-	Rear of the front axle
-	Left of the vehicle centerline
-	Above the front axle suspension hardpoint

Inertia tensor, $\mathbf{z 5 I}$ - Inertia
[5,-.1,-2;-2,9,.1;-.1,.1,6].*0 (default)|array
Inertia tensor, $z 5 I$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. Dimensions are [3-by-3].

$$
z 5 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Row 2, right side

Mass, $\mathbf{2 6 m}$ - Mass
0 (default) | scalar
Mass, $z 6 \mathrm{~m}$, in kg.
Distance vector from front axle, $\mathbf{z 6 R}$ - Distance
[1.25,-.5,.4] (default)| vector
Distance vector from front axle to load, $z 6 R$, in m. Dimensions are [1-by -3].

Array Element	Description
z6R $(1,1)$	Front suspension hardpoint to load, along the vehicle-fixed x-axis
z6R $(1,2)$	Vehicle centerline to load, along the vehicle-fixed y - axis
z6R $(1,3)$	Front suspension hardpoint to load, along the vehicle-fixed z-axis

For example, this table summarizes the parameter settings that specify the load location indicated by the dot.

Example Location	Sign
- \quad Rear of the front axle	- $\operatorname{z6R}(1,1)>0$
- Right of the vehicle centerline	- $\operatorname{z6R}(1,2)>0$
- Above the front axle suspension hardpoint	- $z 6 R(1,3)>0$

Inertia tensor, z6I - Inertia
[5,-.1,-2;-2, 9, .1;-.1, .1,6].*0 (default)|array
Inertia tensor, $z 6 I$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. Dimensions are [3-by-3].

$$
z 6 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Rear

Mass, $\mathbf{z 7 m}$ - Mass
0 (default) | scalar
Mass, $z 7$, in kg.
Distance vector from front axle, z7R - Distance
[2,0, .25] (default) | vector
Distance vector from front axle to load, $z 7 R$, in m. Dimensions are [1-by-3].

Array Element	Description
z7R $(1,1)$	Front suspension hardpoint to load, along the vehicle-fixed x-axis
z7R $(1,2)$	Vehicle centerline to load, along the vehicle-fixed y - axis
z7R $(1,3)$	Front suspension hardpoint to load, along the vehicle-fixed z-axis

For example, this table summarizes the parameter settings that specify the load location indicated by the dot.

Example Location	Sign
- Rear of the front axle	- $\operatorname{z7R}(1,1)>0$
-	Right of the vehicle centerline
-	Above the front axle suspension hardpoint

Inertia tensor, z7I - Inertia
[1.4,-.2,.1;-.2,1.4,.1;.1,.1,2.25].*0 (default)|array
Inertia tensor, $z 7 \mathrm{I}$, in $\mathrm{kg} \cdot \mathrm{m} \wedge 2$. Dimensions are [3-by-3].

$$
z 7 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Aerodynamic

Longitudinal drag area, Af - Area
2 (default) | scalar
Effective vehicle cross-sectional area, A_{f} to calculate the aerodynamic drag force on the vehicle, in $\mathrm{m}^{\wedge} 2$.

Longitudinal drag coefficient, Cd - Drag
. 3 (default) | scalar
Air drag coefficient, C_{d}, dimensionless.

Longitudinal lift coefficient, CI - Lift

. 1 (default) | scalar
Air lift coefficient, C_{l}, dimensionless.
Longitudinal drag pitch moment, Cpm - Pitch drag
. 1 (default) | scalar
Longitudinal drag pitch moment coefficient, $C_{p m}$, dimensionless.
Relative wind angle vector, beta_w - Wind angle
[0:0.001:0.01] (default)| vector
Relative wind angle vector, β_{w}, in rad.
Side force coefficient vector, Cs - Side force drag
[0:0.01:0.1] (default)| vector
Side force coefficient vector coefficient, C_{s}, dimensionless.
Yaw moment coefficient vector, Cym - Yaw moment drag
[0:0.001:0.01] (default) | vector
Yaw moment coefficient vector coefficient, $C_{y m}$, dimensionless.

Environment

Absolute air pressure, Pabs - Pressure
101325 (default) | scalar
Environmental air absolute pressure, $P_{\text {abs }}$ in Pa.
Air temperature, Tair - Ambient air temperature
273 (default) | scalar
Ambient air temperature, $T_{\text {air }}$ in K .

Dependencies

To enable this parameter, clear Air temperature.
Gravitational acceleration, \mathbf{g} - Gravity
9.81 (default) | scalar

Gravitational acceleration, g, in $\mathrm{m} / \mathrm{s}^{\wedge} 2$.

Simulation

Longitudinal velocity tolerance, xdot_tol - Tolerance
 . 1 (default) | scalar

Longitudinal velocity tolerance, $x d o t_{t o l}$, in m / s.
The block uses this parameter to avoid a division by zero when it calculates the body slip angle, β.

Geometric longitudinal offset from axle plane, longOff - Longitudinal offset

0 (default) | scalar
Vehicle chassis offset from axle plane along body-fixed x-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

Geometric lateral offset from center plane, latOff - Lateral offset
0 (default) | scalar
Vehicle chassis offset from center plane along body-fixed y-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

Geometric vertical offset from axle plane, vertOff - Vertical offset
0 (default) | scalar
Vehicle chassis offset from axle plane along body-fixed z-axis, in m . When you use the 3D visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

Wrap Euler angles, wrapAng - Selection

on (default) | off
Wrap the Euler angles to the interval [-pi, pi]. For vehicle maneuvers that might undergo vehicle yaw rotations that are outside of the interval, consider deselecting the parameter if you want to:

- Track the total vehicle yaw rotation.
- Avoid discontinuities in the vehicle state estimators.

Version History

Introduced in R2018a

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

6DOF (Euler Angles) | Vehicle Body 3DOF | Vector Concatenate, Matrix Concatenate

Topics

"Coordinate Systems in Vehicle Dynamics Blockset"

Trailer Body 3DOF

Trailer body with longitudinal, lateral, and yaw motion

Libraries:

Vehicle Dynamics Blockset / Vehicle Body

Description

The Trailer Body 3DOF block implements a rigid one-axle, two-axle or three-axle trailer body model to calculate longitudinal, lateral, and yaw motion. Configure the block for a single or dual track. The block accounts for axle and hitch reaction forces due to the trailer acceleration, aerodynamic drag, and steering.

Use this block in vehicle dynamics and automated driving studies to model nonholonomic vehicle motion when vehicle pitch, roll, and vertical motion are not significant.

Use the Vehicle track parameter to specify the number of wheels.

Vehicle Track Setting	Implementation
Single 1-axle	Trailer with a single track and one axle. - - Forces act along the center line of the axle.
Dual lateral load transfer.	

Use the Axle forces parameter to specify the type of force.

Axle Forces Setting	Implementation
External longitudinal velocity	- The block assumes that the external longitudinal velocity is in a quasi-steady state, and the longitudinal acceleration is approximately zero. - Because the motion is quasi-steady, the block calculates lateral forces using the tire slip angles and linear cornering stiffness. - Consider this setting when you want to: - Generate virtual sensor signal data. - Conduct high-level software studies that are not impacted by driveline or nonlinear tire responses.
External longitudinal forces	- The block uses the external longitudinal force to accelerate or brake the vehicle. - The block calculates lateral forces using the tire slip angles and linear cornering stiffness. - Consider this setting when you want to: - Account for changes in the longitudinal velocity on the lateral and yaw motion. - Specify the external longitudinal motion through a force instead of an external longitudinal velocity. - Connect the block to tractive actuators, wheels, brakes, and hitches.
External forces	- The block uses the external lateral and longitudinal forces to steer, accelerate, or brake the vehicle. - The block does not use the steering input to calculate vehicle motion. - Consider this setting when you need tire models with more accurate nonlinear combined lateral and longitudinal slip.

To create additional input ports, under Input signals, select these block parameters.

Input Signals Pane Parameter	Input Port	Description
Front wheel steering	WhlAngF	Front wheel angle, δ_{F}
Middle wheel steering	WhlAngM	Middle wheel angle, δ_{M}
Rear wheel steering	WhlAngR	Rear wheel angle, δ_{R}
External wind	WindXYZ	Wind speed, W_{X}, W_{Y}, and W_{Z}, in an inertial reference frame
External friction	Mu	Friction coefficient
External forces	FExt	External force on the vehicle center of gravity (CG), $F_{x^{\prime}}, F_{y}$, and F_{z}, in the vehicle-fixed frame
External moments	MExt	External moment about the vehicle CG, M_{x}, M_{y}, and M_{z}, in the vehicle-fixed frame
Front hitch forces	FhF	Hitch force applied to the body at the front hitch location, $F h F_{x}, F h F_{y}$, and $F h F_{z}$, in the vehicle-fixed frame

Input Signals Pane Parameter	Input Port	Description
Front hitch moments	MhF	Hitch moment at the front hitch location, $M h F_{x}, M h F_{y}$, and $M h F_{z}$, about the vehicle-fixed frame
Rear hitch forces	FhR	Hitch force applied to the body at the rear hitch location, $F h R_{x}, F h R_{y}$, and $F h R_{z}$, in the vehicle-fixed frame
Rear hitch moments	MhR	Hitch moment at the rear hitch location, $M h R_{x}, M h R_{y}$, and $M h R_{z}$, about the vehicle-fixed frame
Initial longitudinal position	$\mathrm{X} _0^{\text {Initial yaw angle }}$	Initial vehicle CG displacement along the earth-fixed X-axis
Initial longitudinal velocity	xsi_o	Initial rotation of the vehicle-fixed frame about the earth- fixed Z-axis (yaw)
Initial yaw rate	Initial vehicle CG velocity along the vehicle-fixed x-axis	
Initial lateral position	r_o	Initial vehicle angular velocity about the vehicle-fixed z - axis (yaw rate)
Air temperature	AirTemp	Initial vehicle CG displacement along the earth-fixed Y-axis Ambient air temperature. Consider this option if you want to vary the temperature during run time.
Initial lateral velocity	ydot_o	Initial vehicle CG velocity along the vehicle-fixed y-axis

Theory

To determine the vehicle motion, the block solves the rigid body planar dynamics equations of motion.

Calculation	Description
Dynamics	The block solves the rigid-body planar dynamics equations to determine the vehicle longitudinal motion. If you set Axle forces to External longitudinal velocity, the block assumes a quasi-steady state for the longitudinal acceleration.
External forces	External forces include both drag and external force inputs. The forces act on the vehicle CG. The block divides the normal forces by the nominal normal load to vary the effective friction parameters during weight and load transfer. The block maintains pitch and roll equilibrium.
Tire forces	The block uses the ratio of the local, longitudinal, and lateral velocities to determine the slip angles.
The block uses the steering angles to transform the tire forces to the vehicle- fixed frame. If you set Axle forces to External forces, the block assumes that the externally provided forces are in the vehicle-fixed frame at the axle-wheel location.	

Single Track - Three Axles

Single Track - Two Axles

Single Track - One Axle

Dual Track - One Axle

The illustrations use these variables.

a, b, c	Longitudinal distance of the front, middle, and rear axles, respectively, from the normal projection point of the vehicle CG onto the common axle plane
h	Height of the tractor CG above the axle plane along the vehicle-fixed z-axis
d	Lateral distance from the geometric centerline to the center of mass along the vehicle-fixed y-axis
$h h f, h h_{-} r$	Height of the front and rear hitch, respectively, above the axle plane along the vehicle-fixed z-axis
$d h f, d h_{-} r$	Longitudinal distance of the front and rear hitch, respectively, from the normal projection point of tractor CG onto the common axle plane
$w f, w m, w r$	Front, middle, and rear track width, respectively

This table summarizes the block implementation for the drag calculation.

Calculation	Description
Coordinate transformation	The block transforms the wind speeds from the inertial frame to the vehicle- fixed frame.
Drag forces	To determine a relative airspeed, the block subtracts the wind speed from the CG vehicle velocity. Using the relative airspeed, the block determines the drag forces.
Drag moments	Using the relative airspeed, the block determines the drag moments.

Lateral Corner Stiffness and Relaxation Dynamics

To enable the mapped corner stiffness and relaxation length dynamic parameters, set Axle forces to External longitudinal forces or External longitudinal velocity.

Parameter Settings	Description	
Mapped Corner Stiffness	Include Relaxation Length Dynamics	
Off (default)	On (default)	The block uses constant corner stiffness values. The slip angles include the relaxation length dynamic settings. The relaxation length approximates an effective corner stiffness force that is a function of wheel travel.
On	On (default)	The block uses lookup tables that are functions of the corner stiffness data and slip angles. The slip angles include the relaxation length dynamic settings. The relaxation length approximates an effective corner stiffness force that is a function of wheel travel.
Off (default)	Off	The block uses constant corner stiffness values.

Ports

Input

WhIAngF - Front wheel steering angles
scalar|array
Front wheel steering angles, δ_{F}, in rad.

Vehicle Track Setting	Variable	Signal Dimension
Single 1-axle Single 2-axle Single 3-axle	δ_{F}	Scalar-1
Dual 1-axle		
Dual 2-axle	$\delta_{F}=\left[\delta_{f l} \delta_{f r}\right]$ or $\left[\begin{array}{l}\delta_{f l} \\ \delta_{f r}\end{array}\right]$	Array - [1x2] or [2x1]
Dual 3-axle		

Dependencies

To enable this port, under Input signals, select Front wheel steering.
WhIAngM - Middle wheel steering angles
scalar | array
Middle wheel steering angles, δ_{M}, in rad.

Vehicle Track Setting	Variable	Signal Dimension
Single 3-axle	δ_{M}	Scalar - 1
Dual 3-axle	$\delta_{M}=\left[\delta_{m l} \delta_{m r}\right]$ or $\left[\begin{array}{ll}\delta_{m l} \\ \delta_{m r}\end{array}\right]$	Array - [1×2] or [2x1]

Dependencies

To enable this port:

- Set Vehicle track to Single 3-axle or Dual 3-axle.
- To enable this port, under Input signals, select Middle wheel steering.

WhIAngR - Rear wheel steering angles
scalar|array
Rear wheel steering angles, δ_{R}, in rad.

Vehicle Track Setting	Variable	Signal Dimension
Single 1-axle Single 2-axle Single 3-axle	δ_{R}	Scalar - 1
Dual 1-axle		
Dual 2-axle	$\delta_{R}=\left[\delta_{r l} \delta_{r r}\right]$ or $\left[\begin{array}{l}\delta_{r l} \\ \delta_{r r}\end{array}\right]$	Array - [1x2] or [2×1]
Dual 3-axle		

Dependencies

To enable this port, under Input signals, select Rear wheel steering.
xdotin - Longitudinal velocity
scalar
Vehicle CG velocity along the vehicle-fixed x-axis, in m / s.

Dependencies

To enable this port, set Axle forces to External longitudinal velocity.
FwF - Total force on the front wheels

scalar|array

Force on the front wheels, $F w_{F}$, along the vehicle-fixed axis, in N.

Vehicle Track Setting	Axle Forces Setting	Description	Variable	Signal Dimension
Single 1axle	External longitudinal forces	Longitudinal force on the front wheel	$F w F=F x_{f}$	Scalar - 1
Single 2- axle Single 3 - axle	External forces	Longitudinal and lateral forces on the front wheel	$F w F=\left[\begin{array}{lll} F x_{f} & F y_{f} \end{array}\right] \text { or }\left[\begin{array}{l} F x_{f} \\ F y_{f} \end{array}\right]$	$\begin{aligned} & \text { Array - [1x2] or } \\ & {[2 \times 1]} \end{aligned}$
Dual 1axle Dual 2axle	External longitudinal forces	Longitudinal force on the front wheels	$F w F=\left[F_{x f l} F_{x f r}\right] \text { or }\left[\begin{array}{l} F_{x f l} \\ F_{x f r} \end{array}\right.$	$\begin{aligned} & \text { Array - [1x2] or } \\ & {[2 \times 1]} \end{aligned}$
Dual 3axle	External forces	Longitudinal and lateral forces on the front wheels	$F w F=\left[\begin{array}{ll}F_{\chi f l} & F_{\chi f r} \\ F_{y f l} & F_{y f r}\end{array}\right]$	Array - [2x2]

Dependencies

To enable this port, set Axle forces to one of these options:

- External longitudinal forces
- External forces

FwM - Total force on the middle wheels
scalar|array
Force on the middle wheels, $F w_{M}$, along the vehicle-fixed axis, in N .

Vehicle Track Setting	Axle Forces Setting	Description	Variable	Signal Dimension
Single 3- axle	External longitudinal forces	Longitudinal force on the middle wheel	$F w M=F x_{r}$	Scalar - 1
External forces	Longitudinal and lateral forces on the middle wheel	$F w M=\left[F x_{m} F y_{m}\right]$ or $\left[\begin{array}{l}F x_{m} \\ F y_{m}\end{array}\right]$	Array - [1x2] or $[2 \times 1]$	
Dual 3- axle	External longitudinal forces	Longitudinal force on the middle wheels	$F w M=\left[F_{x m l} F_{x m r}\right]$ or $\left[\begin{array}{l}F_{x m l} \\ F_{x m r}\end{array}\right]$	Array - [1x2] or $[2 \times 1]$

Dependencies

To enable this port, set:

- Vehicle track to Single 3-axle or Dual 3-axle.
- Axle forces to External longitudinal forces or External forces.

FwR - Total force on the rear wheels
scalar| array
Force on the rear wheels, $F w_{R}$, along the vehicle-fixed axis, in N.

Vehicle Track Setting	Axle Forces Setting	Description	Variable	Signal Dimension
Single 2axle Single 3axle	External longitudinal forces	Longitudinal force on the rear wheel	$F w R=F \chi_{r}$	Scalar - 1
	External forces	Longitudinal and lateral forces on the rear wheel	$F w R=\left[\begin{array}{lll}F \chi_{r} & F y_{r}\end{array}\right]$ or $\left[\begin{array}{l}F \chi_{r} \\ F y_{r}\end{array}\right]$	$\begin{aligned} & \text { Array - [1×2] or } \\ & {[2 \times 1]} \end{aligned}$

Vehicle Track Setting	Axle Forces Setting	Description	Variable	Signal Dimension
Dual 2axle Dual 3axle	External longitudinal forces	Longitudinal force on the rear wheels	$F w R=\left[F_{x r l} F_{x r r}\right] \text { or }\left[\begin{array}{l} F_{x r l} \\ F_{x r r} \end{array}\right.$	$\begin{aligned} & \text { Array - [1×2] or } \\ & {[2 \times 1]} \end{aligned}$
	External forces	Longitudinal and lateral forces on the rear wheels	$F w R=\left[\begin{array}{lll}F_{x r l} & F_{x r r} \\ F_{y r l} & F_{y r r}\end{array}\right]$	Array - [2x2]

Dependencies

To enable this port, set:

- Vehicle track to Single 3-axle, Single 2-axle, Dual 3-axle or Dual 2-axle.
- Axle forces to External longitudinal forces or External forces.

FExt - External force on the vehicle CG
array
External forces applied to the vehicle CG, $F_{\text {xext }}, F_{\text {yext }}, F_{z e x t}$, in vehicle-fixed frame, in N. The signal vector dimensions are [1×3] or [3×1].

Dependencies

To enable this port, under Input signals, select External forces.

MExt - External moment about vehicle CG

array
External moment about the vehicle CG, M_{x}, M_{y}, M_{z}, in the vehicle-fixed frame, in $\mathrm{N} \cdot \mathrm{m}$. The signal vector dimensions are [1×3] or [3×1].

Dependencies

To enable this port, under Input signals, select External moments.
FhF - Front hitch force on the body array

Hitch force applied to the body at the front hitch location, $F h F_{x}, F h F_{y}, F h F_{z}$, in the vehicle-fixed frame, in N, specified as a 1-by-3 or 3-by-1 array.

Dependencies

To enable this port, under Input signals, select Front hitch forces.
MhF - Front hitch moment about body
array
Hitch moment at the front hitch location, $M h F_{x}, M h F_{y}, M h F_{z}$, about the vehicle-fixed frame, in $\mathrm{N} \cdot \mathrm{m}$, specified as a 1-by-3 or 3-by-1 array.

Dependencies

To enable this port, under Input signals, select Front hitch moments.
FhR - Rear hitch force on the body
array
Hitch force applied to the body at the rear hitch location, $F h R_{x}, F h R_{y}, F h R_{z}$, in the vehicle-fixed frame, in N , specified as a 1-by-3 or 3-by-1 array.

Dependencies

To enable this port, under Input signals, select Rear hitch forces.
MhR - Rear hitch moment about body
array
Hitch moment at the rear hitch location, $M h R_{x}, M h R_{y}, M h R_{z}$, about the vehicle-fixed frame, in $N \cdot m$, specified as a 1-by-3 or 3-by-1 array.

Dependencies

To enable this port, under Input signals, select Rear hitch moments.
WindXYZ - Wind speed
array
Wind speed, W_{x}, W_{y}, W_{z}, along the inertial X-, Y-, and Z-axes, in m / s. The signal vector dimensions are 1-by-3 or 3-by-1.

Dependencies

To enable this port, under Input signals, select External wind.
$\mathbf{M u}$ - Tire friction coefficient
array
Tire friction coefficient, μ. The value is dimensionless.

Vehicle Track Setting	Description	Variable	Signal Dimension
Single 1-axle	Friction coefficient on the wheels	$M u=\mu_{f}$	Array - [1x1]
Dual 1-axle	Friction coefficient on the wheels	$\begin{aligned} & M u=\left[\begin{array}{ll} \mu_{f l} & \left.\mu_{f r}\right] \text { or } \\ {\left[\begin{array}{l} \mu_{f l} \\ \mu_{f r} \end{array}\right]} \end{array} .\right. \end{aligned}$	Array - [1x2] or [2x1]
Single 2-axle	Friction coefficient on the wheels	$M u=\left[\begin{array}{ll} \mu_{f} & \left.\mu_{r}\right] \text { or }\left[\begin{array}{l} \mu_{f} \\ \mu_{r} \end{array}\right] \end{array}\right.$	Array - [1x2] or [2x1]
Dual 2-axle	Friction coefficient on the wheels	$M u=\left[\begin{array}{ll}\mu_{f l} & \mu_{f r} \\ \mu_{r l} & \mu_{r r}\end{array}\right]$	Array - [2x2]

Vehicle Track Setting	Description	Variable	Signal Dimension
Single 3-axle	Friction coefficient on the wheels	$\begin{aligned} & M u=\left[\begin{array}{lll} \mu_{f} & \mu_{m} & \mu_{r} \end{array}\right] \text { or } \\ & {\left[\begin{array}{l} \mu_{f} \\ \mu_{m} \\ \mu_{r} \end{array}\right]} \end{aligned}$	Array - [1x3] or [3x1]
Dual 3-axle	Friction coefficient on the wheels	$M u=\left[\begin{array}{ll}\mu_{f l} & \mu_{f r} \\ \mu_{m l} & \mu_{m r} \\ \mu_{r l} & \mu_{r r}\end{array}\right]$	Array - [3x2]

Dependencies

To enable this port, under Input signals, select External friction.
AirTemp - Ambient air temperature
scalar
Ambient air temperature, in K.

Dependencies

To enable this port, under Input signals, select Air temperature.
X_0 - Initial longitudinal position
scalar
Initial vehicle CG displacement along the earth-fixed X-axis, in m.

Dependencies

To enable this port, under Input signals, select Initial longitudinal position.
Y_o - Initial lateral position
scalar
Initial vehicle CG displacement along the earth-fixed Y-axis, in m.

Dependencies

To enable this port, under Input signals, select Initial lateral position.
xdot_o - Initial longitudinal position
scalar
Initial vehicle CG velocity along the vehicle-fixed x-axis, in m/s.

Dependencies

To enable this port:
1 Set Axle forces to one of these options:

- External longitudinal forces
- External forces

2 Under Input signals, select Initial longitudinal velocity
ydot_o - Initial lateral position
scalar
Initial vehicle CG velocity along the vehicle-fixed y-axis, in m / s.

Dependencies

To enable this port, under Input signals, select Initial lateral velocity.
psi_o - Initial yaw angle
scalar
Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw), in rad.

Dependencies

To enable this port, under Input signals, select Initial yaw angle.
r_o - Initial yaw rate
scalar
Vehicle angular velocity about the vehicle-fixed z-axis (yaw rate), in rad/s.

Dependencies

To enable this port, under Input signals, select Initial yaw rate.

Output

Info - Trailer data
bus
Trailer data, returned as a bus signal containing these block values.

Signal				Description	Value	Units
InertFrm	Cg	Disp	X	Vehicle CG displacement along the earth-fixed X - axis	Computed	m
			Y	Vehicle CG displacement along the earth-fixed Y - axis	Computed	m
			Vehicle CG displacement along the earth-fixed $Z-$ axis	0	m	
		Vel	Xdot	Vehicle CG velocity along the earth-fixed X-axis	Computed	m / s
	Vehicle CG velocity along the earth-fixed Y-axis	Computed	m / s			

Signal				Description	Value	Units
Signal		Zdot		Vehicle CG velocity along the earth-fixed Z-axis	0	m/s
	Ang	phi		Rotation of the vehiclefixed frame about the earth-fixed X-axis (roll)	0	rad
		theta		Rotation of the vehiclefixed frame about the earth-fixed Y-axis (pitch)	0	rad
		psi		Rotation of the vehiclefixed frame about the earth-fixed Z-axis (yaw)	Computed	rad
FrntAxl	Lft	Disp	X	Front left wheel displacement along the earth-fixed X-axis	Computed	m
			Y	Front left wheel displacement along the earth-fixed Y-axis	Computed	m
			Z	Front left wheel displacement along the earth-fixed Z-axis	0	m
		Vel	$\begin{aligned} & \hline \text { Xdo } \\ & \mathrm{t} \end{aligned}$	Front left wheel velocity along the earth-fixed X axis	Computed	m / s
			$\begin{array}{\|l} \hline \text { Ydo } \\ \mathrm{t} \end{array}$	Front left wheel velocity along the earth-fixed Y axis	Computed	m/s
			$\begin{aligned} & \mathrm{Zdo} \\ & \mathrm{t} \end{aligned}$	Front left wheel velocity along the earth-fixed Z axis	0	m/s
	Rght	Disp	X	Front right wheel displacement along the earth-fixed X-axis	Computed	m
			Y	Front right wheel displacement along the earth-fixed Y-axis	Computed	m
			Z	Front right wheel displacement along the earth-fixed Z-axis	0	m
		Vel	$\begin{aligned} & \hline \text { Xdo } \\ & \mathrm{t} \end{aligned}$	Front right wheel velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \mathrm{Ydo} \\ & \mathrm{t} \end{aligned}$	Front right wheel velocity along the earth-fixed Y axis	Computed	m/s

Signal				Description	Value	Units
			$\begin{aligned} & \mathrm{Zdo} \\ & \mathrm{t} \end{aligned}$	Front right wheel velocity along the earth-fixed Zaxis	0	m/s
Midlaxl	Lft	Disp	X	Middle left wheel displacement along the earth-fixed X-axis	Computed	m
			Y	Middle left wheel displacement along the earth-fixed Y-axis	Computed	m
			Z	Middle left wheel displacement along the earth-fixed Z-axis	0	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Middle left wheel velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \mathrm{Ydo} \\ & \mathrm{t} \end{aligned}$	Middle left wheel velocity along the earth-fixed Y axis	Computed	m / s
			$\begin{aligned} & \text { Zdo } \\ & \dagger \end{aligned}$	Middle left wheel velocity along the earth-fixed Zaxis	0	m/s
	Rght	Disp	X	Middle right wheel displacement along the earth-fixed X-axis	Computed	m
			Y	Middle right wheel displacement along the earth-fixed Y-axis	Computed	m
			Z	Middle right wheel displacement along the earth-fixed Z-axis	0	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Middle right wheel velocity along the earthfixed X-axis	Computed	m / s
			$\begin{aligned} & \mathrm{Ydo} \\ & \mathrm{t} \end{aligned}$	Middle right wheel velocity along the earthfixed Y-axis	Computed	m/s
			$\begin{aligned} & \mathrm{Zdo} \\ & \dagger \end{aligned}$	Middle right wheel velocity along the earthfixed Z-axis	0	m/s
RearAxl	Lft	Disp	X	Rear left wheel displacement along the earth-fixed X-axis	Computed	m
			Y	Rear left wheel displacement along the earth-fixed Y-axis	Computed	m

Signal				Description	Value	Units
			Z	Rear left wheel displacement along the earth-fixed Z-axis	0	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Rear left wheel velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \text { Ydo } \\ & \mathrm{t} \end{aligned}$	Rear left wheel velocity along the earth-fixed Y axis	Computed	m/s
			$\begin{aligned} & \text { Zdo } \\ & \mathrm{t} \end{aligned}$	Rear left wheel velocity along the earth-fixed Zaxis	0	m/s
	Rght	Disp	X	Rear right wheel displacement along the earth-fixed X-axis	Computed	m
			Y	Rear right wheel displacement along the earth-fixed Y-axis	Computed	m
			Z	Rear right wheel displacement along the earth-fixed Z-axis	0	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Rear right wheel velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \text { Ydo } \\ & \mathrm{t} \end{aligned}$	Rear right wheel velocity along the earth-fixed Y axis	Computed	m/s
			$\begin{aligned} & \mathrm{Zdo} \\ & \dagger \end{aligned}$	Rear right wheel velocity along the earth-fixed Zaxis	0	m/s
Geom	Disp	X		Trailer body offset from the axle plane along the earth-fixed X-axis	Computed	m
		Y		Trailer body offset from the center plane along the earth-fixed Y-axis	Computed	m
		Z		Trailer body offset from the axle plane along the earth-fixed Z-axis	Computed	m
	Vel	Xdot		Trailer body offset velocity along the earthfixed X-axis	Computed	m/s
		Ydot		Trailer body offset velocity along the earthfixed Y-axis	Computed	m/s

Signal				Description	Value	Units
			Zdot	Trailer body offset velocity along the earthfixed Z-axis	Computed	m/s
	HitchF	Disp	X	Trailer front hitch offset from the axle plane along the earth-fixed X-axis	Computed	m
			Y	Trailer front hitch offset from the center plane along the earth-fixed Y axis	Computed	m
			Z	Trailer front hitch offset from the axle plane along the earth-fixed Z-axis	Computed	m
		Vel	Xdot	Trailer front hitch offset velocity along the earthfixed X-axis	Computed	m/s
			Ydot	Trailer front hitch offset velocity along the earthfixed Y-axis	Computed	m/s
			Zdot	Trailer front hitch offset velocity along the earthfixed Z-axis	Computed	m/s
	HitchR	Disp	X	Trailer rear hitch offset from the axle plane along the earth-fixed X-axis	Computed	m
			Y	Trailer rear hitch offset from the center plane along the earth-fixed Y axis	Computed	m
			Z	Trailer rear hitch offset from the axle plane along the earth-fixed Z-axis	Computed	m
		Vel	Xdot	Trailer rear hitch offset velocity along the earthfixed X-axis	Computed	m/s
			Ydot	Trailer rear hitch offset velocity along the earthfixed Y-axis	Computed	m/s
			Zdot	Trailer rear hitch offset velocity along the earthfixed Z-axis	Computed	m/s
BdyFrm	Cg	Vel	xdot	Vehicle CG velocity along the vehicle-fixed x-axis	Computed	m/s
			ydot	Vehicle CG velocity along the vehicle-fixed y-axis	Computed	m/s

Signal			Description	Value	Units
		zdot	Vehicle CG velocity along the vehicle-fixed z-axis	0	m/s
	Ang	Beta	Body slip angle, β $\beta=\frac{V_{y}}{V_{x}}$	Computed	rad
	AngVel	p	Vehicle angular velocity about the vehicle-fixed x axis (roll rate)	0	rad/s
		q	Vehicle angular velocity about the vehicle-fixed y axis (pitch rate)	0	rad/s
		r	Vehicle angular velocity about the vehicle-fixed z axis (yaw rate)	Computed	rad/s
	Acc	ax	Vehicle CG acceleration along the vehicle-fixed x axis	Computed	gn
		ay	Vehicle CG acceleration along the vehicle-fixed y axis	Computed	gn
		az	Vehicle CG acceleration along the vehicle-fixed z axis	0	gn
		xddot	Vehicle CG acceleration along the vehicle-fixed x axis	Computed	$\mathrm{m} / \mathrm{s}^{\wedge} 2$
		yddot	Vehicle CG acceleration along the vehicle-fixed y axis	Computed	$\mathrm{m} / \mathrm{s}^{\wedge} 2$
		zddot	Vehicle CG acceleration along the vehicle-fixed z axis	0	$\mathrm{m} / \mathrm{s}^{\wedge} 2$
	AngAcc	pdot	Vehicle angular acceleration about the vehicle-fixed x-axis	0	rad/s
		qdot	Vehicle angular acceleration about the vehicle-fixed y-axis	0	rad/s
		rdot	Vehicle angular acceleration about the vehicle-fixed z-axis	Computed	rad/s
Forces	Body	FX	Net force on the vehicle CG along the vehicle-fixed x-axis	Computed	N

Signal			Description	Value	Units
		Fy	Gravity force on the vehicle CG along the vehicle-fixed y-axis	Computed	N
		Fz	Gravity force on the vehicle CG along the vehicle-fixed z-axis	Computed	N
Moments	Body	Mx	Body moment on the vehicle CG about the vehicle-fixed x-axis	0	$\mathrm{N} \cdot \mathrm{m}$
		My	Body moment on the vehicle CG about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz	Body moment on the vehicle CG about the vehicle-fixed z-axis	0	$\mathrm{N} \cdot \mathrm{m}$
	Drag	Mx	Drag moment on the vehicle CG about the vehicle-fixed x-axis	0	$\mathrm{N} \cdot \mathrm{m}$
		My	Drag moment on the vehicle CG about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz	Drag moment on the vehicle CG about the vehicle-fixed z-axis	0	$\mathrm{N} \cdot \mathrm{m}$
	Ext	Mx	External moment on the vehicle CG about the vehicle-fixed x-axis	0	$\mathrm{N} \cdot \mathrm{m}$
		My	External moment on the vehicle CG about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz	External moment on the vehicle CG about the vehicle-fixed z-axis	0	$\mathrm{N} \cdot \mathrm{m}$
	HitchF	Mx	Hitch moment at the front hitch location about vehicle-fixed x-axis	0	$\mathrm{N} \cdot \mathrm{m}$
		My	Hitch moment at the front hitch location about vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz	Hitch moment at the front hitch location about vehicle-fixed z-axis	0	$\mathrm{N} \cdot \mathrm{m}$
	HitchR	Mx	Hitch moment at the rear hitch location about vehicle-fixed x-axis	0	$\mathrm{N} \cdot \mathrm{m}$

Signal				Description	Value	Units
		WhlAngFR		Front right wheel steering angle	Computed	rad
MidlAxl	Lft	Disp	x	Middle left wheel displacement along the vehicle-fixed x-axis	Computed	m
			y	Middle left wheel displacement along the vehicle-fixed y-axis	Computed	m
			z	Middle left wheel displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{array}{\|l\|} \hline \text { xdo } \\ \mathrm{t} \end{array}$	Middle left wheel velocity along the vehicle-fixed x axis	Computed	m/s
			$\begin{array}{\|l\|} \hline \text { ydo } \\ \mathrm{t} \end{array}$	Middle left wheel velocity along the vehicle-fixed y axis	Computed	m/s
			$\begin{array}{\|l\|} \hline \text { zdo } \\ \mathrm{t} \end{array}$	Middle left wheel velocity along the vehicle-fixed z axis	0	m/s
	Rght	Disp	x	Middle right wheel displacement along the vehicle-fixed x-axis	Computed	m
			y	Middle right wheel displacement along the vehicle-fixed y-axis	Computed	m
			z	Middle right wheel displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{aligned} & \hline \text { xdo } \\ & \mathrm{t} \end{aligned}$	Middle right wheel velocity along the vehiclefixed x-axis	Computed	m/s
			$\begin{array}{\|l\|} \hline \text { ydo } \\ \mathrm{t} \end{array}$	Middle right wheel velocity along the vehiclefixed y-axis	Computed	m/s
			$\begin{array}{\|l\|} \hline \text { zdo } \\ \mathrm{t} \end{array}$	Middle right wheel velocity along the vehiclefixed z-axis	0	m/s
	Steer	WhlangRL		Middle left wheel steering angle	Computed	rad
		WhlAngRR		Middle right wheel steering angle	Computed	rad

			Description	Value	Units
Signal		y	Front hitch offset from center plane along the vehicle-fixed y-axis	Input	m
		z	Front hitch offset from axle plane along the earth-fixed z-axis	Input	m
	Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Front hitch offset velocity along the vehicle-fixed x axis	Computed	m/s
		$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Front hitch offset velocity along the vehicle-fixed y axis	Computed	m/s
		$\begin{aligned} & \mathrm{zdo} \\ & \dagger \end{aligned}$	Front hitch offset velocity along the vehicle-fixed z axis	0	m/s
HitchR	Disp	x	Rear hitch offset from axle plane along the vehiclefixed x-axis	Input	m
		y	Rear hitch offset from center plane along the vehicle-fixed y-axis	Input	m
		z	Rear hitch offset from axle plane along the earthfixed z-axis	Input	m
	Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Rear hitch offset velocity along the vehicle-fixed x axis	Computed	m/s
		$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Rear hitch offset velocity along the vehicle-fixed y axis	Computed	m / s
		$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Rear hitch offset velocity along the vehicle-fixed z axis	0	m / s
Pwr	Ext		Applied external power	Computed	W
	HitchF		Front hitch power	Computed	W
	HitchR		Rear hitch power	Computed	W
	Drag		Power loss due to drag	Computed	W
Geom	Disp	x	Trailer offset from axle plane along the vehiclefixed x-axis	Input	m
		y	Trailer offset from center plane along the vehiclefixed y-axis	Input	m

Signal			Description	Value	Units
		z	Trailer offset from axle plane along the vehiclefixed z-axis	Input	m
	Vel	$\begin{aligned} & \text { xdo } \\ & t \end{aligned}$	Trailer offset velocity along the vehicle-fixed x axis	Computed	m/s
		$\begin{aligned} & \text { ydo } \\ & t \end{aligned}$	Trailer offset velocity along the vehicle-fixed y axis	Computed	m/s
		$\begin{aligned} & \text { zdo } \\ & t \end{aligned}$	Trailer offset velocity along the vehicle-fixed z axis	0	m / s
	Ang	Bet a	Body slip angle, β $\beta=\frac{V_{y}}{V_{x}}$	Computed	rad

Signal			Description	Value	Units
PwrInfo	PwrTrnsfrd	PwrFxExt	Externally applied longitudinal force power	Comp uted	W
		PwrFyExt	Externally applied lateral force power	Comp uted	W
		PwrMzExt	Externally applied yaw moment power	Comp uted	W
		PwrFwFLx	Longitudinal force applied at the front left axle power	Comp uted	W
		PwrFwFLy	Lateral force applied at the front left axle power	Comp uted	W
		PwrFwFRx	Longitudinal force applied at the front right axle power	Comp uted	W
		PwrFwFRy	Lateral force applied at the front right axle power	Comp uted	W
		PwrFwMLx	Longitudinal force applied at the middle left axle power	Comp uted	W
		PwrFwMLy	Lateral force applied at the middle left axle power	Comp uted	W
		PwrFwMRx	Longitudinal force applied at the middle right axle power	Comp uted	W
		PwrFwMRy	Lateral force applied at the middle right axle power	Comp uted	W
		PwrFwRLx	Longitudinal force applied at the rear left axle power	Comp uted	W

xdot - Trailer longitudinal velocity
scalar
Trailer CG velocity along the vehicle-fixed x-axis, in m / s.
ydot - Trailer lateral velocity
scalar
Trailer CG velocity along the vehicle-fixed y-axis, in m / s.
psi - Yaw
scalar
Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw), in rad.
r-Yaw rate
scalar
Vehicle angular velocity, r, about the vehicle-fixed z-axis (yaw rate), in rad/s.
FzF - Normal force on the front wheels
scalar|array
Normal force on the front wheels, $F z_{F}$, along the vehicle-fixed z-axis, in N .

Vehicle Track Setting	Description	Variable	Signal Dimension
Single 2-axle Single 3-axle	Normal force on the front axle	$F z F=F z_{f}$	Scalar - 1
Dual 2-axle Dual 3-axle	Normal force on the front wheels	$F z F=\left[F z_{f l} F z_{f r}\right]$	Array - [1x2]

FzM - Normal force on the middle wheels
scalar| array
Normal force on the middle wheels, $F z_{M}$, along the vehicle-fixed z-axis, in N .

Vehicle Track Setting	Description	Variable	Signal Dimension
Single 3-axle	Normal force on the middle axle	$F z M=F z_{m}$	Scalar - 1
Dual 3-axle	Normal force on the right and left middle wheels	$F z M=\left[F z_{m l} F z_{r l}\right]$	Array - [1x2]

Dependencies

To enable this port, set Vehicle track to Single 3-axle or Dual 3-axle.
FzR - Normal force on the rear wheels
scalar array
scalar|array
Normal force on the rear wheels, $F z_{R}$, along the vehicle-fixed z-axis, in N .

Vehicle Track Setting	Description	Variable	Signal Dimension
Single 2-axle Single 3-axle	Normal force on the rear wheel	$F z R=F z_{r}$	Scalar - 1
Dual 2-axle Dual 3-axle	Normal force on the rear wheels	$F z R=\left[F z_{r l} F z_{r r}\right]$	Array - [1x2]

Fhz - Normal component of hitch force on the body
scalar
Normal hitch force applied to the body at the hitch location, $F h_{z}$, in the vehicle-fixed frame z-axis, in N .

If you enable the Hitch forces parameter, the block offsets the normal hitch force, $F h_{z}$, with the value of the Fh input port component along the vehicle-fixed z-axis.

Parameters

Options

Vehicle track - Type of vehicle track
Dual 2-axle (default)|Single 1-axle|Dual 1-axle|Single 2-axle|Dual 3-axle
Use the Vehicle track parameter to specify the number of wheels.

Vehicle Track Setting	Implementation
Single 1-axle	Trailer with a single track and one axle. - - Forces act along the center line of the axle.
Do lateral load transfer.	

Axle forces - Type of axle force
External forces (default)|External longitudinal velocity|External longitudinal forces

Use the Axle forces parameter to specify the type of force.

Axle Forces Setting	Implementation
External longitudinal velocity	- The block assumes that the external longitudinal velocity is in a quasi-steady state, and the longitudinal acceleration is approximately zero. - Because the motion is quasi-steady, the block calculates lateral forces using the tire slip angles and linear cornering stiffness. - Consider this setting when you want to: - Generate virtual sensor signal data. - Conduct high-level software studies that are not impacted by driveline or nonlinear tire responses.

Axle Forces Setting	Implementation
External longitudinal forces	- The block uses the external longitudinal force to accelerate or brake the vehicle. - The block calculates lateral forces using the tire slip angles and linear cornering stiffness. - Consider this setting when you want to: - Account for changes in the longitudinal velocity on the lateral and yaw motion. - Specify the external longitudinal motion through a force instead of an external longitudinal velocity. - Connect the block to tractive actuators, wheels, brakes, and hitches.
External forces	- The block uses the external lateral and longitudinal forces to steer, accelerate, or brake the vehicle. - The block does not use the steering input to calculate vehicle motion. - Consider this setting when you need tire models with more accurate nonlinear combined lateral and longitudinal slip.

Input Signals

Front wheel steering - WhlAngF input port
off (default) | on
Select to create input port WhlAngF.
Middle wheel steering - WhlAngM input port
off (default) | on
Select to create input port WhlAngM.

Dependencies

To enable this parameter, set Vehicle track to Single 3-axle or Dual 3-axle.
Rear wheel steering - WhlAngR input port
off (default) | on
Select to create input port WhlAngR.

Dependencies

To enable this parameter, set Vehicle track to Single 2-axle, Dual 2-axle, Single 3-axle, or Dual 3-axle.

External wind - WindXYZ input port
off (default) | on
Select to create input port WindXYZ.
External friction - Mu input port
off (default) | on

Select to create input port Mu.

Dependencies

To enable this parameter, set Axle forces to one of these options:

- External longitudinal forces
- External forces

External forces - FExt input port
off (default) | on
Select to create input port FExt.
External moments - MExt input port
off (default) | on
Select to create input port MExt.
Front hitch forces - FhF input port
on (default) | off
Select to create input port Fh.
Front hitch moments - MhF input port
on (default) | off
Select to create input port Mh.
Rear hitch forces - FhR input port
off (default) | on
Select to create input port Fh.
Rear hitch moments - MhR input port
off (default) | on
Select to create input port Mh.
Initial longitudinal position - X_o input port
off (default) | on
Select to create input port X_o.
Initial yaw angle - psi_o input port
off (default) | on
Select to create input port psi_o.
Initial longitudinal velocity - xdot_o input port
off (default) | on
Select to create input port xdot o.

Dependencies

To enable this parameter, set Axle forces to External longitudinal forces or External forces.

Initial yaw rate - r_o input port
off (default) | on
Select to create input port r_o.
Initial lateral position - Y_o input port
off (default) | on
Select to create input port Y_o.
Air temperature - AirTemp input port
off (default) | on
Select to create input port AirTemp.
Initial lateral velocity - ydot_o input port
off (default) | on
Select to create input port ydot_o.

Longitudinal

Number of wheels on front axle, NF - Front wheel count
2 (default) | scalar
Number of wheels on the front axle, N_{F}. The value is dimensionless.
Number of wheels on middle axle, NM - Middle wheel count
2 (default) | scalar
Number of wheels on the middle axle, N_{M}. The value is dimensionless.

Dependencies

To enable this parameter, set Vehicle track to Single 3-axle or Dual 3-axle.
Number of wheels on rear axle, NR - Rear wheel count
2 (default) | scalar
Number of wheels on the rear axle, N_{R}. The value is dimensionless.
To enable this parameter, set Vehicle track to Single 2-axle, Single 3-axle, Dual 2-axle, or Dual 3-axle.

Vehicle mass, \mathbf{m} - Vehicle mass
26000 (default) | scalar
Vehicle mass, m, in kg.
Longitudinal distance from center of mass to front axle, a - Distance from CM to front axle 4 (default) | scalar

Distance from the vehicle CM to the front axle, a, in m.

Longitudinal distance from center of mass to middle axle, b-Distance from CM to middle axle 4.5 (default) | scalar

Distance from vehicle CM to middle axle, b, in m.

Dependencies
To enable this parameter, set Vehicle track to Single 3-axle or Dual 3-axle.
Longitudinal distance from center of mass to rear axle, c-Distance from CM to rear axle 5 (default) | scalar

Distance from vehicle CM to the front axle, c, in m .

Dependencies

To enable this parameter, set Vehicle track to Single 2-axle, Single 3-axle, Single 3-axle, or Dual 3-axle.

Vertical distance from center of mass to axle plane, \mathbf{h} - Distance from CM to axle plane 2 (default) | scalar

Vertical distance from vehicle CM to the axle plane, h, in m.

Longitudinal distance from center of mass to front hitch, $\mathbf{d h} \mathbf{f}$ - Distance to front hitch
7.5 (default) | scalar

Longitudinal distance from the center of mass to the front hitch, $d h f$, in m .

Dependencies

To enable this parameter, on the Input signals pane, select Front hitch forces or Front hitch moments.

Vertical distance from front hitch to axle plane, $\mathbf{h h} \mathbf{f}$ - Distance from front hitch to axle plane 0.6 (default) | scalar

Vertical distance from the front hitch to the axle plane, $h h f$, in m.

Dependencies

To enable this parameter, on the Input signals pane, select Front hitch forces or Front hitch moments.

Longitudinal distance from center of mass to rear hitch, $\mathbf{d h} \mathbf{r}$ - Distance to front hitch 7.5 (default) | scalar

Longitudinal distance from the center of mass to the rear hitch, $d h_{-} r$, in m.

Dependencies

To enable this parameter, on the Input signals pane, select Rear hitch forces or Rear hitch moments.

Vertical distance from front hitch to axle plane, hh_r - Distance from rear hitch to axle plane 0.6 (default) | scalar

Vertical distance from the rear hitch to the axle plane, $h h_{-} r$, in m.

Dependencies

To enable this parameter, on the Input signals pane, select Rear hitch forces or Rear hitch moments.

Initial inertial frame longitudinal position, X_o - Initial inertial X location
0 (default) | scalar
Initial vehicle CG displacement along the earth-fixed X-axis, in m .
Initial longitudinal velocity, xdot_o - Initial velocity
0 (default) | scalar
Initial vehicle CG velocity along the vehicle-fixed x-axis, in m / s.

Dependencies

To enable this parameter, set Axle forces to one of these options:

- External longitudinal forces
- External forces

Lateral
Mapped corner stiffness - Selection
off (default) | on

Enables mapped corner stiffness calculation.

Dependencies

To enable this parameter, set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

Include relaxation length dynamics - Enable relaxation length dynamics
on (default) | off
Enables relaxation length dynamics.
Dependencies
To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Clear Mapped corner stiffness.

Lateral distance from geometric centerline to center of mass, \mathbf{d} - Distance from centerline to CM

```
0 (default) | scalar
```

Lateral distance from the geometric centerline to the center of mass, d, in m, along the vehicle-fixed y. Positive values indicate that the trailer CM is to the right of the geometric centerline. Negative values indicate that the trailer CM is to the left of the geometric centerline.

Lateral distance from geometric centerline to front hitch, hl_f - Distance from centerline to front hitch
0 (default) | scalar
Lateral distance from the geometric centerline to the front hitch, hl f, in m , along the vehicle-fixed y. Positive values indicate that the trailer hitch is to the right of the geometric centerline. Negative values indicate that the trailer hitch is to the left of the geometric centerline.

Dependencies

To enable this parameter, on the Input signals pane, select Front hitch forces or Front hitch moments.

Lateral distance from geometric centerline to rear hitch, hl_r - Distance from centerline to rear hitch
0 (default) | scalar
Lateral distance from the geometric centerline to the rear hitch, $h l r$, in m, along the vehicle-fixed y. Positive values indicate that the trailer hitch is to the right of the geometric centerline. Negative values indicate that the trailer hitch is to the left of the geometric centerline.

Dependencies

To enable this parameter, on the Input signals pane, select Rear hitch forces or Rear hitch moments.

Front track width, w_f - Front track width
1.82 (default) | scalar

Front track width, $w f$, in m.

Dependencies
To enable this parameter, set Vehicle track to Dual 2-axle, Dual 2-axle, or Dual 3-axle.
Middle track width, w_m - Middle track width
1.82 (default) | scalar

Middle track width, wm, in m.

Dependencies

To enable this parameter, set Vehicle track to Dual 3-axle.
Rear track width, w_r - Rear track width
1.82 (default) | scalar

Rear track width, $w r$, in m.

Dependencies

To enable this parameter, set Vehicle track to Dual 2-axle or Dual 3-axle.
Front axle tire corner stiffness, Cy_f - Front axle tire stiffness
12.3 (default) | scalar

Front tire corner stiffness, $C y_{f}$, in $\mathrm{N} / \mathrm{rad}$.

Dependencies

To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Clear Mapped corner stiffness.
Middle axle tire corner stiffness, Cy_m - Middle axle tire stiffness
11.3 (default) | scalar

Middle tire corner stiffness, $C y_{m}$, in N/rad.

Dependencies

To enable this parameter:
1 Set Vehicle track to one of these options:

- Single 3-axle
- Dual 3-axle

2 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

3 Clear Mapped corner stiffness.

Rear axle tire corner stiffness, Cy_r - Rear axle tire stiffness
11.3 (default) | scalar

Rear tire corner stiffness, $C y_{r}$, in $\mathrm{N} / \mathrm{rad}$.

Dependencies

To enable this parameter:
1 Set Vehicle track to one of these options:

- Single 2-axle
- Dual 2-axle
- Single 3-axle
- Dual 3-axle

2 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

3 Clear Mapped corner stiffness.
Front tire(s) relaxation length, sigma_f - Relaxation length
. 1 (default) | scalar
Front tire relaxation length, σ_{f}, in m .

Dependencies

To enable this parameter:
1 Set Vehicle track to one of these options:

- Single 2-axle
- Dual 2-axle
- Single 3-axle
- Dual 3-axle

2 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

3 Do either of these:

- Select Mapped corner stiffness.
- Clear Mapped corner stiffness and select Include relaxation length dynamics.

Middle tire(s) relaxation length, sigma_m - Relaxation length
. 1 (default) | scalar
Middle tire relaxation length, σ_{m}, in m .

Dependencies

To enable this parameter:

1 Set Vehicle track to one of these options:

- Single 3-axle
- Dual 3-axle

2 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

3 Do either of these:

- Select Mapped corner stiffness.
- Clear Mapped corner stiffness and select Include relaxation length dynamics.

Rear tire(s) relaxation length, sigma_r - Relaxation length
. 1 (default) | scalar
Rear tire relaxation length, σ_{r}, in m .

Dependencies

To enable this parameter:
1 Set Vehicle track to one of these options:

- Single 2-axle
- Dual 2-axle
- Single 3-axle
- Dual 3-axle

2 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

3 Do either of these:

- Select Mapped corner stiffness.
- Clear Mapped corner stiffness and select Include relaxation length dynamics.

Front axle slip angle breakpoints, alpha_f_brk - Breakpoints

[-. 1 .1] (default)|vector
Front axle slip angle breakpoints, $\alpha_{f b r k}$, in rad.

Dependencies

To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Select Mapped corner stiffness.

Front axle corner data, Cy_f_data - Breakpoints

[-9e3 9e3] (default)|vector

Front axle corner data, $C y_{f f a t a}$, in N/rad.

Dependencies

To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Select Mapped corner stiffness.
Middle axle slip angle breakpoints, alpha_m_brk - Breakpoints
[-. 1 .1] (default) |vector
Middle axle slip angle breakpoints, $\alpha_{m b r k}$, in rad.

Dependencies

To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Select Mapped corner stiffness.

Middle axle corner data, Cy_m_data - Breakpoints
[-9e3 9e3] (default)|vector
Middle axle corner data, $C y_{\text {mdata }}$, in $\mathrm{N} / \mathrm{rad}$.

Dependencies

To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Select Mapped corner stiffness.
Rear axle slip angle breakpoints, alpha_r_brk - Breakpoints
[-. 1 .1] (default)|vector
Rear axle slip angle breakpoints, $\alpha_{r b r k}$, in rad.
Dependencies
To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Select Mapped corner stiffness.
Rear axle corner data, Cy_r_data - Data
[-9e3 9e3] (default) | vector
Rear axle corner data, $C y_{\text {rdata }}$, in $\mathrm{N} / \mathrm{rad}$.

Dependencies

To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Select Mapped corner stiffness.

Initial inertial frame lateral displacement, Y_o - Position
0 (default) | scalar
Initial vehicle CG displacement along the earth-fixed Y-axis, in m.
Initial lateral velocity, ydot_o - Velocity
0 (default) | scalar
Initial vehicle CG velocity along the vehicle-fixed y-axis, in m / s.

Yaw

Yaw polar inertia, Izz - Inertia
4000 (default) | scalar
Yaw polar inertia, in $\mathrm{kg}^{*} \mathrm{~m}^{\wedge} 2$.
Initial yaw angle, psi_o - Psi rotation
0 (default) | scalar
Rotation of the vehicle-fixed frame about earth-fixed Z-axis (yaw), in rad.
Initial yaw rate, r_o - Yaw rate
0 (default) | scalar
Vehicle angular velocity about the vehicle-fixed z-axis (yaw rate), in rad/s.

Aerodynamic

Longitudinal drag area, Af - Effective vehicle cross-sectional area
2 (default) | scalar
Effective vehicle cross-sectional area, A_{f}, to calculate the aerodynamic drag force on the vehicle, in m^{2}.

Longitudinal drag coefficient, Cd - Air drag coefficient
. 3 (default) | scalar

Air drag coefficient, C_{d}. The value is dimensionless.
Longitudinal lift coefficient, CI - Air lift coefficient
. 1 (default) | scalar
Air lift coefficient, C_{l}. The value is dimensionless.
Longitudinal drag pitch moment, Cpm - Pitch drag
. 1 (default) | scalar
Longitudinal drag pitch moment coefficient, $C_{p m}$. The value is dimensionless.
Relative wind angle vector, beta_w - Wind angle
[0:0.01:0.3] (default) | vector
Relative wind angle vector, β_{w}, in rad.
Side force coefficient vector, Cs - Side force coefficient
[0:0.03:0.9] (default)| vector
Side force coefficient vector coefficient, C_{s}. The value is dimensionless.
Yaw moment coefficient vector, Cym - Yaw moment drag
[0:0.01:0.3] (default) | vector
Yaw moment coefficient vector coefficient, $C_{y m}$. The value is dimensionless.

Environment

Absolute air pressure, Pabs - Pressure

101325 (default) | scalar
Environmental absolute pressure, $P_{a b s}$, in Pa.
Air temperature, Tair - Temperature
273 (default) | scalar
Environmental absolute temperature, T, in K.

Dependencies

To enable this parameter, clear Air temperature.
Gravitational acceleration, \mathbf{g} - Gravity
9.81 (default) | scalar

Gravitational acceleration, g, in $m / \mathrm{s}^{\wedge} 2$.
Nominal friction scaling factor, mu - Friction scale factor
1 (default) | scalar
Nominal friction scale factor, μ. The value is dimensionless.

Dependencies

To enable this parameter:

1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Clear External Friction.

Simulation

Longitudinal velocity tolerance, xdot_tol - Tolerance
. 01 (default) | scalar
Longitudinal velocity tolerance, in m / s.
Nominal normal force, Fznom - Normal force
5000 (default) | scalar
Nominal normal force, in N .

Dependencies

To enable this parameter, set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

Geometric longitudinal offset from axle plane, longOff - Longitudinal offset 0 (default) | scalar

Vehicle chassis offset from the axle plane along the vehicle-fixed x-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independently of the vehicle CG.

Geometric lateral offset from center plane, latOff - Lateral offset

0 (default) | scalar
Vehicle chassis offset from the center plane along the vehicle-fixed y-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independently of the vehicle CG.

Geometric vertical offset from axle plane, vertOff - Vertical offset
0 (default) | scalar
Vehicle chassis offset from the axle plane along the vehicle-fixed z-axis, in m . When you use the 3D visualization engine, consider using the offset to locate the chassis independently of the vehicle CG.

Wrap Euler angles, wrapAng - Wrap the Euler angles to the interval [-pi, pi]
off (default) | on
Wrap the Euler angles to the interval [-pi, pi]. For vehicle maneuvers that might undergo vehicle yaw rotations that are outside of this interval, consider clearing the parameter if you want to:

- Track the total vehicle yaw rotation.
- Avoid discontinuities in the vehicle state estimators.

Version History

Introduced in R2020a

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink $®$ Coder $^{\mathrm{TM}}$.

See Also

Vehicle Body 3DOF Three Axles | Vehicle Body 3DOF | Trailer Body 6DOF
Topics
"Coordinate Systems in Vehicle Dynamics Blockset"

Trailer Body 6DOF

Trailer body with translational and rotational motion

Libraries:

Vehicle Dynamics Blockset / Vehicle Body

Description

The Trailer Body 6DOF block implements a rigid one-axle, two-axle or three-axle trailer body model that calculates longitudinal, lateral, vertical, pitch, roll, and yaw motion. The block accounts for body mass, inertia, aerodynamic drag, road incline, and weight distribution between the axle hard-point locations due to suspension and external forces and moments.

Use the Inertial Loads parameters to analyze the trailer dynamics under different loading conditions. To specify the number of trailer axles, use the Number of axles parameter.

To create additional input ports, under Input signals, select these block parameters.

Parameter	Input Port	Description
Front hitch forces	FhF	Hitch force applied to the body at the front hitch location, $F h F_{x}, F h F_{y}$, and $F h F_{z}$, in the vehicle-fixed frame
Front hitch moments	MhF	Hitch moment at the front hitch location, $M h F_{x}, M h F_{y}$, and $M h F_{z}$, about the vehicle-fixed frame
Rear hitch forces	FhR	Hitch force applied to the body at the rear hitch location, $F h R_{x}, F h R_{y}$, and $F h R_{z}$, in the vehicle-fixed frame
Rear hitch moments	MhR	Hitch moment at the rear hitch location, $M h R_{x}, M h R_{y}$, and $M h R_{z}$, about the vehicle-fixed frame

Inertial Loads

To analyze the vehicle dynamics under different loading conditions, use the Inertial Loads parameters. You can specify these loads:

- Front end
- Overhead
- Front left and front right
- Rear left and rear right
- Rear end

For each of the loads, you can specify the mass, location, and inertia.
The illustrations provide the load locations and vehicle parameter dimensions. The table provides the corresponding location parameter sign settings.

This table summarizes the parameter settings that specify the load locations indicated by the dots. For the location, the block uses this distance vector:

- Front axle to load, along the vehicle-fixed x-axis
- Vehicle centerline to load, along the vehicle-fixed y-axis
- Front axle to load, along the vehicle-fixed z-axis

Load	Parameter	Example Location
Front end	Distance vector from front axle, z1R	- $\operatorname{z1R}(1,1)<0-$ Forward of the front axle - $\operatorname{z1R}(1,2)>0-$ Right of the vehicle centerline - $\quad \operatorname{z1R}(1,3)>0-$ Above the front axle suspension hardpoint
Overhead	Distance vector from front axle, z2R	- $\operatorname{z2R}(1,1)>0-$ Rear of the front axle - $\operatorname{z2R}(1,2)<0-$ Left of the vehicle centerline - $z 2 R(1,3)>0-$ Above the front axle suspension hardpoint
Front left	Distance vector from front axle, z3R	- $\operatorname{z3R}(1,1)>0-$ Rear of the front axle - $z 3 R(1,2)<0-$ Left of the vehicle centerline - $z 3 R(1,3)>0-$ Above the front axle suspension hardpoint

Load	Parameter	Example Location
Front right	Distance vector from front axle, z4R	- $\quad z 4 R(1,1)>0-$ Rear of the front axle - $z 4 R(1,2)>0-$ Right of the vehicle centerline - $z 4 R(1,3)>0-$ Above the front axle suspension hardpoint
Rear left	Distance vector from front axle, z5R	- $\quad 25 R(1,1)>0-$ Rear of the front axle - $z 5 R(1,2)<0-$ Left of the vehicle centerline - $\quad \operatorname{z5R}(1,3)>0-$ Above the front axle suspension hardpoint
Rear right	Distance vector from front axle, z6R	- $\operatorname{z6R}(1,1)>0-$ Rear of the front axle - $\quad 26 R(1,2)>0-$ Right of the vehicle centerline - $\quad \operatorname{z6R}(1,3)>0-$ Above the front axle suspension hardpoint
Rear end	Distance vector from front axle, z7R	- $\operatorname{z7R}(1,1)>0-$ Rear of the front axle - \quad 77R $(1,2)>0-$ Right of the vehicle centerline - $z 7 R(1,3)>0-$ Above the front axle suspension hardpoint

Equations of Motion

To determine the vehicle motion, the block implements calculations for the rigid body vehicle dynamics, wind drag, inertial loads, and coordinate transformations. The body-fixed and vehicle-fixed coordinate systems are the same.

The block considers the rotation of a body-fixed coordinate frame about a flat earth-fixed inertial reference frame. The origin of the body-fixed coordinate frame is the vehicle center of gravity of the body.

The block uses this equation to calculate the translational motion of the body-fixed coordinate frame, where the applied forces $\left[F_{x} F_{y} F_{z}\right]^{\mathrm{T}}$ are in the body-fixed frame, and the mass of the body, m, is assumed to be constant.

$$
\begin{aligned}
& \bar{F}_{b}=\left[\begin{array}{l}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right]=m\left(\dot{\bar{V}}_{b}+\bar{\omega} \times \bar{V}_{b}\right) \\
& \bar{M}_{b}=\left[\begin{array}{l}
L \\
M \\
N
\end{array}\right]=I \dot{\bar{\omega}}+\bar{\omega} \times(I \bar{\omega}) \\
& I=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{y x} & I_{y y} & -I_{y z} \\
-I_{z x} & -I_{z y} & I_{z z}
\end{array}\right]
\end{aligned}
$$

To determine the relationship between the body-fixed angular velocity vector, $[p q r]^{\mathrm{T}}$, and the rate of change of the Euler angles, $\left[\begin{array}{lll}\dot{\phi} & \dot{\theta} & \dot{\psi}\end{array}\right]^{T}$, the block resolves the Euler rates into the body-fixed frame.

$$
\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{l}
\dot{\phi} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
0 \\
\dot{\theta} \\
0
\end{array}\right]+\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
\dot{\psi}
\end{array}\right] \equiv J^{-1}\left[\begin{array}{c}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]
$$

Inverting J gives the required relationship to determine the Euler rate vector.

$$
\left[\begin{array}{c}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]=J\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{ccc}
1 & (\sin \phi \tan \theta) & (\cos \phi \tan \theta) \\
0 & \cos \phi & -\sin \phi \\
0 & \frac{\sin \phi}{\cos \theta} & \frac{\cos \phi}{\cos \theta}
\end{array}\right]\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]
$$

The applied forces and moments are the sum of the drag, gravitational, external, and suspension forces.

$$
\begin{aligned}
& \bar{F}_{b}=\left[\begin{array}{l}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right]=\left[\begin{array}{l}
F_{d_{x}} \\
F_{d_{y}} \\
F_{d_{z}}
\end{array}\right]+\left[\begin{array}{l}
F_{g_{x}} \\
F_{g_{y}} \\
F_{g_{z}}
\end{array}\right]+\left[\begin{array}{l}
F_{\text {ext }} \\
F_{e x t_{y}} \\
F_{\text {ext }}
\end{array}\right]+\left[\begin{array}{l}
F_{F L_{x}} \\
F_{F L_{y}} \\
F_{F L_{z}}
\end{array}\right]+\left[\begin{array}{l}
F_{F R_{x}} \\
F_{F R_{y}} \\
F_{F R_{z}}
\end{array}\right]+\left[\begin{array}{l}
F_{M L_{x}} \\
F_{M L_{y}} \\
F_{M L_{z}}
\end{array}\right]+\left[\begin{array}{l}
F_{M R_{x}} \\
F_{M R_{y}} \\
F_{M R_{z}}
\end{array}\right]+\left[\begin{array}{l}
F_{R L_{x}} \\
F_{R L_{y}} \\
F_{R L_{z}}
\end{array}\right]+\left[\begin{array}{l}
F_{R R_{x}} \\
F_{R R_{y}} \\
F_{R R_{z}}
\end{array}\right]=\left[\begin{array}{l}
M_{d_{x}} \\
M_{d_{y}} \\
M_{d_{z}}
\end{array}\right]+\left[\begin{array}{l}
M_{\text {extx }} \\
M_{\text {exty }} \\
M_{\text {ext }}
\end{array}\right]+\left[\begin{array}{l}
M_{F L_{x}} \\
M_{F L_{y}} \\
M_{F L_{z}}
\end{array}\right]+\left[\begin{array}{l}
M_{F R_{x}} \\
M_{F R_{y}} \\
M_{F R_{z}}
\end{array}\right]+\left[\begin{array}{l}
M_{M L_{x}} \\
M_{M L_{y}} \\
M_{M L_{z}}
\end{array}\right]+\left[\begin{array}{l}
M_{M R_{x}} \\
M_{M R_{y}} \\
M_{M R_{z}}
\end{array}\right]+\left[\begin{array}{l}
M_{R L_{x}} \\
M_{R L_{y}} \\
M_{R L_{z}}
\end{array}\right]+\left[\begin{array}{l}
M_{R R_{x}} \\
M_{R R_{y}} \\
M_{R R_{z}}
\end{array}\right]+\bar{M}_{F}
\end{aligned}
$$

Calculation	Implementation
Load masses and inertias	The block uses the parallel axis theorem to resolve the individual load masses and inertias with the vehicle mass and inertia. $\quad J_{i j}=I_{i j}+m\left(\|R\|^{2} \delta_{i j}-R_{i} R_{j}\right)$
Gravitational forces, F_{g}	The block uses the direction cosine matrix (DCM) to transform the gravitational vector in the inertial-fixed frame to the body-fixed frame.

Calculation	Implementation
Drag forces, F_{d}, and moments, M_{d}	To determine a relative airspeed, the block subtracts the wind speed from the vehicle center of mass (CM) velocity. Using the relative airspeed, the block determines the drag forces. $\begin{aligned} & \bar{w}=\sqrt{\left(\dot{x}-w_{\chi}\right)^{2}+\left(\dot{x}-w_{\chi}\right)^{2}+\left(w_{z}\right)^{2}} \\ & F_{d x}=-\frac{1}{2 T R} C_{d} A_{f} P_{a b s}\left({ }^{\bar{w}}\right. \\ & F_{d y}=-\frac{1}{2 T R} C_{s} A_{f} P_{a b s}\left({ }^{\bar{w}}\right. \\ & F_{d z}=-\frac{1}{2 T R} C_{l} A_{f} P_{a b s} s^{\bar{w}} \end{aligned}$ Using the relative airspeed, the block determines the drag moments. $\begin{aligned} & M_{d r}=-\frac{1}{2 T R} C_{r m} A_{f} P_{a b s}\left({ }^{\bar{w}}(a+c)\right. \\ & M_{d p}=-\frac{1}{2 T R} C_{p m} A_{f} P_{a b s}{ }^{\bar{w}}(a+c) \\ & M_{d y}=-\frac{1}{2 T R} C_{y m} A_{f} P_{a b s}{ }^{\bar{w}}(a+c) \end{aligned}$
External forces, $F_{i n}$, and moments, $M_{i n}$	The external forces and moments are input via ports FExt and MExt.
Suspension forces and moments	The block assumes that the suspension forces and moments act on these hardpoint locations: - $F_{F L}, M_{F L}-$ Front left - $F_{F R}, M_{F R}-$ Front right - $F_{M L}, M_{M L}$ - Middle left - $F_{M R}, M_{M R}$ - Middle right - $F_{R L}, M_{R L}-$ Rear left - $F_{R R}, M_{R R}-$ Rear right

The equations use these variables.

x, \dot{x}, \ddot{x}	Vehicle CM displacement, velocity, and acceleration along the vehicle-fixed
y, \dot{y}, \ddot{y}	-axis
z, \dot{z}, \ddot{z}	Vehicle CM displacement, velocity, and acceleration along the vehicle-fixed φ
-axis	
θ	Vehicle CM displacement, velocity, and acceleration along the vehicle-fixed
ψ	Rotation of the vehicle-fixed frame about the earth-fixed X-axis (roll)
Rotation of the vehicle-fixed frame about the earth-fixed Y-axis (pitch)	
	Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw)

$F_{F L X}, F_{F L y}, F_{F L z}$	Suspension forces applied to the front left hardpoint along the vehicle-fixed x-, y-, and z-axes
$F_{F R X}, F_{F R y}, F_{F R z}$	Suspension forces applied to the front right hardpoint along the vehiclefixed x-, y-, and z-axes
$F_{M L \chi}, F_{M L y}, F_{M L z}$	Suspension forces applied to the middle left hardpoint along the vehiclefixed x-, y-, and z-axes
$F_{M R X}, F_{M R y}, F_{M R z}$	Suspension forces applied to the middle right hardpoint along the vehiclefixed x-, y-, and z-axes
$F_{R L \chi}, F_{R L y^{\prime}} F_{R L z}$	Suspension forces applied to the rear left hardpoint along the vehicle-fixed x-, y-, and z-axes
$F_{R R x}, F_{R R y}, F_{R R z}$	Suspension forces applied to the rear right hardpoint along the vehicle-fixed x-, y-, and z-axes
$M_{F L \chi}, M_{F L L}, M_{F L z}$	Suspension moment applied to the front left hardpoint about the vehiclefixed x-, y-, and z-axes
$M_{F R X}, M_{F R y}, M_{\text {FRz }}$	Suspension moment applied to the front right hardpoint about the vehiclefixed x-, y-, and z-axes
$M_{M L \chi}, M_{M L y}, M_{M L z}$	Suspension moment applied to the middle left hardpoint about the vehiclefixed x-, y-, and z-axes
$M_{M R x}, M_{M R y}, M_{M R z}$	Suspension moment applied to the middle right hardpoint about the vehiclefixed x-, y-, and z-axes
$M_{R L \chi}, M_{\text {RLL }}, M_{R L z}$	Suspension moment applied to the rear left hardpoint about the vehiclefixed x-, y-, and z-axes
$M_{R R x}, M_{R R y}, M_{R R z}$	Suspension moment applied to the rear right hardpoint about the vehiclefixed x-, y-, and z-axes
$F_{\text {extx }}, F_{\text {exty }}, F_{\text {extz }}$	External forces applied to the vehicle CM along the vehicle-fixed x-, y-, and z-axes
$F_{d x}, F_{d y}, F_{d z}$	Drag forces applied to the vehicle CM along the vehicle-fixed $x-, y$-, and z axes
$M_{\text {extx }}, M_{\text {exty }}, M_{\text {extz }}$	External moment about the vehicle CM about the vehicle-fixed x-, y-, and z axes
$M_{d x}, M_{d y}, M_{d z}$	Drag moment about the vehicle CM about the vehicle-fixed x-, y-, and z-axes
I	Vehicle body moments of inertia
a, b, c	Distance of the front, middle, and rear axles, respectively, from the normal projection point of the vehicle CM onto the common axle plane
h	Height of the vehicle CM above the axle plane
d	Lateral distance from the geometric centerline to the center of mass along the vehicle-fixed y-axis
$h h f, h h_{-} r$	Height of the front and rear hitches, respectively, above the axle plane along the vehicle-fixed z-axis
$d h f, d h \quad r$	Longitudinal distance of the front and rear hitches, respectively, from the normal projection point of the vehicle CM onto the common axle plane
$h l f, h l _r$	Lateral distance from center of mass to the front and rear hitches, respectively, along the vehicle-fixed y-axis
w_{F}, w_{M}, w_{R}	Front, middle, and rear track widths, respectively

C_{d}	Air drag coefficient acting along the vehicle-fixed x-axis
C_{s}	Air drag coefficient acting along the vehicle-fixed y-axis
C_{l}	Air drag coefficient acting along the vehicle-fixed z-axis
$C_{r m}$	Air drag roll moment acting about the vehicle-fixed x-axis
$C_{p m}$	Air drag pitch moment acting about the vehicle-fixed y-axis
$C_{y m}$	Air drag yaw moment acting about the vehicle-fixed z-axis
A_{f}	Frontal area
R	Atmospheric specific gas constant
T	Environmental air temperature
$P_{a b s}$	Environmental absolute pressure
w_{x}, w_{y}, w_{z}	Wind speed along the vehicle-fixed x-, y-, and z-axes
W_{x}, W_{y}, W_{z}	Wind speed along inertial X-, Y-, and Z-axes

Ports

Input

FSusp - Suspension forces on trailer
3-by - 4 array (default) | 3-by-2 array | 3 -by - 6 array
Suspension longitudinal, lateral, and vertical suspension forces, FSusp, applied to the trailer at the hardpoint location, in N, specified as a 3-by-2, 3-by-4, or 3-by-6 array, depending on the Number of axles parameter.

Number of axles Setting	Variable	Signal Dimension
1	$F S u s p=\left[\begin{array}{lll}F_{F L X} & F_{F R x} \\ F_{F L y} & F_{F R y} \\ F_{F L z} & F_{F R z}\end{array}\right]$	Array - 3-by-2
2	$F S u s p=\left[\begin{array}{llll}F_{F L x} & F_{F R x} & F_{R L x} & F_{R R x} \\ F_{F L y} & F_{F R y} & F_{R L y} & F_{R R y} \\ F_{F L z} & F_{F R z} & F_{R L z} & F_{R R z}\end{array}\right]$	Array - 3-by-4
3	F Susp $=$ $\left.\left[\begin{array}{lllll} F_{F L x} & F_{F R x} & F_{M L x} & F_{M R x} & F_{R L x} \end{array} F_{R R x}\right] \text { } \begin{array}{llll} F_{F L y} & F_{F R y} & F_{M L y} & F_{M R y} \\ F_{R L y} & F_{R R y} \\ F_{F L z} & F_{F R z} & F_{M L z} & F_{M R z} \\ F_{R L z} & F_{R R z} \end{array}\right]$	Array - 3-by-6

The arrays use these variables.
$F_{F L x}, F_{F L y}, F_{F L z} \quad$ Suspension forces applied to front left hardpoint along the vehicle-fixed x-, y-, and z-axes

$F_{F R x}, F_{F R y}, F_{F R z}$	Suspension forces applied to front right hardpoint along the vehicle-fixed x-, y-, and z-axes
$F_{M L x}, F_{M L y}, F_{M L z}$	Suspension forces applied to middle left hardpoint along the vehicle-fixed x-, $y-$, and z-axes
$F_{M R x}, F_{M R y}, F_{M R z}$	Suspension forces applied to middle right hardpoint along the vehicle-fixed x-, y-, and z-axes
$F_{R L x}, F_{R L y}, F_{R L z}$	Suspension forces applied to rear left hardpoint along the vehicle-fixed x-, $y-$ - and z-axes
$F_{R R x}, F_{R R y}, F_{R R z}$	Suspension forces applied to rear right hardpoint along the vehicle-fixed $x-$, $y-$, and z-axes

MSusp - Suspension moments on trailer
3-by-4 array (default)|3-by-2 array|3-by-6 array
Suspension longitudinal, lateral, and vertical suspension moments, MSusp, applied about the vehicle at the hardpoint location, in $\mathrm{N} \cdot \mathrm{m}$, specified as a $3-$ by -2 , 3-by-4, or 3-by-6 array, depending on the Number of axles parameter.

Number of axles Setting	Variable	Signal Dimension
1	MSusp $=\left[\begin{array}{lll}M_{F L X} & M_{F R X} \\ M_{F L y} & M_{F R y} \\ M_{F L z} & M_{F R z}\end{array}\right]$	Array - 3-by-2
2	$\text { MSusp }=\left[\begin{array}{llll} M_{F L x} & M_{F R x} & M_{R L x} & M_{R R x} \\ M_{F L y} & M_{F R y} & M_{R L y} & M_{R R y} \\ M_{F L z} & M_{F R z} & M_{R L z} & M_{R R z} \end{array}\right]$	Array - 3-by-4
3	MSusp $=$	Array - 3-by-6

The arrays use these variables.

$M_{F L x}, M_{F L y}, M_{F L z}$	Suspension moment applied to front left hardpoint about the vehicle-fixed x-, y-, and z-axes
$M_{F R x}, M_{F R y}, M_{F R z}$	Suspension moment applied to front right hardpoint about the vehicle-fixed x-, y-, and z-axes
$M_{M L x}, M_{M L y}, M_{M L z}$	Suspension moment applied to middle left hardpoint about the vehicle-fixed $x-, y$-, and z-axes
$M_{M R x}, M_{M R y}, M_{M R z}$	Suspension moment applied to middle right hardpoint about the vehicle- fixed $x-, y-$, and z-axes

$M_{R L x}, M_{R L y}, M_{R L z}$	Suspension moment applied to rear left hardpoint about the vehicle-fixed x-,
	y-, and z-axes
$M_{R R x}, M_{R R y}, M_{R R z}$	Suspension moment applied to rear right hardpoint about the vehicle-fixed $x-, y$-, and z-axes

FExt - External forces acting on vehicle vector

External forces on the vehicle, in N, specified as a 1-by-3 or 3-by-1 vector.

$$
\mathrm{FExt}=F_{\text {ext }}=\left[\begin{array}{llll}
F_{\text {ext }} & F_{\text {ext }} & F_{\text {ext }}
\end{array}\right] \text { or }\left[\begin{array}{l}
F_{\text {ext }}^{x} \\
F_{\text {ext }}^{y} \\
F_{\text {ext }}^{z}
\end{array}\right]
$$

Array Element	Force Axis
FExt $(1,1)$	Vehicle-fixed x-axis (longitudinal)
FExt $(1,2)$ or FExt $(2,1)$	Vehicle-fixed y-axis (lateral)
FExt $(1,3)$ or FExt $(3,1)$	Vehicle-fixed z-axis (vertical)

MExt - External moments acting on vehicle

vector

External moments acting on the vehicle, in $N \cdot m$, specified as a 1-by-3 or 3-by-1 vector.

$$
\mathrm{MExt}=M_{e x t}=\left[\begin{array}{lll}
M_{e x t_{\chi}} & M_{e x t_{y}} & M_{e x t_{z}}
\end{array}\right] \text { or }\left[\begin{array}{l}
M_{e x t_{\chi}} \\
M_{e x t_{y}} \\
M_{e x t_{z}}
\end{array}\right]
$$

Array Element	Force Axis
MExt $(1,1)$	Vehicle-fixed x-axis (longitudinal)
MExt $(1,2)$ or MExt $(2,1)$	Vehicle-fixed y-axis (lateral)
MExt $(1,3)$ or MExt $(3,1)$	Vehicle-fixed z-axis (vertical)

FhF - Front hitch force on the body array

Hitch force applied to the body at the front hitch location, $F h F_{x}, F h F_{y}, F h F_{z}$, in the vehicle-fixed frame, in N , specified as a 1-by-3 or 3-by-1 array.

Dependencies

To enable this port, under Input signals, select Front hitch forces.
MhF - Front hitch moment about body
array

Hitch moment at the front hitch location, $M h F_{x}, M h F_{y}, M h F_{z}$, about the vehicle-fixed frame, in $\mathrm{N} \cdot \mathrm{m}$, specified as a 1-by-3 or 3-by-1 array.

Dependencies

To enable this port, under Input signals, select Front hitch moments.
FhR - Rear hitch force on the body
array
Hitch force applied to the body at the rear hitch location, $F h R_{x}, F h R_{y}, F h R_{z}$, in the vehicle-fixed frame, in N , specified as a 1-by-3 or 3-by-1 array.

Dependencies

To enable this port, under Input signals, select Rear hitch forces.
MhR - Rear hitch moment about body array

Hitch moment at the rear hitch location, $M h R_{x}, M h R_{y}, M h R_{z}$, about the vehicle-fixed frame, in $\mathrm{N} \cdot \mathrm{m}$, specified as a 1-by-3 or 3-by-1 array.

Dependencies

To enable this port, under Input signals, select Rear hitch moments.
WindXYZ - Wind speed
array
Wind speed, W_{x}, W_{y}, W_{z} along inertial X-, Y-, and Z-axes, in m/s, specified as a 1-by-3 or 3-by-1 array.

AirTemp - Ambient air temperature
scalar
Ambient air temperature, $T_{\text {air }}$, in K , specified as a scalar.

Dependencies

To enable this port, under Environment, select Air temperature.

Output

Info - Trailer body information
bus
Trailer body information, returned as a bug signal containing the following values.

Signal			Description	Value	Units	
InertFrm	Cg	Disp	X	Vehicle CM displacement along the earth-fixed $X-$ axis	Computed	m

				Description	Value	Units
Signal		Y		Vehicle CM displacement along the earth-fixed Y axis	Computed	m
		Z		Vehicle CM displacement along the earth-fixed Zaxis	Computed	m
	Vel	Xdot		Vehicle CM velocity along the earth-fixed X-axis	Computed	m/s
		Ydot		Vehicle CM velocity along the earth-fixed Y-axis	Computed	m/s
		Zdot		Vehicle CM velocity along the earth-fixed Z-axis	Computed	m/s
	Ang	phi		Rotation of the vehiclefixed frame about the earth-fixed X-axis (roll)	Computed	rad
		theta		Rotation of the vehiclefixed frame about the earth-fixed Y-axis (pitch)	Computed	rad
		psi		Rotation of the vehiclefixed frame about the earth-fixed Z-axis (yaw)	Computed	rad
FrntAxl	Lft	Disp	X	Front left axle displacement along the earth-fixed X-axis	Computed	m
			Y	Front left axle displacement along the earth-fixed Y-axis	Computed	m
			Z	Front left axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Front left axle velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \text { Ydo } \\ & \dagger \end{aligned}$	Front left axle velocity along the earth-fixed Y axis	Computed	m/s
			$\begin{aligned} & \mathrm{Zdo} \\ & \mathrm{t} \end{aligned}$	Front left axle velocity along the earth-fixed Zaxis	Computed	m/s
	Rght	Disp	X	Front right axle displacement along the earth-fixed X-axis	Computed	m

				Description	Value	Units
Signal			Y	Front right axle displacement along the earth-fixed Y-axis	Computed	m
			Z	Front right axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	$\begin{aligned} & \text { Xdo } \\ & \mathrm{t} \end{aligned}$	Front right axle velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \mathrm{Ydo} \\ & \mathrm{t} \end{aligned}$	Front right axle velocity along the earth-fixed Y axis	Computed	m/s
			$\begin{aligned} & \mathrm{Zdo} \\ & \mathrm{t} \end{aligned}$	Front right axle velocity along the earth-fixed Zaxis	Computed	m/s
Midlaxl	Lft	Disp	X	Middle left axle displacement along the earth-fixed X-axis	Computed	m
			Y	Middle left axle displacement along the earth-fixed Y-axis	Computed	m
			Z	Middle left axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Middle left axle velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \mathrm{Ydo} \\ & \mathrm{t} \end{aligned}$	Middle left axle velocity along the earth-fixed Y axis	Computed	m/s
			$\begin{aligned} & \mathrm{Zdo} \\ & \mathrm{t} \end{aligned}$	Middle left axle velocity along the earth-fixed Z axis	Computed	m/s
	Rght	Disp	X	Middle right axle displacement along the earth-fixed X-axis	Computed	m
			Y	Middle right axle displacement along the earth-fixed Y-axis	Computed	m
			Z	Middle right axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Middle right axle velocity along the earth-fixed X axis	Computed	m/s

Signal				Description	Value	Units
			$\begin{aligned} & \text { Ydo } \\ & \mathrm{t} \end{aligned}$	Middle right axle velocity along the earth-fixed Y axis	Computed	m / s
			$\begin{aligned} & \text { Zdo } \\ & \dagger \end{aligned}$	Middle right axle velocity along the earth-fixed Zaxis	Computed	m/s
RearAxl	Lft	Disp	X	Rear left axle displacement along the earth-fixed X-axis	Computed	m
			Y	Rear left axle displacement along the earth-fixed Y-axis	Computed	m
			Z	Rear left axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Rear left axle velocity along the earth-fixed X axis	Computed	m / s
			$\begin{aligned} & \mathrm{Ydo} \\ & \mathrm{t} \end{aligned}$	Rear left axle velocity along the earth-fixed Y axis	Computed	m/s
			$\begin{aligned} & \hline \text { Zdo } \\ & \mathrm{t} \end{aligned}$	Rear left axle velocity along the earth-fixed Z axis	Computed	m/s
	Rght	Disp	X	Rear right axle displacement along the earth-fixed X-axis	Computed	m
			Y	Rear right axle displacement along the earth-fixed Y-axis	Computed	m
			Z	Rear right axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Rear right axle velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \mathrm{Ydo} \\ & \mathrm{t} \end{aligned}$	Rear right axle velocity along the earth-fixed Y axis	Computed	m/s
			$\begin{aligned} & \mathrm{Zdo} \\ & \mathrm{t} \end{aligned}$	Rear right axle velocity along the earth-fixed Zaxis	Computed	m/s
HitchF	Disp	X		Trailer front hitch offset from the axle plane along the earth-fixed X-axis	Computed	m

			Description	Value	Units
Signal		Y	Trailer front hitch offset from the center plane along the earth-fixed Y axis	Computed	m
		Z	Trailer front hitch offset from the axle plane along the earth-fixed Z-axis	Computed	m
	Vel	Xdot	Trailer front hitch offset velocity along the earthfixed X-axis	Computed	m/s
		Ydot	Trailer front hitch offset velocity along the earthfixed Y-axis	Computed	m/s
		Zdot	Trailer front hitch offset velocity along the earthfixed Z-axis	Computed	m/s
HitchR	Disp	X	Trailer rear hitch offset from the axle plane along the earth-fixed X-axis	Computed	m
		Y	Trailer rear hitch offset from the center plane along the earth-fixed Y axis	Computed	m
		Z	Trailer rear hitch offset from the axle plane along the earth-fixed Z-axis	Computed	m
	Vel	Xdot	Hitch velocity along the earth-fixed X-axis	Computed	m/s
		Ydot	Hitch velocity along the earth-fixed Y-axis	Computed	m/s
		Zdot	Hitch velocity along the earth-fixed Z-axis	Computed	m / s
Geom	Disp	X	Trailer offset from the axle plane along the earth-fixed X-axis	Computed	m
		Y	Trailer offset from the center plane along the earth-fixed Y-axis	Computed	m
		Z	Trailer offset from the axle plane along the earth-fixed Z-axis	Computed	m
	Vel	Xdot	Trailer offset velocity along the earth-fixed X axis	Computed	m/s

Signal				Description	Value	Units
			Ydot	Trailer offset velocity along the earth-fixed Y axis	Computed	m / s
			Zdot	Trailer offset velocity along the earth-fixed Zaxis	Computed	m / s
BdyFrm	Cg	Vel	xdot	Vehicle CM velocity along the vehicle-fixed x-axis	Computed	m / s
			ydot	Vehicle CM velocity along the vehicle-fixed y-axis	Computed	m / s
			zdot	Vehicle CM velocity along the vehicle-fixed z-axis	Computed	m / s
		AngVel	p	Vehicle angular velocity about the vehicle-fixed x axis (roll rate)	Computed	rad/s
			q	Vehicle angular velocity about the vehicle-fixed y axis (pitch rate)	Computed	rad/s
			r	Vehicle angular velocity about the vehicle-fixed z axis (yaw rate)	Computed	rad/s
		Acc	ax	Vehicle CM acceleration along the vehicle-fixed x axis	Computed	gn
			ay	Vehicle CM acceleration along the vehicle-fixed y axis	Computed	gn
			az	Vehicle CM acceleration along the vehicle-fixed z axis	Computed	gn
			xddot	Vehicle CM acceleration along the vehicle-fixed x axis	Computed	$\mathrm{m} / \mathrm{s}^{\wedge} 2$
			yddot	Vehicle CM acceleration along the vehicle-fixed y axis	Computed	$\mathrm{m} / \mathrm{s}^{\wedge} 2$
			zddot	Vehicle CM acceleration along the vehicle-fixed z axis	Computed	$\mathrm{m} / \mathrm{s}^{\wedge} 2$
		DCM	Direction cosine matrix		Computed	rad
	Forces	Body	Fx	Net force on the vehicle CM along the vehiclefixed x-axis	Computed	N

Signal				Description	Value	Units
			R F g x h 	Middle right tire force along the vehicle-fixed x axis	Computed	N
			$\mathrm{t} \left\lvert\, \begin{aligned} & \mathrm{F} \\ & \mathrm{y} \end{aligned}\right.$	Middle right tire force along the vehicle-fixed y axis	Computed	N
			F	Middle right tire force along the vehicle-fixed z axis	Computed	N
		$\begin{aligned} & \text { RearTir } \\ & \text { es } \end{aligned}$		Rear left tire force along the vehicle-fixed x-axis	Computed	N
			$\begin{aligned} & \mathrm{t} \\ & \hline \mathrm{~F} \\ & \mathrm{y} \end{aligned}$	Rear left tire force along the vehicle-fixed y-axis	Computed	N
				Rear left tire force along the vehicle-fixed z-axis	Computed	N
				Rear right tire force along the vehicle-fixed x-axis	Computed	N
				Rear right tire force along the vehicle-fixed y-axis	Computed	N
			$\begin{aligned} & \mathrm{F} \\ & \mathrm{z} \end{aligned}$	Rear right tire force along the vehicle-fixed z-axis	Computed	N
	Drag	FX		Drag force on the vehicle CM along the vehiclefixed x-axis	Computed	N
		Fy		Drag force on the vehicle CM along the vehiclefixed y-axis	Computed	N
		Fz		Drag force on the vehicle CM along the vehiclefixed z-axis	Computed	N
	Grvty	FX		Gravity force on the vehicle CM along the vehicle-fixed x-axis	Computed	N
		Fy		Gravity force on the vehicle CM along the vehicle-fixed y-axis	Computed	N
		Fz		Gravity force on the vehicle CM along the vehicle-fixed z-axis	Computed	N
Moments	Body	Mx		Body moment on the vehicle CM about the vehicle-fixed x-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$

Signal				Description	Value	Units
		My		Body moment on the vehicle CM about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz		Body moment on the vehicle CM about the vehicle-fixed z-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
	Drag	Mx		Drag moment on the vehicle CM about the vehicle-fixed x-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		My		Drag moment on the vehicle CM about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz		Drag moment on the vehicle CM about the vehicle-fixed z-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
	Ext	Mx		External moment on the vehicle CG about the vehicle-fixed x-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		My		External moment on the vehicle CG about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz		External moment on the vehicle CG about the vehicle-fixed z-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
	HitchF	Mx		Hitch moment at the front hitch location about vehicle-fixed x-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		My		Hitch moment at the front hitch location about vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz		Hitch moment at the front hitch location about vehicle-fixed z-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
	HitchR	Mx		Hitch moment at the rear hitch location about vehicle-fixed x-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		My		Hitch moment at the rear hitch location about vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz		Hitch moment at the rear hitch location about vehicle-fixed z-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
FrntAxl	Lft	Disp	x	Front left axle displacement along the vehicle-fixed x-axis	Computed	m

Signal				Description	Value	Units
			y	Front left axle displacement along the vehicle-fixed y-axis	Computed	m
			z	Front left axle displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Front left axle velocity along the vehicle-fixed x axis	Computed	m/s
			$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Front left axle velocity along the vehicle-fixed y axis	Computed	m / s
			$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Front left axle velocity along the vehicle-fixed z axis	Computed	m/s
	Rght	Disp	x	Front right axle displacement along the vehicle-fixed x-axis	Computed	m
			y	Front right axle displacement along the vehicle-fixed y-axis	Computed	m
			z	Front right axle displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Front right axle velocity along the vehicle-fixed x axis	Computed	m / s
			$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Front right axle velocity along the vehicle-fixed y axis	Computed	m / s
			$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Front right axle velocity along the vehicle-fixed z axis	Computed	m / s
Midlaxl	Lft	Disp	x	Middle left axle displacement along the vehicle-fixed x-axis	Computed	m
			y	Middle left axle displacement along the vehicle-fixed y-axis	Computed	m
			z	Middle left axle displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Middle left axle velocity along the vehicle-fixed x axis	Computed	m/s

				Description	Value	Units
Signal			$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Middle left axle velocity along the vehicle-fixed y axis	Computed	m / s
			$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Middle left axle velocity along the vehicle-fixed z axis	Computed	m/s
	Rght	Disp	x	Middle right axle displacement along the vehicle-fixed x-axis	Computed	m
			y	Middle right axle displacement along the vehicle-fixed y-axis	Computed	m
			z	Middle right axle displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Middle right axle velocity along the vehicle-fixed x axis	Computed	m/s
			$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Middle right axle velocity along the vehicle-fixed y axis	Computed	m/s
			$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Middle right axle velocity along the vehicle-fixed z axis	Computed	m/s
RearAxl	Lft	Disp	x	Rear left axle displacement along the vehicle-fixed x-axis	Computed	m
			y	Rear left axle displacement along the vehicle-fixed y-axis	Computed	m
			z	Rear left axle displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Rear left axle velocity along the vehicle-fixed x axis	Computed	m/s
			$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Rear left axle velocity along the vehicle-fixed y axis	Computed	m/s
			$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Rear left axle velocity along the vehicle-fixed z axis	Computed	m/s
	Rght	Disp	X	Rear right axle displacement along the vehicle-fixed x-axis	Computed	m

$\mathbf{V b}$ - Vehicle velocity along vehicle-fixed frame

vector

Vehicle CM velocity along the vehicle-fixed x-, y-, z-axes, respectively, in m / s, returned as a vector.
pqr - Vehicle angular velocity about vehicle-fixed frame
vector
Vehicle CM angular velocity about the vehicle-fixed x-(roll rate), y-(pitch rate), z-axes (yaw rate), respectively, in rad/s, returned as a vector.

DCM - Direction cosine matrix
array
Direction cosine matrix, in rad, returned as an array.

Euler - Euler angles

array
Euler angles, φ, θ, and ψ, respectively, in rad, returned as an array.
$\mathbf{X e}$ - Vehicle position in inertial reference frame vector

Vehicle CM position along inertial-fixed $X-, Y-, Z$-axes, respectively, in m, returned as a vector.
Ve - Vehicle velocity in inertial reference frame vector

Vehicle CM velocity along inertial-fixed X-, Y-, Z-axes, respectively, in m / s, returned as a vector.

Parameters

Block Options

Number of axles - Create hitch force input port
2 (default) | 1 | 3
Specify the number of axles on the trailer.
Input Signals
Front hitch forces - FhF input port
on (default) | off
Select to create input port Fh.
Front hitch moments - MhF input port
on (default) | off
Select to create input port Mh.
Rear hitch forces - FhR input port
off (default) | on
Select to create input port Fh.
Rear hitch moments - MhR input port
off (default) | on
Select to create input port Mh.

Chassis

Vehicle mass, m - Mass
2000 (default) | scalar
Vehicle mass, m, in kg.
Longitudinal distance from center of mass to front axle, a - Distance from center of mass to front axle
1.4 (default) | scalar

Distance from the vehicle CM to the front axle, a, in m.

Longitudinal distance from center of mass to middle axle, b-Distance from center of mass to middle axle
1.6 (default) | scalar

Distance from the vehicle CM to the middle axle, b, in m.

Dependencies
To enable this parameter, set Number of axles to 3.
Longitudinal distance from center of mass to rear axle, c-Distance from center of mass to rear axle
1.9 (default) | scalar

Distance from the vehicle CM to the rear axle, c, in m.

Dependencies

To enable this parameter, set Number of axles to 2 or 3.
Lateral distance from geometric centerline to center of mass, \mathbf{d} - Distance from geometric centerline to center of mass
0 (default) | scalar
Lateral distance from the geometric centerline to the CM, d, in m, along the vehicle-fixed y-axis. Positive values indicate that the vehicle CM is to the right of the geometric centerline. Negative values indicate that the vehicle CM is to the left of the geometric centerline.

Vertical distance from center of mass to axle plane, \mathbf{h} - Distance from center of mass to axle plane
. 35 (default) | scalar
Vertical distance from the vehicle CM to the axle plane, h, in m.

Longitudinal distance from center of mass to front hitch, $\mathbf{d h} \mathbf{f}$ - Longitudinal distance from CM to hitch
1 (default) | scalar

Longitudinal distance from center of mass to front hitch, $d h f$, in m.

Dependencies

To enable this parameter, on the Input signals pane, select Front hitch forces or Front hitch moments.

Lateral distance from geometric centerline to front hitch, hl_f - Distance from centerline to front hitch
0 (default) | scalar
Lateral distance from the geometric centerline to the front hitch, hlf, in m, along the vehicle-fixed y. Positive values indicate that the trailer hitch is to the right of the geometric centerline. Negative values indicate that the trailer hitch is to the left of the geometric centerline.

Dependencies

To enable this parameter, on the Input signals pane, select Front hitch forces or Front hitch moments.

Vertical distance from front hitch to axle plane, $\mathbf{h h}_{\mathbf{f}} \mathbf{f}$ - Distance from front hitch to axle plane 0.1 (default) | scalar

Vertical distance from front hitch to axle plane, $h h f$, in m.

Dependencies

To enable this parameter, on the Input signals pane, select Front hitch forces or Front hitch moments.

Longitudinal distance from center of mass to rear hitch, $\mathbf{d h} \mathbf{r}$ - Distance to front hitch 1 (default) | scalar

Longitudinal distance from the center of mass to the rear hitch, $d h_{-} r$, in m.

Dependencies

To enable this parameter, on the Input signals pane, select Rear hitch forces or Rear hitch moments.

Lateral distance from geometric centerline to rear hitch, hl_r - Distance from centerline to rear hitch
0 (default) | scalar
Lateral distance from the geometric centerline to the rear hitch, $h l_{-} r$, in m, along the vehicle-fixed y. Positive values indicate that the trailer hitch is to the right of the geometric centerline. Negative values indicate that the trailer hitch is to the left of the geometric centerline.

Dependencies

To enable this parameter, on the Input signals pane, select Rear hitch forces or Rear hitch moments.

Vertical distance from rear hitch to axle plane, $\mathbf{h h} \mathbf{r} \mathbf{r}$ - Distance from rear hitch to axle plane 0.1 (default) | scalar

Vertical distance from the rear hitch to the axle plane, $h h_{-} r$, in m.

Dependencies

To enable this parameter, on the Input signals pane, select Rear hitch forces or Rear hitch moments.

Initial position in the inertial frame [Xeo,Yeo,Zeo], Xe_o - Initial position
[0,0,0] (default) | vector
Initial position of the vehicle in the inertial frame, $X e_{0}$, in m.
Initial velocity in body axes [xdot_o,ydot_o,zdot_o], xbdot_o - Initial velocity [0,0,0] (default) | vector

Initial vehicle CM velocity along the vehicle-fixed x, y-, and z-axes, respectively, in m / s.
Initial Euler orientation [roll, pitch, yaw], eul_o - Rotation
[0,0,0] (default) | vector
Initial Euler rotation of the vehicle-fixed frame about the earth-fixed X - (roll), Y - (pitch), Z-axes (yaw), respectively, in rad.

Initial body rotation rates [p,q,r], p_o - Initial rotation rate
[0,0,0] (default) | vector
Initial vehicle CM angular velocity about the vehicle-fixed x - (roll rate), y - (pitch rate), z-axes (yaw rate), respectively, in rad/s.

Chassis inertia tensor, Iveh - Inertia

[430 0 0; 0 1900 0; 00 2100] (default)|array
Vehicle inertia tensor, $I_{\text {veh }}$, in $\mathrm{kg}^{*} \mathrm{~m}^{\wedge} 2$. Dimensions are [3-by-3].
Front track width, w_f - Front track width
1.9 (default) | scalar

Front track width, in m.

Middle track width, w_m - Middle track width
1.9 (default) | scalar

Middle track width, in m.

Dependencies

To enable this parameter, set Number of axles to 3 .
Rear track width, w_r - Rear track width
1.9 (default) | scalar

Rear track width, in m.

Dependencies

To enable this parameter, set Number of axles to 2 or 3.

Inertial Loads

Front End

Mass, z1m - Mass
0 (default) | scalar
Mass, $z 1 \mathrm{~m}$, in kg.

Distance vector from front axle, z1R - Distance
[-.25,.125,.15] (default)| vector
Distance vector from front axle to load, $z 1 R$, in m. Dimensions are 1-by-3.

Array Element	Description
$z 1 R(1,1)$	Front suspension hardpoint to load, along vehicle- fixed x-axis
$z 1 R(1,2)$	Vehicle centerline to load, along vehicle-fixed y-axis
$z 1 R(1,3)$	Front suspension hardpoint to load, along vehicle- fixed z-axis

For example, this table summarizes the parameter settings that specify the load location.

Example Location	Sign
-	Forward of the front axle
-	Right of the vehicle centerline
-	Above the front axle suspension hardpoint

Inertia tensor, z1I - Inertia

[1.4,-.2,.1;-.2,1.4,.1;.1,.1,2.25].*0 (default)|array
Inertia tensor, $z 1 I$, in $\mathrm{kg} \cdot \mathrm{m} \wedge 2$. Dimensions are [3-by-3].

$$
z 1 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Overhead

Mass, z2m - Mass
0 (default) | scalar
Mass, $z 2 \mathrm{~m}$, in kg.
Distance vector from front axle, z2R - Distance
[1.4,0, .8] (default) | vector
Distance vector from front axle to load, $z 2 R$, in m. Dimensions are 1-by-3.

Array Element	Description
$z 2 R(1,1)$	Front suspension hardpoint to load, along vehicle- fixed x-axis

Array Element	Description
$z 2 R(1,2)$	Vehicle centerline to load, along vehicle-fixed y-axis
$z 2 R(1,3)$	Front suspension hardpoint to load, along vehicle- fixed z-axis

For example, this table summarizes the parameter settings that specify the load location.

Example Location	Sign
- Rear of the front axle	- z2R $(1,1)>0$
- Left of the vehicle centerline	- z2R $(1,2)<0$
- Above the front axle suspension hardpoint	- z2R $(1,3)>0$

Inertia tensor, z21 - Inertia
[1.4,-.2,.1;-.2,1.4,.1;.1,.1,2.25].*0 (default)|array
Inertia tensor, $z 2 I$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. Dimensions are [3-by-3].

$$
z 2 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Front Left

Mass, z3m - Mass
0 (default) | scalar
Mass, $z 3 m$, in kg.
Distance vector from front axle, z3R - Distance
[.75,-.5,.4] (default)| vector
Distance vector from front axle to load, $z 3 R$, in m. Dimensions are 1-by-3.

Array Element	Description
$\operatorname{z3R}(1,1)$	Front suspension hardpoint to load, along vehicle- fixed x-axis
$\operatorname{z3R}(1,2)$	Vehicle centerline to load, along vehicle-fixed y-axis
$\operatorname{z3R}(1,3)$	Front suspension hardpoint to load, along vehicle- fixed z-axis

For example, this table summarizes the parameter settings that specify the load location.

Example Location	Sign
- Rear of the front axle	- $z 3 R(1,1)>0$
- Left of the vehicle centerline	- $z 3 R(1,2)<0$
- Above the front axle suspension hardpoint	- $z 3 R(1,3)>0$

Inertia tensor, z3I - Inertia
[5,-.1,-2;-2,9,.1;-.1,.1,6].*0 (default)|array
Inertia tensor, $z 3 I$, in $\mathrm{kg} \cdot \mathrm{m} \wedge 2$. Dimensions are [3-by-3].

$$
z 3 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Front Right

Mass, $\mathbf{z 4 m}$ - Mass
0 (default) | scalar
Mass, $z 4 m$, in kg.
Distance vector from front axle, $\mathbf{z 4 R}$ - Distance
[.75, .5,.4] (default) | vector
Distance vector from front axle to load, $z 4 R$, in m. Dimensions are 1-by-3.

Array Element	Description
z4R $(1,1)$	Front suspension hardpoint to load, along vehicle- fixed x-axis
z4R $(1,2)$	Vehicle centerline to load, along vehicle-fixed y-axis
Z4R $(1,3)$	Front suspension hardpoint to load, along vehicle- fixed z-axis

For example, this table summarizes the parameter settings that specify the load location.

Example Location	Sign
- \quad Rear of the front axle	- $z 4 R(1,1)>0$
- Right of the vehicle centerline	- $z 4 R(1,2)>0$
- Above the front axle suspension hardpoint	- $\quad \mathrm{z4R}(1,3)>0$

Inertia tensor, $\mathbf{z 4 I}$ - Inertia
[5,-.1,-2;-2, 9,.1;-.1,.1,6].*0 (default)| array
Inertia tensor, $z 4 I$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. Dimensions are [3-by-3].

$$
z 4 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Rear Left

Mass, z5m - Mass
0 (default) | scalar
Mass, z5m, in kg.
Distance vector from front axle, z5R - Distance
[1.25, -. 5, .4] (default) | vector
Distance vector from front axle to load, $z 5 R$, in m. Dimensions are 1-by-3.

Array Element	Description
z5R $(1,1)$	Front suspension hardpoint to load, along vehicle- fixed x-axis
z5R $(1,2)$	Vehicle centerline to load, along vehicle-fixed y-axis
z5R $(1,3)$	Front suspension hardpoint to load, along vehicle- fixed z-axis

For example, this table summarizes the parameter settings that specify the load location.

Example Location	Sign
- Rear of the front axle	- $\mathrm{z5R}(1,1)>0$
- Left of the vehicle centerline	- $\mathrm{z5R}(1,2)<0$
- Above the front axle suspension hardpoint	- $\mathrm{z} 5 \mathrm{R}(1,3)>0$

Inertia tensor, $\mathbf{z 5 I}$ - Inertia
[5,-.1,-2;-2, 9,.1;-.1,.1,6].*0 (default)|array
Inertia tensor, $z 5 I$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. Dimensions are [3-by-3].

$$
z 5 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Rear Right

Mass, $\mathbf{2 6 m}$ - Mass
0 (default) | scalar
Mass, $z 6 \mathrm{~m}$, in kg.
Distance vector from front axle, z6R - Distance
[1.25,-.5,.4] (default) | vector
Distance vector from front axle to load, $z 6 R$, in m. Dimensions are 1-by-3.

Array Element	Description
$z 6 R(1,1)$	Front suspension hardpoint to load, along vehicle- fixed x-axis
$z 6 R(1,2)$	Vehicle centerline to load, along vehicle-fixed y-axis
$z 6 R(1,3)$	Front suspension hardpoint to load, along vehicle- fixed z-axis

For example, this table summarizes the parameter settings that specify the load location.

Example Location	Sign
- \quad Rear of the front axle	- $\mathrm{z} 6 \mathrm{R}(1,1)>0$
-	Right of the vehicle centerline
-	Above the front axle suspension hardpoint

Inertia tensor, z6I - Inertia
[5,-.1,-2;-2,9,.1;-.1,.1,6].*0 (default)|array
Inertia tensor, $z 6 I$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. Dimensions are [3-by-3].

$$
z 6 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Rear End

Mass, $\mathbf{z 7 m}$ - Mass
0 (default) | scalar
Mass, $z 7 \mathrm{~m}$, in kg.
Distance vector from front axle, z7R - Distance
[2,0,.25] (default) | vector

Distance vector from front axle to load, $z 7 R$, in m. Dimensions are 1-by-3.

Array Element	Description
z7R $(1,1)$	Front suspension hardpoint to load, along vehicle- fixed x-axis
z7R $(1,2)$	Vehicle centerline to load, along vehicle-fixed y-axis
z7R $(1,3)$	Front suspension hardpoint to load, along vehicle- fixed z-axis

For example, this table summarizes the parameter settings that specify the load location.

Example Location	Sign
• Rear of the front axle	• \quad 77R $(1,1)>0$
- Right of the vehicle centerline	• z7R $(1,2)>0$
- Above the front axle suspension hardpoint	• $\quad \mathrm{z7R}(1,3)>0$

Inertia tensor, z71 - Inertia

[1.4,-.2,.1;-.2,1.4,.1;.1,.1,2.25].*0 (default)|array
Inertia tensor, $z 7 \mathrm{I}$, in $\mathrm{kg} \cdot \mathrm{m} \wedge$ 2. Dimensions are [3-by-3].

$$
z 7 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Aerodynamic

Longitudinal drag area, Af - Drag area
2 (default) | scalar
Effective vehicle cross-sectional area, A_{f} to calculate the aerodynamic drag force on the vehicle, in $\mathrm{m}^{\wedge} 2$.

Longitudinal drag coefficient, Cd - Drag coefficient
. 3 (default) | scalar
Air drag coefficient, C_{d}, dimensionless.
Longitudinal lift coefficient, CI - Lift
. 1 (default) | scalar
Air lift coefficient, C_{l}, dimensionless.
Longitudinal drag pitch moment, Cpm - Pitch drag
. 1 (default) | scalar

Longitudinal drag pitch moment coefficient, $C_{p m}$, dimensionless.
Relative wind angle vector, beta_w - Wind angle
[0:0.001:0.01] (default) | vector
Relative wind angle vector, β_{w}, in rad.
Side force coefficient vector, Cs - Side force drag
[0:0.01:0.1] (default) |vector
Side force coefficient vector coefficient, C_{s}, dimensionless.
Yaw moment coefficient vector, Cym - Yaw moment drag
[0:0.001:0.01] (default) | vector
Yaw moment coefficient vector coefficient, $C_{y m}$, dimensionless.

Environment

Absolute air pressure, Pabs - Pressure
101325 (default) | scalar
Environmental air absolute pressure, $P_{a b s}$, in Pa .
Air temperature, Tair - Ambient air temperature
273 (default) | scalar
Ambient air temperature, $T_{\text {air }}$, in K .

Dependencies

To enable this parameter, clear Air temperature.
Gravitational acceleration, g-Gravity
9.81 (default) | scalar

Gravitational acceleration, g, in $\mathrm{m} / \mathrm{s}^{\wedge} 2$.

Simulation

Longitudinal velocity tolerance, xdot_tol - Tolerance

. 1 (default) | scalar
Longitudinal velocity tolerance, $x d o t_{\text {tol }}$, in m / s.
The block uses this parameter to avoid a division by zero when it calculates the body slip angle, β.
Geometric longitudinal offset from axle plane, longOff - Longitudinal offset
0 (default) | scalar
Trailer offset from axle plane along body-fixed x-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independently of the vehicle CG.

Geometric lateral offset from center plane, latOff - Lateral offset
0 (default) | scalar

Trailer offset from center plane along body-fixed y-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independently of the vehicle CG.

Geometric vertical offset from axle plane, vertOff - Vertical offset
0 (default) | scalar
Trailer offset from axle plane along body-fixed z-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independently of the vehicle CG.

Wrap Euler angles, wrapAng - Selection
on (default) | off
Wrap the Euler angles to the interval [-pi, pi]. For vehicle maneuvers that might undergo vehicle yaw rotations that are outside of the interval, consider clearing the parameter if you want to:

- Track the total vehicle yaw rotation.
- Avoid discontinuities in the vehicle state estimators.

Version History

Introduced in R2020b

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.

Extended Capabilities

$\mathbf{C} / \mathbf{C + +}$ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Vehicle Body 3DOF Longitudinal | Vehicle Body 6DOF | Trailer Body 3DOF

Topics

"Coordinate Systems in Vehicle Dynamics Blockset"

Vehicle Body 3DOF Three Axles

Three-axle vehicle body with longitudinal, lateral, and yaw motion

Libraries:

Vehicle Dynamics Blockset / Vehicle Body

Description

The Vehicle Body 3DOF Three Axles block implements a rigid, three-axle vehicle body model to calculate longitudinal, lateral, and yaw motion. The block accounts for the axle and hitch reaction forces due to the vehicle body mass acceleration, aerodynamic drag, and steering.

Use this block in vehicle dynamics and automated driving studies to model nonholonomic vehicle motion when vehicle pitch, roll, and vertical motion are not significant.

Use the Vehicle track parameter to specify the number of wheels.

Vehicle Track Setting	Implementation
Single (bicycle)	- Forces act along the center line of the axles. - No lateral load transfer.
Dual	Forces act at the axle hard-point locations.

Use the Axle forces parameter to specify the type of force.

Axle Forces Setting	Implementation
External longitudinal velocity	- The block assumes that the external longitudinal velocity is in a quasi-steady state, so the longitudinal acceleration is approximately zero. - Because the motion is quasi-steady, the block calculates lateral forces using the tire slip angles and linear cornering stiffness. - Consider this setting when you want to: - Generate virtual sensor signal data. - Conduct high-level software studies that are not impacted by driveline or nonlinear tire responses.

Axle Forces Setting	Implementation
External longitudinal forces	- The block uses the external longitudinal force to accelerate or brake the vehicle. - The block calculates lateral forces using the tire slip angles and linear cornering stiffness. - Consider this setting when you want to: - Account for changes in the longitudinal velocity on the lateral and yaw motion. - Specify the external longitudinal motion through a force instead of an external longitudinal velocity. - Connect the block to tractive actuators, wheels, brakes, and hitches.
External forces	- The block uses the external lateral and longitudinal forces to steer, accelerate, or brake the vehicle. - The block does not use the steering input to calculate vehicle motion. - Consider this setting when you need tire models with more accurate nonlinear combined lateral and longitudinal slip.

To create additional input ports, under Input signals, select these block parameters.

Input Signals Pane Parameter	Input Port	Description
Front wheel steering	WhlAngF	Front wheel angle, δ_{F}
Middle wheel steering	WhlAngM	Middle wheel angle, δ_{M}
Rear wheel steering	WhlAngR	Rear wheel angle, δ_{R}
External wind	WindXYZ	Wind speed, W_{X}, W_{Y}, and W_{Z}, in an inertial reference frame
External friction	Mu	Friction coefficient
External forces	FExt	External force on the vehicle center of gravity (CG), F_{x}, F_{y}, and F_{z}, in the vehicle-fixed frame
External moments	MExt	External moment about the vehicle CG, M_{x}, M_{y}, and M_{z}, in the vehicle-fixed frame
Front hitch forces	FhF	Hitch force applied to the body at the front hitch location, $F h F_{x}, F h F_{y}$, and $F h F_{z}$, in the vehicle-fixed frame
Front hitch moments	MhF	Hitch moment at the front hitch location, MhF $F_{x}, M h F_{y}$, and $M h F_{z}$, about the vehicle-fixed frame
Rear hitch forces	FhR	Hitch force applied to the body at the rear hitch location, $F h R_{x}, F h R_{y}$, and $F h R_{z}$, in the vehicle-fixed frame
Rear hitch moments	MhR	Hitch moment at the rear hitch location, $M h R_{x}, M h R_{y}$, and $M h R_{z}$, about the vehicle-fixed frame
Initial longitudinal position	X_o	Initial vehicle CG displacement along the earth-fixed X-axis

Input Signals Pane Parameter	Input Port	Description
Initial yaw angle	psi_o	Initial rotation of the vehicle-fixed frame about the earth- fixed Z-axis (yaw)
Initial longitudinal velocity	xdot_o	Initial vehicle CG velocity along the vehicle-fixed x-axis
Initial yaw rate	r_o	Initial vehicle angular velocity about the vehicle-fixed z - axis (yaw rate)
Initial lateral position	Y_o	Initial vehicle CG displacement along the earth-fixed Y-axis
Air temperature	AirTemp	Ambient air temperature. Consider this option if you want to vary the temperature during run time.
Initial lateral velocity	ydot_o	Initial vehicle CG velocity along the vehicle-fixed y-axis

Theory

To determine the vehicle motion, the block solves the rigid body planar dynamics equations of motion.

Calculation	Description
Dynamics	The block solves the rigid-body planar dynamics equations to determine the vehicle longitudinal motion. If you set Axle forces to External longitudinal velocity, the block assumes a quasi-steady state for the longitudinal acceleration.
External forces	External forces include both drag and external force inputs. The forces act on the vehicle CG. The block divides the normal forces by the nominal normal load to vary the effective friction parameters during weight and load transfer. The block maintains pitch and roll equilibrium.
Tire forces	The block uses the ratio of the local, longitudinal, and lateral velocities to determine the slip angles.
The block uses the steering angles to transform the tire forces to the vehicle- fixed frame. If you set Axle forces to External forces, the block assumes that the externally provided forces are in the vehicle-fixed frame at the axle-wheel location.	

Single Track

Dual Track

The illustrations use these variables.

a, b, c	Longitudinal distance of the front, middle, and rear axles, respectively, from the normal projection point of the vehicle CG onto the common axle plane
h	Height of vehicle CG above the axle plane along the vehicle-fixed z-axis
d	Lateral distance from geometric centerline to center of mass along the vehicle- fixed y-axis
$h h$	Height of the hitch above the axle plane along the vehicle-fixed z-axis
$d h$	Longitudinal distance of the hitch from normal projection point of the vehicle CG onto the common axle plane
$h l$	Lateral distance from center of mass to hitch along the vehicle-fixed y-axis.
$w f, w m, w r$	Front, middle, and rear track width, respectively

Drag

This table summarizes the block implementation for the drag calculation.

Calculation	Description
Coordinate transformation	The block transforms the wind speeds from the inertial frame to the vehicle- fixed frame.

Calculation	Description
Drag forces	To determine a relative airspeed, the block subtracts the wind speed from the CG vehicle velocity. Using the relative airspeed, the block determines the drag forces.
Drag moments	Using the relative airspeed, the block determines the drag moments.

Lateral Corner Stiffness and Relaxation Dynamics

To enable the mapped corner stiffness and relaxation length dynamic parameters, set Axle forces to External longitudinal force or External longitudinal velocity.

Parameter Settings	Description	
Mapped Corner Stiffness	Include Relaxation Length Dynamics	
Off (default)	On (default)	The block uses constant corner stiffness values. The slip angles include the relaxation length dynamic settings. The relaxation length approximates an effective corner stiffness force that is a function of wheel travel.
On	On (default)	The block uses lookup tables that are functions of the corner stiffness data and slip angles. The slip angles include the relaxation length dynamic
settings. The relaxation length approximates an		
effective corner stiffness force that is a function of		
wheel travel.		

Ports

Input

WhIAngF - Front wheel steering angles
scalar|array
Front wheel steering angles, δ_{F}, in rad.

Vehicle Track Setting	Variable	Signal Dimension
Single (bicycle)	δ_{F}	Scalar - 1
Dual	$\delta_{F}=\left[\delta_{f l} \delta_{f r}\right]$ or $\left[\begin{array}{l}\delta_{f l} \\ \delta_{f r}\end{array}\right]$	Array - [1x2] or [2x1]

Dependencies

To enable this port, on the Input signals pane, select Front wheel steering.
WhIAngM - Middle wheel steering angles
scalar|array

Middle wheel steering angles, δ_{M}, in rad.

Vehicle Track Setting	Variable	Signal Dimension
Single (bicycle)	δ_{M}	Scalar - 1
Dual	$\delta_{M}=\left[\delta_{m l} \delta_{m r}\right]$ or $\left[\begin{array}{l}\delta_{m l} \\ \delta_{m r}\end{array}\right]$	Array - [1×2] or [2×1]

Dependencies

To enable this port, on the Input signals pane, select Middle wheel steering.
WhIAngR - Rear wheel steering angles
scalar|array
Rear wheel steering angles, δ_{R}, in rad.

Vehicle Track Setting	Variable	Signal Dimension
Single (bicycle)	δ_{R}	Scalar - 1
Dual	$\delta_{R}=\left[\delta_{r l} \delta_{r r}\right]$ or $\left[\begin{array}{l}\delta_{r l} \\ \delta_{r r}\end{array}\right]$	Array - [1×2] or [2x1]

Dependencies

To enable this port, on the Input signals pane, select Rear wheel steering.
xdotin - Longitudinal velocity
scalar
Vehicle CG velocity along the vehicle-fixed x-axis, in m / s.

Dependencies

To enable this port, set Axle forces to External longitudinal velocity.
FwF - Total force on the front wheels
scalar|array
Force on the front wheels, $F w_{F}$, along the vehicle-fixed axis, in N .

Vehicle Track Setting	Axle Forces Setting	Description	Variable	Signal Dimension
Single (bicycle)	External longitudinal forces	Longitudinal force on the front wheel	$F w F=F x_{f}$	Scalar -1
	External forces	Longitudinal and lateral forces on the front wheel	$F w F=\left[F x_{f} F y_{f}\right]$ or $\left[\begin{array}{ll}F x_{f} \\ F y_{f}\end{array}\right]$	Array - [1x2] or $[2 \times 1]$

Vehicle Track Setting	Axle Forces Setting	Description	Variable	Signal Dimension
Dual	External longitudinal forces	Longitudinal force on the front wheels	$F w F=\left[\begin{array}{l} F_{x f l} \\ F_{x f r} \end{array}\right] \text { or }\left[\begin{array}{l} F_{x f l} \\ F_{x f r} \end{array}\right.$	$\begin{aligned} & \text { Array }-[1 \times 2] \text { or } \\ & {[2 \times 1]} \end{aligned}$
	External forces	Longitudinal and lateral forces on the front wheels	$F w F=\left[\begin{array}{lll}F_{x f l} & F_{x f r} \\ F_{y f l} & F_{y f r}\end{array}\right]$	Array - [2x2]

Dependencies

To enable this port, set Axle forces to one of these options:

- External longitudinal forces
- External forces

FwM - Total force on the middle wheels
scalar|array
Force on the middle wheels, $F w_{M}$, along the vehicle-fixed axis, in N.

Vehicle Track Setting	Axle Forces Setting	Description	Variable	Signal Dimension
Single (bicycle)	External longitudinal forces	Longitudinal force on the middle wheel	$F w M=F \chi_{r}$	Scalar - 1
	External forces	Longitudinal and lateral forces on the middle wheel	$F w M=\left[\begin{array}{lll}F x_{m} & F y_{m}\end{array}\right]$ or $\left[\begin{array}{l} F x_{m} \\ F y_{m} \end{array}\right]$	$\begin{aligned} & \text { Array - [1×2] or } \\ & {[2 \times 1]} \end{aligned}$
Dual	External longitudinal forces	Longitudinal force on the middle wheels	$\begin{aligned} & F w M=\left[\begin{array}{l} F_{x m l} \\ F_{x m r} \end{array}\right] \text { or } \\ & {\left[\begin{array}{l} F_{x m l} \\ F_{x m r} \end{array}\right]} \end{aligned}$	$\begin{aligned} & \text { Array - [1x2] or } \\ & {[2 \times 1]} \end{aligned}$
	External forces	Longitudinal and lateral forces on the middle wheels	$F w M=\left[\begin{array}{ll} F_{x m l} & F_{x m r} \\ F_{y m l} & F_{y m r} \end{array}\right]$	Array - [2x2]

Dependencies

To enable this port, set Axle forces to one of these options:

- External longitudinal forces
- External forces

FwR - Total force on the rear wheels
scalar|array
Force on the rear wheels, $F w_{R}$, along the vehicle-fixed axis, in N.

Vehicle Track Setting	Axle Forces Setting	Description	Variable	Signal Dimension
Single (bicycle)	External longitudinal forces	Longitudinal force on the rear wheel	$F w R=F \chi_{r}$	Scalar - 1
	External forces	Longitudinal and lateral forces on the rear wheel	$F w R=\left[\begin{array}{lll}F x_{r} & F y_{r}\end{array}\right]$ or $\left[\begin{array}{l}F x_{r} \\ F y_{r}\end{array}\right]$	$\begin{aligned} & \text { Array - [1x2] or } \\ & {[2 \times 1]} \end{aligned}$
Dual	External longitudinal forces	Longitudinal force on the rear wheels	$\begin{aligned} & F w R=\left[F_{x r l} F_{x r r}\right] \text { or }\left[\begin{array}{l} F_{x r l} \\ F_{x r r} \end{array}\right. \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Array - [1×2] or } \\ & {[2 \times 1]} \end{aligned}$
	External forces	Longitudinal and lateral forces on the rear wheels	$F w R=\left[\begin{array}{ll}F_{x r l} & F_{x r r} \\ F_{y r l} & F_{y r r}\end{array}\right]$	Array - [2x2]

Dependencies

To enable this port, set Axle forces to one of these options:

- External longitudinal forces
- External forces

FExt - External force on vehicle CG
array
External forces applied to the vehicle CG, $F_{x e x t}, F_{y e x t}, F_{z e x t}$, in vehicle-fixed frame, in N. The signal array dimensions are [1×3] or [3×1].

Dependencies

To enable this port, on the Input signals pane, select External forces.
MExt - External moment about vehicle CG
array
External moment about the vehicle CG, M_{x}, M_{y}, M_{z}, in the vehicle-fixed frame, in N•m. The signal array dimensions are [1×3] or [3x1].

Dependencies

To enable this port, on the Input signals pane, select External moments.
Fh - Hitch force on the body
array

Hitch force applied to the body at the hitch location, $F h_{x}, F h_{y}, F h_{z}$, in the vehicle-fixed frame, in N, specified as a 1-by-3 or 3-by-1 array.

Dependencies

To enable this port, under Input signals, select Hitch forces.
Mh - Hitch moment about body array

Hitch moment at the hitch location, $M h_{x}, M h_{y}, M h_{z}$, about the vehicle-fixed frame, in $\mathrm{N} \cdot \mathrm{m}$, specified as a 1-by-3 or 3-by-1 array.

Dependencies

To enable this port, under Input signals, select Hitch moments.
WindXYZ - Wind speed
array
Wind speed, W_{x}, W_{y}, W_{z} along the inertial X-, Y-, and Z-axes, in m / s. The signal array dimensions are [1x3] or [3x1].

Dependencies
To enable this port, on the Input signals pane, select External wind.
$\mathbf{M u}$ - Tire friction coefficient
array
Tire friction coefficient, μ, dimensionless.

Vehicle Track Setting	Variable	Signal Dimension
Single (bicycle)	$M u=\left[\begin{array}{lll}\mu_{f} & \mu_{m} & \mu_{r}\end{array}\right]$ or $\left[\begin{array}{c}\mu_{f} \\ \mu_{m} \\ \mu_{r}\end{array}\right]$	Array - [1×3] or [3x1]
Dual	$M u=\left[\begin{array}{ll}\mu_{f l} & \mu_{f r} \\ \mu_{m l} & \mu_{m r} \\ \mu_{r l} & \mu_{r r}\end{array}\right]$	Array - [3x2]

Dependencies

To enable this port, on the Input signals pane, select External friction.

AirTemp - Ambient air temperature

scalar

Ambient air temperature, in K.

Dependencies

To enable this port, on the Input signals pane, select Air temperature.
X_o - Initial longitudinal position
scalar

Initial vehicle CG displacement along the earth-fixed X-axis, in m .

Dependencies

To enable this port, on the Input signals pane, select Initial longitudinal position.
Y_o - Initial lateral position
scalar
Initial vehicle CG displacement along the earth-fixed Y-axis, in m .

Dependencies

To enable this port, on the Input signals pane, select Initial lateral position.
xdot_o - Initial longitudinal position
scalar
Initial vehicle CG velocity along the vehicle-fixed x-axis, in m / s.

Dependencies

To enable this port:
1 Set Axle forces to one of these options:

- External longitudinal forces
- External forces

2 On the Input signals pane, select Initial longitudinal velocity
ydot_o - Initial lateral position
scalar
Initial vehicle CG velocity along the vehicle-fixed y-axis, in m / s.

Dependencies

To enable this port, on the Input signals pane, select Initial lateral velocity.
psi_o - Initial yaw angle
scalar
Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw), in rad.

Dependencies

To enable this port, on the Input signals pane, select Initial yaw angle.
r_o - Initial yaw rate
scalar
Vehicle angular velocity about the vehicle-fixed z-axis (yaw rate), in rad/s.

Dependencies

To enable this port, on the Input signals pane, select Initial yaw rate.

Output

Info - Vehicle data
bus
Vehicle data, returned as a bus signal containing these block values.

Signal					Description	Value	Units
InertFrm	Cg	Disp	X		Vehicle CG displacement along the earth-fixed X axis	Computed	m
			Y		Vehicle CG displacement along the earth-fixed Y axis	Computed	m
			Z		Vehicle CG displacement along the earth-fixed Z axis	0	m
		Vel	Xdot		Vehicle CG velocity along the earth-fixed X-axis	Computed	m/s
			Ydot		Vehicle CG velocity along the earth-fixed Y-axis	Computed	m / s
			Zdot		Vehicle CG velocity along the earth-fixed Z-axis	0	m/s
		Ang	phi		Rotation of the vehiclefixed frame about the earth-fixed X-axis (roll)	0	rad
			theta		Rotation of the vehiclefixed frame about the earth-fixed Y-axis (pitch)	0	rad
			psi		Rotation of the vehiclefixed frame about the earth-fixed Z-axis (yaw)	Computed	rad
	FrntAxl	Lft	Disp	X	Front left wheel displacement along the earth-fixed X-axis	Computed	m
				Y	Front left wheel displacement along the earth-fixed Y-axis	Computed	m
				Z	Front left wheel displacement along the earth-fixed Z-axis	0	m
			Vel	$\begin{aligned} & \text { Xdo } \\ & \mathrm{t} \end{aligned}$	Front left wheel velocity along the earth-fixed X axis	Computed	m/s
				$\begin{array}{\|l} \hline \text { Ydo } \\ \mathrm{t} \end{array}$	Front left wheel velocity along the earth-fixed Y axis	Computed	m/s

Signal				Description	Value	Units
			$\begin{aligned} & \mathrm{Zdo} \\ & \mathrm{t} \end{aligned}$	Front left wheel velocity along the earth-fixed Zaxis	0	m/s
	Rght	Disp	X	Front right wheel displacement along the earth-fixed X-axis	Computed	m
			Y	Front right wheel displacement along the earth-fixed Y-axis	Computed	m
			Z	Front right wheel displacement along the earth-fixed Z-axis	0	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Front right wheel velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \mathrm{Ydo} \\ & \mathrm{t} \end{aligned}$	Front right wheel velocity along the earth-fixed Y axis	Computed	m/s
			$\begin{aligned} & \text { Zdo } \\ & \dagger \end{aligned}$	Front right wheel velocity along the earth-fixed Z axis	0	m/s
MidlAxl	Lft	Disp	X	Middle left wheel displacement along the earth-fixed X-axis	Computed	m
			Y	Middle left wheel displacement along the earth-fixed Y-axis	Computed	m
			Z	Middle left wheel displacement along the earth-fixed Z-axis	0	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Middle left wheel velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \mathrm{Ydo} \\ & \mathrm{t} \end{aligned}$	Middle left wheel velocity along the earth-fixed Y axis	Computed	m/s
			$\begin{aligned} & \mathrm{Zdo} \\ & \dagger \end{aligned}$	Middle left wheel velocity along the earth-fixed Zaxis	0	m/s
	Rght	Disp	X	Middle right wheel displacement along the earth-fixed X-axis	Computed	m
			Y	Middle right wheel displacement along the earth-fixed Y-axis	Computed	m

Signal				Description	Value	Units
Signal			Z	Middle right wheel displacement along the earth-fixed Z-axis	0	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Middle right wheel velocity along the earthfixed X-axis	Computed	m/s
			$\begin{aligned} & \text { Ydo } \\ & \mathrm{t} \end{aligned}$	Middle right wheel velocity along the earthfixed Y-axis	Computed	m/s
			$\begin{aligned} & \mathrm{Zdo} \\ & \mathrm{t} \end{aligned}$	Middle right wheel velocity along the earthfixed Z-axis	0	m/s
RearAxl	Lft	Disp	X	Rear left wheel displacement along the earth-fixed X-axis	Computed	m
			Y	Rear left wheel displacement along the earth-fixed Y-axis	Computed	m
			Z	Rear left wheel displacement along the earth-fixed Z-axis	0	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Rear left wheel velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \text { Ydo } \\ & \mathrm{t} \end{aligned}$	Rear left wheel velocity along the earth-fixed Y axis	Computed	m/s
			$\begin{aligned} & \mathrm{Zdo} \\ & \mathrm{t} \end{aligned}$	Rear left wheel velocity along the earth-fixed Zaxis	0	m/s
	Rght	Disp	X	Rear right wheel displacement along the earth-fixed X-axis	Computed	m
			Y	Rear right wheel displacement along the earth-fixed Y-axis	Computed	m
			Z	Rear right wheel displacement along the earth-fixed Z-axis	0	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Rear right wheel velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \mathrm{Ydo} \\ & \mathrm{t} \end{aligned}$	Rear right wheel velocity along the earth-fixed Y axis	Computed	m/s

Signal			Description	Value	Units
		zdot	Vehicle CG velocity along the vehicle-fixed z-axis	0	m/s
	Ang	Beta	Body slip angle, β $\beta=\frac{V_{y}}{V_{x}}$	Computed	rad
	AngVel	p	Vehicle angular velocity about the vehicle-fixed x axis (roll rate)	0	rad/s
		q	Vehicle angular velocity about the vehicle-fixed y axis (pitch rate)	0	rad/s
		r	Vehicle angular velocity about the vehicle-fixed z axis (yaw rate)	Computed	rad/s
	Acc	ax	Vehicle CG acceleration along the vehicle-fixed x axis	Computed	gn
		ay	Vehicle CG acceleration along the vehicle-fixed y axis	Computed	gn
		az	Vehicle CG acceleration along the vehicle-fixed z axis	0	gn
		xddot	Vehicle CG acceleration along the vehicle-fixed x axis	Computed	$\mathrm{m} / \mathrm{s}^{\wedge} 2$
		yddot	Vehicle CG acceleration along the vehicle-fixed y axis	Computed	$\mathrm{m} / \mathrm{s}^{\wedge} 2$
		zddot	Vehicle CG acceleration along the vehicle-fixed z axis	0	$\mathrm{m} / \mathrm{s}^{\wedge} 2$
	AngAcc	pdot	Vehicle angular acceleration about the vehicle-fixed x-axis	0	rad/s
		qdot	Vehicle angular acceleration about the vehicle-fixed y-axis	0	rad/s
		rdot	Vehicle angular acceleration about the vehicle-fixed z-axis	Computed	rad/s
Forces	Body	Fx	Net force on vehicle CG along the vehicle-fixed x axis	Computed	N

			Signal ${ }^{\text {a }}$ (Description	Value	Units
	Fy		Net force on vehicle CG along the vehicle-fixed y axis	Computed	N
	Fz		Net force on vehicle CG along the vehicle-fixed z axis	0	N
Ext	Fx		External force on vehicle CG along the vehicle-fixed x-axis	Computed	N
	Fy		External force on vehicle CG along the vehicle-fixed y-axis	Computed	N
	Fz		External force on vehicle CG along the vehicle-fixed z-axis	0	N
Hitch	Fx		Hitch force applied to body at the hitch location along the vehicle-fixed x axis	Computed	N
	Fy		Hitch force applied to body at the hitch location along the vehicle-fixed y axis	Computed	N
	Fz		Hitch force applied to body at the hitch location along the vehicle-fixed z axis	Computed	N
FrntAxl	Lft	Fx	Longitudinal force on left front wheel along the vehicle-fixed x-axis	Computed	N
		Fy	Lateral force on left front wheel along the vehiclefixed y-axis	Computed	N
		Fz	Normal force on left front wheel along the vehiclefixed z-axis	Computed	N
	Rght	Fx	Longitudinal force on right front wheel along the vehicle-fixed x-axis	Computed	N
		Fy	Lateral force on right front wheel along the vehicle-fixed y-axis	Computed	N
		Fz	Normal force on right front wheel along the vehicle-fixed z-axis	Computed	N

Signal				Description	Value	Units
	MidlAxl	Lft	Fx	Longitudinal force on left middle wheel along the vehicle-fixed x-axis	Computed	N
			Fy	Lateral force on left middle wheel along the vehicle-fixed y-axis	Computed	N
			Fz	Normal force on left middle wheel along the vehicle-fixed z-axis	Computed	N
		Rght	Fx	Longitudinal force on right middle wheel along the vehicle-fixed x-axis	Computed	N
			Fy	Lateral force on right middle wheel along the vehicle-fixed y-axis	Computed	N
			Fz	Normal force on right middle wheel along the vehicle-fixed z-axis	Computed	N
	RearAxl	Lft	Fx	Longitudinal force on left rear wheel along the vehicle-fixed x-axis	Computed	N
			Fy	Lateral force on left rear wheel along the vehiclefixed y-axis	Computed	N
			Fz	Normal force on left rear wheel along the vehiclefixed z-axis	Computed	N
		Rght	Fx	Longitudinal force on right rear wheel along the vehicle-fixed x-axis	Computed	N
			Fy	Lateral force on right rear wheel along the vehiclefixed y-axis	Computed	N
			Fz	Normal force on right rear wheel along the vehiclefixed z-axis	Computed	N
	Tires	FrntTir es		Front left tire force along the vehicle-fixed x-axis	Computed	N
			t¢ F y	Front left tire force along the vehicle-fixed y-axis	Computed	N
			z	Front left tire force along the vehicle-fixed z-axis	Computed	N

Signal				Description	Value	Units
			R F g x h 	Front right tire force along the vehicle-fixed x axis	Computed	N
			$\mathrm{t} \left\lvert\, \begin{aligned} & \mathrm{F} \\ & \mathrm{y} \end{aligned}\right.$	Front right tire force along the vehicle-fixed y axis	Computed	N
			F	Front right tire force along the vehicle-fixed z axis	Computed	N
		$\begin{aligned} & \text { RearTir } \\ & \text { es } \end{aligned}$		Rear left tire force along the vehicle-fixed x-axis	Computed	N
			$\mathrm{t} \begin{aligned} & \mathrm{F} \\ & \mathrm{y} \end{aligned}$	Rear left tire force along the vehicle-fixed y-axis	Computed	N
				Rear left tire force along the vehicle-fixed z-axis	Computed	N
				Rear right tire force along the vehicle-fixed x-axis	Computed	N
				Rear right tire force along the vehicle-fixed y-axis	Computed	N
			$\begin{aligned} & \mathrm{F} \\ & \mathrm{z} \end{aligned}$	Rear right tire force along the vehicle-fixed z-axis	Computed	
	Drag	FX		Drag force on vehicle CG along the vehicle-fixed x axis	Computed	N
		Fy		Drag force on vehicle CG along the vehicle-fixed y axis	Computed	N
		Fz		Drag force on vehicle CG along the vehicle-fixed z axis	Computed	N
	Grvty	Fx		Gravity force on vehicle CG along the vehicle-fixed x-axis	Computed	N
		Fy		Gravity force on vehicle CG along the vehicle-fixed y-axis	Computed	N
		Fz		Gravity force on vehicle CG along the vehicle-fixed z-axis	Computed	N
Moments	Body	Mx		Body moment on vehicle CG about the vehicle-fixed x-axis	0	$\mathrm{N} \cdot \mathrm{m}$

Signal				Description	Value	Units
Signal			$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Middle left wheel velocity along the vehicle-fixed z axis	0	m/s
	Rght	Disp	x	Middle right wheel displacement along the vehicle-fixed x-axis	Computed	m
			y	Middle right wheel displacement along the vehicle-fixed y-axis	Computed	m
			z	Middle right wheel displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Middle right wheel velocity along the vehiclefixed x-axis	Computed	m/s
			$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Middle right wheel velocity along the vehiclefixed y-axis	Computed	m/s
			$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Middle right wheel velocity along the vehiclefixed z-axis	0	m/s
	Steer	WhlAngRL		Middle left wheel steering angle	Computed	rad
		WhlangRR		Middle right wheel steering angle	Computed	rad
RearAxl	Lft	Disp	x	Rear left wheel displacement along the vehicle-fixed x-axis	Computed	m
			y	Rear left wheel displacement along the vehicle-fixed y-axis	Computed	m
			z	Rear left wheel displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Rear left wheel velocity along the vehicle-fixed x axis	Computed	m/s
			$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Rear left wheel velocity along the vehicle-fixed y axis	Computed	m/s
			$\begin{aligned} & \text { zdo } \\ & \mathrm{t} \end{aligned}$	Rear left wheel velocity along the vehicle-fixed z axis	0	m/s

Signal			Rght	Disp	x	Rear right wheel displacement along the vehicle-fixed x-axis	Computed
				y	m		

Signal			Description	Value	Units
		y	Vehicle chassis offset from center plane along the vehicle-fixed y-axis	Input	m
		z	Vehicle chassis offset from axle plane along the earth-fixed z-axis	Input	m
	Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Vehicle chassis offset velocity along the vehiclefixed x-axis	Computed	m/s
		$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Vehicle chassis offset velocity along the vehiclefixed y-axis	Computed	m/s
		$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Vehicle chassis offset velocity along the vehiclefixed z-axis	0	m/s
	Ang	$\begin{aligned} & \text { Bet } \\ & \text { a } \end{aligned}$	Body slip angle, β $\beta=\frac{V_{y}}{V_{x}}$	Computed	rad

Signal			Description	Value	Units
PwrInfo	PwrTrnsfrd	PwrFxExt	Externally applied longitudinal force power	Comp uted	W
		PwrFyExt	Externally applied lateral force power	Comp uted	W
		PwrMzExt	Externally applied yaw moment power	Comp uted	W
		PwrFwFLx	Longitudinal force applied at the front left axle power	Comp uted	W
		PwrFwFLy	Lateral force applied at the front left axle power	Comp uted	W
		PwrFwFRx	Longitudinal force applied at the front right axle power	Comp uted	W
		PwrFwFRy	Lateral force applied at the front right axle power	Comp uted	W
		PwrFwMLx	Longitudinal force applied at the middle left axle power	Comp uted	W
		PwrFwMLy	Lateral force applied at the middle left axle power	Comp uted	W
		PwrFwMRx	Longitudinal force applied at the middle right axle power	Comp uted	W
		PwrFwMRy	Lateral force applied at the middle right axle power	Comp uted	W

Signal			Description	Value	Units
		PwrFwRLx	Longitudinal force applied at the rear left axle power	Comp uted	W
		PwrFwRLy	Lateral force applied at the rear left axle power	Comp uted	W
		PwrFwRRx	Longitudinal force applied at the rear right axle power	Comp uted	W
		PwrFwRRy	Lateral force applied at the rear right axle power	Comp uted	W
	PwrNotTrnsfr d	PwrFxDrag	Longitudinal drag force power	Comp uted	W
		PwrFyDrag	Lateral drag force power	Comp uted	W
		PwrMzDrag	Drag pitch moment power	Comp uted	W
	PwrStored	PwrStoredGrvty	Rate change in gravitational potential energy	Comp uted	W
		PwrStoredxdot	Rate of change of longitudinal kinetic energy	Comp uted	W
		PwrStoredydot	Rate of change of lateral kinetic energy	Comp uted	W
		PwrStoredr	Rate of change of rotational yaw kinetic energy	Comp uted	W

xdot - Vehicle longitudinal velocity
scalar
Vehicle CG velocity along the vehicle-fixed x-axis, in m / s.

```
ydot - Vehicle lateral velocity
```

scalar
Vehicle CG velocity along the vehicle-fixed y-axis, in m / s.

```
psi - Yaw
```

scalar
Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw), in rad.
r-Yaw rate
scalar
Vehicle angular velocity, r , about the vehicle-fixed z-axis (yaw rate), in rad/s.
FzF - Normal force on front wheels
scalar|array
Normal force on the front wheels, $F z_{F}$, along the vehicle-fixed z-axis, in N .

Vehicle Track Setting	Description	Variable	Signal Dimension
Single (bicycle)	Normal force on front axle	$F z F=F z_{f}$	Scalar - 1
Dual	Normal force on the right and left front wheels	$F z F=\left[F z_{f l} F z_{f r}\right]$	Array - [1×2]

FzM - Normal force on middle wheels
scalar|array
Normal force on the middle wheels, $F z_{M}$, along the vehicle-fixed z-axis, in N .

Vehicle Track Setting	Description	Variable	Signal Dimension
Single (bicycle)	Normal force on middle axle	$F z M=F z_{m}$	Scalar - 1
Dual	Normal force on the right and left middle wheels	$F z M=\left[F z_{m l} F z_{r l}\right]$	Array - [1×2]

FzR - Normal force on rear wheels
scalar|array
Normal force on the rear wheels, $F z_{R}$, along the vehicle-fixed z-axis, in N .

Vehicle Track Setting	Description	Variable	Signal Dimension
Single (bicycle)	Normal force on rear wheel	$F z R=F z_{r}$	Scalar - 1
Dual	Normal force on the right and left rear wheels	$F z R=\left[F z_{r l} F z_{r r}\right]$	Array - [1×2]

Parameters

Options

Vehicle track - Number of vehicle wheels
Dual (default)|Single (bicycle)
Use the Vehicle track parameter to specify the number of wheels.

Vehicle Track Setting	Implementation
Single (bicycle)	- Forces act along the center line of the axles. - No lateral load transfer.
Dual	Forces act at the axle hard-point locations.

Axle forces - Type of axle force
External longitudinal velocity (default)|External longitudinal forces|External forces

Use the Axle forces parameter to specify the type of force.

Axle Forces Setting	Implementation
External longitudinal velocity	- The block assumes that the external longitudinal velocity is in a quasi-steady state, so the longitudinal acceleration is approximately zero. - Because the motion is quasi-steady, the block calculates lateral forces using the tire slip angles and linear cornering stiffness. - Consider this setting when you want to: - Generate virtual sensor signal data. - Conduct high-level software studies that are not impacted by driveline or nonlinear tire responses.
External longitudinal forces	- The block uses the external longitudinal force to accelerate or brake the vehicle. - The block calculates lateral forces using the tire slip angles and linear cornering stiffness. - Consider this setting when you want to: - Account for changes in the longitudinal velocity on the lateral and yaw motion. - Specify the external longitudinal motion through a force instead of an external longitudinal velocity. - Connect the block to tractive actuators, wheels, brakes, and hitches.
External forces	- The block uses the external lateral and longitudinal forces to steer, accelerate, or brake the vehicle. - The block does not use the steering input to calculate vehicle motion. - Consider this setting when you need tire models with more accurate nonlinear combined lateral and longitudinal slip.

Input Signals

Front wheel steering - WhlAngF input port

on (default) | off
Select to create input port WhlAngF.
Middle wheel steering - WhlAngM input port
off (default) | on
Select to create input port WhlAngM.
Rear wheel steering - WhlAngR input port
off (default) | on

Select to create input port WhlAngR.
External wind - WindXYZ input port
off (default) |on
Select to create input port WindXYZ.
External friction - Mu input port
off (default) | on
Select to create input port Mu.

Dependencies

To enable this parameter, set Axle forces to External longitudinal forces or External forces.

External forces - FExt input port
off (default) | on
Select to create input port FExt.
External moments - MExt input port
off (default) | on
Select to create input port MExt.
Hitch forces - Fh input port
on (default) | off
Select to create input port Fh.
Hitch moments - Mh input port
on (default) | off
Specify to create input port Mh.
Initial longitudinal position - X_o input port
off (default) | on
Specify to create input port X_o.
Initial yaw angle - psi_o input port
off (default) | on
Specify to create input port psi_o.
Initial longitudinal velocity - xdot_o input port
off (default) | on
Specify to create input port xdot_o.
Dependencies
To enable this parameter, set Axle forces to External longitudinal forces or External forces.

Initial yaw rate - r_o input port
off (default) | on
Specify to create input port r_o.
Initial lateral position - Y_o input port off (default) | on

Specify to create input port Y_o.
Air temperature - AirTemp input port off (default) | on

Specify to create input port AirTemp.
Initial lateral velocity - ydot_o input port
off (default) | on
Specify to create input port ydot_o.

Longitudinal

Number of wheels on front axle, NF - Front wheel count
2 (default) | scalar
Number of wheels on the front axle, N_{F}, dimensionless.
Number of wheels on middle axle, NM - Middle wheel count
2 (default) | scalar
Number of wheels on the middle axle, N_{M}, dimensionless.
Number of wheels on rear axle, NR - Rear wheel count
2 (default) | scalar
Number of wheels on the rear axle, N_{R}, dimensionless.
Vehicle mass, m - Vehicle mass
47000 (default) | scalar
Vehicle mass, m, in kg .
Longitudinal distance from center of mass to front axle, a - Distance from CM to front axle 0.5 (default) | scalar

Distance from vehicle CM to front axle, a, in m .

Longitudinal distance from center of mass to middle axle, \mathbf{b} - Distance from CM to middle axle 4.5 (default) | scalar

Distance from vehicle CM to middle axle, b, in m.

Longitudinal distance from center of mass to rear axle, c-Distance from CM to rear axle
5.7 (default) | scalar

Distance from vehicle CM to rear axle, c, in m.

Vertical distance from center of mass to axle plane, \mathbf{h} - Distance from CM to axle plane 0.3 (default) | scalar

Vertical distance from vehicle CM to axle plane, h, in m.

Vertical distance from hitch to axle plane, $\mathbf{h h}$ - Distance from hitch to axle plane
0.5 (default) | scalar

Vertical distance from hitch to axle plane, $h h$, in m.

Dependencies

To enable this parameter, on the Input signals pane, select Hitch forces or Hitch moments.
Longitudinal distance from center of mass to hitch, $\mathbf{d h}$ - Distance from CM to hitch 5 (default) | scalar

Longitudinal distance from center of mass to hitch, $d h$, in m.

Dependencies

To enable this parameter, on the Input signals pane, select Hitch forces or Hitch moments.
Initial inertial frame longitudinal position, X_o - Initial longitudinal displacement
0 (default) | scalar
Initial vehicle CG displacement along the earth-fixed X-axis, in m .
Initial longitudinal velocity, xdot_o - Initial longitudinal velocity
0 (default) | scalar
Initial vehicle CG velocity along the vehicle-fixed x-axis, in m / s.

Dependencies

To enable this parameter, set Axle forces to one of these options:

- External longitudinal forces
- External forces

Lateral

Mapped corner stiffness - Enable mapped corner stiffness
off (default) | on
Enables mapped corner stiffness calculation.

Dependencies

To enable this parameter, set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

Include relaxation length dynamics - Enable relaxation length dynamics
on (default) | off
Enables relaxation length dynamics.

Dependencies

To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Clear Mapped corner stiffness.

Lateral distance from geometric centerline to center of mass, d - Distance from centerline to CM
0 (default) | scalar
Lateral distance from the geometric centerline to the center of mass, d, in m, along the vehicle-fixed y-axis. Positive values indicate that the vehicle CM is to the right of the geometric centerline.
Negative values indicate that the vehicle CM is to the left of the geometric centerline.

Track width, w - Front, middle, and rear track widths
[1.82,1.82,1.82] (default) | vector
Front, middle, and rear track widths, $w f$, $w m$, and, $w r$, respectively, in m. Dimensions are 1-by-3.

Dependencies

To enable this parameter, set Vehicle track to Dual.
Front axle tire corner stiffness, Cy_f - Front tire corner stiffness
12e3 | scalar
Front tire corner stiffness, $C y_{f}$, in $\mathrm{N} / \mathrm{rad}$.

Dependencies

To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Clear Mapped corner stiffness.
Middle axle tire corner stiffness, Cy_m - Middle tire corner stiffness
11e3 | scalar
Middle axle tire corner stiffness, $C y_{m}$, in N/rad.

Dependencies

To enable this parameter:

1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Clear Mapped corner stiffness.
Rear axle tire corner stiffness, Cy_r - Rear tire corner stiffness 11e3|scalar

Rear axle tire corner stiffness, $C y_{r}$, in $\mathrm{N} / \mathrm{rad}$.

Dependencies

To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Clear Mapped corner stiffness.

Front tire(s) relaxation length, sigma_f - Front tire relaxation length
. 1 (default) | scalar
Front tire relaxation length, σ_{f}, in m .

Dependencies

To enable this parameter:
1 Set Vehicle track to one of these options:

- Single 2-axle
- Dual 2-axle
- Single 3-axle
- Dual 3-axle

2 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

3 Do either of these:

- Select Mapped corner stiffness.
- Clear Mapped corner stiffness and select Include relaxation length dynamics.

Middle tire(s) relaxation length, sigma_m - Middle tire relaxation length

. 1 (default) | scalar
Middle tire relaxation length, σ_{m}, in m .

Dependencies

To enable this parameter:

1 Set Vehicle track to one of these options:

- Single 2-axle
- Dual 2-axle
- Single 3-axle
- Dual 3-axle

2 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

3 Do either of these:

- Select Mapped corner stiffness.
- Clear Mapped corner stiffness and select Include relaxation length dynamics.

Rear tire(s) relaxation length, sigma_r - Rear tire relaxation length

. 1 (default) scalar

Rear tire relaxation length, σ_{r}, in m.

Dependencies

To enable this parameter:
1 Set Vehicle track to one of these options:

- Single 2-axle
- Dual 2-axle
- Single 3-axle
- Dual 3-axle

2 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

3 Do either of these:

- Select Mapped corner stiffness.
- Clear Mapped corner stiffness and select Include relaxation length dynamics.

Front axle slip angle breakpoints, alpha_f_brk - Breakpoints
[-. 1 .1] (default)|vector
Front axle slip angle breakpoints, $\alpha_{f b r k}$, in rad.

Dependencies

To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Select Mapped corner stiffness.
Front axle tire corner data, Cy_f_data - Front axle tire corner data
[-9e3 9e3] (default)|vector
Front axle tire corner data, $C y_{f d a t a}$, in $\mathrm{N} / \mathrm{rad}$.

Dependencies

To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Select Mapped corner stiffness.
Middle axle slip angle breakpoints, alpha_m_brk - Breakpoints
[-. 1 .1] (default) |vector
Middle axle slip angle breakpoints, $\alpha_{m b r k}$, in rad.

Dependencies

To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Select Mapped corner stiffness.
Middle axle tire corner data, Cy_m_data - Middle axle tire corner data [-9e3 9e3] (default) |vector

Middle axle tire corner data, $C y_{\text {mdata }}$, in $\mathrm{N} / \mathrm{rad}$.

Dependencies

To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Select Mapped corner stiffness.
Rear axle slip angle breakpoints, alpha_r_brk - Breakpoints
[-. 1 .1] (default) |vector
Rear axle slip angle breakpoints, $\alpha_{r b r k}$ in rad.

Dependencies

To enable this parameter:

1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Select Mapped corner stiffness.
Rear axle tire corner data, Cy_r_data - Rear axle tire corner data
[-9e3 9e3] (default)|vector
Rear axle tire corner data, $C y_{\text {rdata, }}$, in N/rad.

Dependencies

To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Select Mapped corner stiffness.

Initial inertial frame lateral displacement, Y_o - Initial lateral displacement
0 (default) | scalar
Initial vehicle CG displacement along the earth-fixed Y-axis, in m.
Initial lateral velocity, ydot_o - Initial lateral velocity
0 (default) | scalar
Initial vehicle CG velocity along the vehicle-fixed y-axis, in m / s.

Yaw

Yaw polar inertia, Izz - Inertia
4000 (default) | scalar
Yaw polar inertia, in $\mathrm{kg}^{*} \mathrm{~m}^{\wedge} 2$.
Initial yaw angle, psi_o - Psi rotation
0 (default) | scalar
Rotation of the vehicle-fixed frame about earth-fixed Z-axis (yaw), in rad.
Initial yaw rate, r_o - Yaw rate
0 (default) | scalar
Vehicle angular velocity about the vehicle-fixed z-axis (yaw rate), in rad/s.

Aerodynamic

Longitudinal drag area, Af - Effective vehicle cross-sectional area
2 (default) | scalar
Effective vehicle cross-sectional area, A_{f}, to calculate the aerodynamic drag force on the vehicle, in m^{2}.

Longitudinal drag coefficient, Cd - Air drag coefficient

. 3 (default) | scalar

Air drag coefficient, C_{d}. The value is dimensionless.
Longitudinal lift coefficient, CI - Air lift coefficient
. 1 (default) | scalar
Air lift coefficient, C_{l}. The value is dimensionless.

Longitudinal drag pitch moment, Cpm - Pitch drag

. 1 (default) | scalar
Longitudinal drag pitch moment coefficient, $C_{p m}$. The value is dimensionless.
Relative wind angle vector, beta_w - Wind angle
[0:0.01:0.3] (default) | vector
Relative wind angle vector, β_{w}, in rad.
Side force coefficient vector, Cs - Side force coefficient
[0:0.03:0.9] (default)| vector
Side force coefficient vector coefficient, C_{s}. The value is dimensionless.
Yaw moment coefficient vector, Cym - Yaw moment drag
[0:0.01:0.3] (default) | vector
Yaw moment coefficient vector coefficient, $C_{y m}$. The value is dimensionless.

Environment

Absolute air pressure, Pabs - Pressure
101325 (default) | scalar
Environmental absolute pressure, $P_{a b s}$, in Pa.
Air temperature, Tair - Temperature
273 (default) | scalar
Environmental absolute temperature, T, in K .

Dependencies

To enable this parameter, clear Air temperature.
Gravitational acceleration, g-Gravity
9.81 (default) | scalar

Gravitational acceleration, g, in $\mathrm{m} / \mathrm{s}^{\wedge} 2$.
Nominal friction scaling factor, mu - Friction scale factor
1 (default) | scalar
Nominal friction scale factor, μ. The value is dimensionless.

Dependencies

To enable this parameter:
1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

2 Clear External Friction.

Simulation

Longitudinal velocity tolerance, xdot_tol - Tolerance

. 01 (default) | scalar
Longitudinal velocity tolerance, in m/s.
Nominal normal force, Fznom - Normal force
5000 (default) | scalar
Nominal normal force, in N .

Dependencies

To enable this parameter, set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

Geometric longitudinal offset from axle plane, longOff - Longitudinal offset
0 (default) | scalar
Vehicle chassis offset from the axle plane along the vehicle-fixed x-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independently of the vehicle CG.

Geometric lateral offset from center plane, latOff - Lateral offset

0 (default) | scalar
Vehicle chassis offset from the center plane along the vehicle-fixed y-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independently of the vehicle CG.

Geometric vertical offset from axle plane, vertOff - Vertical offset
0 (default) | scalar
Vehicle chassis offset from the axle plane along the vehicle-fixed z-axis, in m . When you use the 3D visualization engine, consider using the offset to locate the chassis independently of the vehicle CG.

Wrap Euler angles, wrapAng - Wrap the Euler angles to the interval [-pi, pi]
off (default) |on
Wrap the Euler angles to the interval [-pi, pi]. For vehicle maneuvers that might undergo vehicle yaw rotations that are outside of this interval, consider clearing the parameter if you want to:

- Track the total vehicle yaw rotation.
- Avoid discontinuities in the vehicle state estimators.

Version History

Introduced in R2020a

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Trailer Body 3DOF

Topics

"Coordinate Systems in Vehicle Dynamics Blockset"

Vehicle Body 6DOF Three Axles

Three-axle vehicle tractor body with translational and rotational motion

Libraries:

Vehicle Dynamics Blockset / Vehicle Body

Description

The Vehicle Body 6DOF Three Axles block implements a six degrees-of-freedom (DOF) rigid three-axle vehicle body model that calculates longitudinal, lateral, vertical, pitch, roll, and yaw motion. Use the block to model three-axle vehicles like a tractor. The block accounts for body mass, inertia, aerodynamic drag, road incline, and weight distribution between the axle hard-point locations due to suspension and external forces and moments. Use the Inertial Loads parameters to analyze the vehicle dynamics under different loading conditions.

Connect the block to virtual sensors, suspension systems, or external systems like body control actuators. Use the Vehicle Body 6DOF Three Axles block in ride and handling studies to model the effects of drag forces, passenger loading, and suspension hardpoint locations.

To create additional input ports, under Input signals, select these block parameters.

Parameter	Input Port	Description
Front hitch forces	FhF	Hitch force applied to the body at the front hitch location, $F h F_{x}, F h F_{y}$, and $F h F_{z}$, in the vehicle-fixed frame
Front hitch moments	MhF	Hitch moment at the front hitch location, $M h F_{x}, M h F_{y}$, and $M h F_{z}$, about the vehicle-fixed frame
Rear hitch forces	FhR	Hitch force applied to the body at the rear hitch location, $F h R_{x}, F h R_{y}$, and $F h R_{z}$, in the vehicle-fixed frame
Rear hitch moments	MhR	Hitch moment at the rear hitch location, $M h R_{x}, M h R_{y}$, and $M h R_{z}$, about the vehicle-fixed frame

Inertial Loads

To analyze the vehicle dynamics under different loading conditions, use the Inertial Loads parameters. You can specify these loads:

- Tractor front
- Cab overhead
- Tractor frame left and frame right
- Cab left and cab right
- Tractor rear

For each of the loads, you can specify the mass, location, and inertia.

The illustrations provide the load locations and vehicle parameter dimensions. The table provides the corresponding location parameter sign settings.

This table summarizes the parameter settings that specify the load locations indicated by the dots. For the location, the block uses this distance vector:

- Front axle to load, along the vehicle-fixed x-axis
- Vehicle centerline to load, along the vehicle-fixed y-axis
- Front axle to load, along the vehicle-fixed z-axis

Load	Parameter	Example Location
Tractor front	Distance vector from front axle, z1R	- $\operatorname{z1R}(1,1)<0-$ Forward of the front axle - $\operatorname{z1R}(1,2)>0-$ Right of the vehicle centerline - $\operatorname{z1R}(1,3)>0-$ Above the front axle suspension hardpoint
Cab overhead	Distance vector from front axle, z2R	- $\quad \operatorname{z2R}(1,1)>0-$ Rear of the front axle - $z 2 R(1,2)<0-$ Left of the vehicle centerline - $\quad z 2 R(1,3)>0-$ Above the front axle suspension hardpoint
Tractor frame left	Distance vector from front axle, z3R	- $\quad \operatorname{z3R}(1,1)>0-$ Rear of the front axle - $z 3 R(1,2)<0-$ Left of the vehicle centerline - $\operatorname{z3R}(1,3)>0-$ Above the front axle suspension hardpoint
Tractor frame right	Distance vector from front axle, z4R	- $\quad \operatorname{z4R}(1,1)>0-$ Rear of the front axle - $z 4 R(1,2)>0-$ Right of the vehicle centerline - $z 4 R(1,3)>0-$ Above the front axle suspension hardpoint
Cab left	Distance vector from front axle, z5R	- $\quad z 5 R(1,1)>0-$ Rear of the front axle - $z 5 R(1,2)<0-$ Left of the vehicle centerline - $z 5 R(1,3)>0-$ Above the front axle suspension hardpoint
Cab right	Distance vector from front axle, z6R	- $\operatorname{z6R}(1,1)>0-$ Rear of the front axle - $z 6 R(1,3)>0-$ Above the front axle suspension hardpoint
Tractor rear	Distance vector from front axle, z7R	- $\quad \operatorname{z7R}(1,1)>0-$ Rear of the front axle - $z 7 R(1,2)>0-$ Right of the vehicle centerline - $\quad \operatorname{z7R}(1,3)>0-$ Above the front axle suspension hardpoint

Equations of Motion

To determine the vehicle motion, the block implements calculations for the rigid body vehicle dynamics, wind drag, inertial loads, and coordinate transformations. The body-fixed and vehicle-fixed coordinate systems are the same.

The block considers the rotation of a body-fixed coordinate frame about a flat earth-fixed inertial reference frame. The origin of the body-fixed coordinate frame is the vehicle center of gravity of the body.

The block uses this equation to calculate the translational motion of the body-fixed coordinate frame, where the applied forces $\left[F_{x} F_{y} F_{z}\right]^{\mathrm{T}}$ are in the body-fixed frame, and the mass of the body, m, is assumed to be constant.

$$
\begin{aligned}
& \bar{F}_{b}=\left[\begin{array}{l}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right]=m\left(\dot{\bar{V}}_{b}+\bar{\omega} \times \bar{V}_{b}\right) \\
& \bar{M}_{b}=\left[\begin{array}{l}
L \\
M \\
N
\end{array}\right]=I \dot{\bar{\omega}}+\bar{\omega} \times(I \bar{\omega}) \\
& I=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{y x} & I_{y y} & -I_{y z} \\
-I_{z x} & -I_{z y} & I_{z z}
\end{array}\right]
\end{aligned}
$$

To determine the relationship between the body-fixed angular velocity vector, $[p q r]^{\mathrm{T}}$, and the rate of change of the Euler angles, $\left[\begin{array}{lll}\dot{\phi} & \dot{\theta} & \dot{\psi}\end{array}\right]^{T}$, the block resolves the Euler rates into the body-fixed frame.

$$
\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{l}
\dot{\phi} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
0 \\
\dot{\theta} \\
0
\end{array}\right]+\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
\dot{\psi}
\end{array}\right] \equiv J^{-1}\left[\begin{array}{c}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]
$$

Inverting J gives the required relationship to determine the Euler rate vector.

$$
\left[\begin{array}{c}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]=J\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{ccc}
1 & (\sin \phi \tan \theta) & (\cos \phi \tan \theta) \\
0 & \cos \phi & -\sin \phi \\
0 & \frac{\sin \phi}{\cos \theta} & \frac{\cos \phi}{\cos \theta}
\end{array}\right]\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]
$$

The applied forces and moments are the sum of the drag, gravitational, external, and suspension forces.

$$
\begin{aligned}
& \bar{F}_{b}=\left[\begin{array}{c}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right]=\left[\begin{array}{c}
F_{d_{x}} \\
F_{d_{y}} \\
F_{d_{z}}
\end{array}\right]+\left[\begin{array}{c}
F_{g_{x}} \\
F_{g_{y}} \\
F_{g_{z}}
\end{array}\right]+\left[\begin{array}{c}
F_{\text {ext }} \\
F_{\text {ext }} \\
F_{\text {ext }}
\end{array}\right]+\left[\begin{array}{c}
F_{F L_{x}} \\
F_{F L_{y}} \\
F_{F L_{z}}
\end{array}\right]+\left[\begin{array}{c}
F_{F R_{x}} \\
F_{F R_{y}} \\
F_{F R_{z}}
\end{array}\right]+\left[\begin{array}{c}
F_{M L_{x}} \\
F_{M L_{y}} \\
F_{M L_{z}}
\end{array}\right]+\left[\begin{array}{c}
F_{M R_{x}} \\
F_{M R_{y}} \\
F_{M R_{z}}
\end{array}\right]+\left[\begin{array}{c}
F_{R L_{x}} \\
F_{R L_{y}} \\
F_{R L_{z}}
\end{array}\right]+\left[\begin{array}{c}
F_{R R_{x}} \\
F_{R R_{y}} \\
F_{R R_{z}}
\end{array}\right] \\
& \bar{M}_{b}=\left[\begin{array}{l}
M_{x} \\
M_{y} \\
M_{z}
\end{array}\right]=\left[\begin{array}{l}
M_{d_{x}} \\
M_{d_{y}} \\
M_{d_{z}}
\end{array}\right]+\left[\begin{array}{l}
M_{e x t_{x}} \\
M_{e x t_{y}} \\
M_{e x t_{z}}
\end{array}\right]+\left[\begin{array}{l}
M_{F L_{x}} \\
M_{F L_{y}} \\
M_{F L_{z}}
\end{array}\right]+\left[\begin{array}{l}
M_{F R_{x}} \\
M_{F R_{y}} \\
M_{F R_{z}}
\end{array}\right]+\left[\begin{array}{l}
M_{M L_{x}} \\
M_{M L_{y}} \\
M_{M L_{z}}
\end{array}\right]+\left[\begin{array}{l}
M_{M R_{x}} \\
M_{M R_{y}} \\
M_{M R_{z}}
\end{array}\right]+\left[\begin{array}{l}
M_{R L_{x}} \\
M_{R L_{y}} \\
M_{R L_{z}}
\end{array}\right]+\left[\begin{array}{l}
M_{R R_{x}} \\
M_{R R_{y}} \\
M_{R R_{z}}
\end{array}\right]+\bar{M}_{F}
\end{aligned}
$$

Calculation	Implementation
Load masses and inertias	The block uses the parallel axis theorem to resolve the individual load masses and inertias with the vehicle mass and inertia. $J_{i j}=I_{i j}+m\left(\|R\|^{2} \delta_{i j}-R_{i} R_{j}\right)$
Gravitational forces, F_{g}	The block uses the direction cosine matrix (DCM) to transform the gravitational vector in the inertial-fixed frame to the body-fixed frame.
Drag forces, F_{d}, and moments, M_{d}	To determine a relative airspeed, the block subtracts the wind speed from the vehicle center of mass (CM) velocity. Using the relative airspeed, the block determines the drag forces. $\begin{aligned} & \bar{w}=\sqrt{\left(\dot{x}-w_{\chi}\right)^{2}+\left(\dot{x}-w_{\chi}\right)^{2}+\left(w_{z}\right)^{2}} \\ & F_{d x}=-\frac{1}{2 T R} C_{d} A_{f} P_{a b s}{ }^{(\bar{w}} \\ & F_{d y}=-\frac{1}{2 T R} C_{s} A_{f} P_{a b s}{ }^{\bar{w}} \\ & F_{d z}=-\left.\frac{1}{2 T R} C_{l} A_{f} P_{a b s}\right\|^{\bar{w}} \end{aligned}$ Using the relative airspeed, the block determines the drag moments. $\begin{aligned} & M_{d r}=-\frac{1}{2 T R} C_{r m} A_{f} P_{a b s}\left({ }^{\bar{w}}(a+c)\right. \\ & M_{d p}=-\frac{1}{2 T R} C_{p m} A_{f} P_{a b s}{ }^{\bar{w}}(a+c) \\ & M_{d y}=-\frac{1}{2 T R} C_{y m} A_{f} P_{a b s}{ }^{(\bar{w}}(a+c) \end{aligned}$
External forces, $F_{i n}$, and moments, $M_{\text {in }}$	The external forces and moments are input via ports FExt and MExt.
Suspension forces and moments	The block assumes that the suspension forces and moments act on these hardpoint locations: - $F_{F L}, M_{F L}$ - Front left - $F_{F R}, M_{F R}$ - Front right - $F_{M L}, M_{M L}$ - Middle left - $F_{M R}, M_{M R}-$ Middle right - $F_{R L}, M_{R L}$ - Rear left - $F_{R R}, M_{R R}-$ Rear right

The equations use these variables.
x, \dot{x}, \ddot{x}
y, \dot{y}, \ddot{y}

Vehicle CM displacement, velocity, and acceleration along the vehicle-fixed x-axis
Vehicle CM displacement, velocity, and acceleration along the vehicle-fixed y-axis

z, \dot{z}, \ddot{z}	Vehicle CM displacement, velocity, and acceleration along the vehicle-fixed z-axis
φ	Rotation of the vehicle-fixed frame about the earth-fixed X-axis (roll)
θ	Rotation of the vehicle-fixed frame about the earth-fixed Y-axis (pitch)
ψ	Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw)
$F_{F L x}, F_{F L y}, F_{F L z}$	Suspension forces applied to the front left hardpoint along the vehicle-fixed x-, y-, and z-axes
$F_{F R x}, F_{F R y}, F_{F R z}$	Suspension forces applied to the front right hardpoint along the vehiclefixed x-, y-, and z-axes
$F_{M L x}, F_{M L y}, F_{M L z}$	Suspension forces applied to the middle left hardpoint along the vehiclefixed x-, y-, and z-axes
$F_{M R X}, F_{M R y}, F_{M R z}$	Suspension forces applied to the middle right hardpoint along the vehiclefixed x-, y-, and z-axes
$F_{R L x}, F_{R L y}, F_{R L z}$	Suspension forces applied to the rear left hardpoint along the vehicle-fixed x-, y-, and z-axes
$F_{R R x}, F_{R R y}, F_{R R z}$	Suspension forces applied to the rear right hardpoint along the vehicle-fixed x-, y-, and z-axes
$M_{F L \chi}, M_{F L y}, M_{F L z}$	Suspension moment applied to the front left hardpoint about the vehiclefixed x-, y-, and z-axes
$M_{F R x}, M_{F R y}, M_{F R z}$	Suspension moment applied to the front right hardpoint about the vehiclefixed x-, y-, and z-axes
$M_{M L \chi}, M_{M L y}, M_{M L z}$	Suspension moment applied to the middle left hardpoint about the vehiclefixed x-, y-, and z-axes
$M_{M R x}, M_{M R y}, M_{M R z}$	Suspension moment applied to the middle right hardpoint about the vehiclefixed x-, y-, and z-axes
$M_{R L \chi}, M_{R L y}, M_{R L z}$	Suspension moment applied to the rear left hardpoint about the vehiclefixed x-, y-, and z-axes
$M_{R R x}, M_{R R y}, M_{R R z}$	Suspension moment applied to the rear right hardpoint about the vehiclefixed x-, y-, and z-axes
$F_{\text {extx }}, F_{\text {exty }}, F_{\text {extz }}$	External forces applied to the vehicle CM along the vehicle-fixed x-, y-, and z-axes
$F_{d x}, F_{d y}, F_{d z}$	Drag forces applied to the vehicle CM along the vehicle-fixed $x-, y$-, and z axes
$M_{\text {extx }}, M_{\text {exty }}, M_{\text {extz }}$	External moment about the vehicle CM about the vehicle-fixed $x-y$-, and z axes
$M_{d x}, M_{d y}, M_{d z}$	Drag moment about the vehicle CM about the vehicle-fixed x-, y-, and z-axes
I	Vehicle body moments of inertia
a, b, c	Distance of the front, middle, and rear axles, respectively, from the normal projection point of the vehicle CM onto the common axle plane
h	Height of the vehicle CM above the axle plane
d	Lateral distance from the geometric centerline to the center of mass along the vehicle-fixed y-axis

$h h f, h h_{-} r$	Height of the front and rear hitches, respectively, above the axle plane along the vehicle-fixed z-axis
$d h f, d L_{-} r$	Longitudinal distance of the front and rear hitches, respectively, from the normal projection point of the vehicle CM onto the common axle plane
$h l f, h l_{-} r$	Lateral distance from center of mass to the front and rear hitches, respectively, along the vehicle-fixed y-axis
w_{F}, w_{M}, w_{R}	Front, middle, and rear track widths, respectively
C_{d}	Air drag coefficient acting along the vehicle-fixed x-axis
C_{s}	Air drag coefficient acting along the vehicle-fixed y-axis
C_{l}	Air drag coefficient acting along the vehicle-fixed z-axis
$C_{r m}$	Air drag roll moment acting about the vehicle-fixed x-axis
$C_{p m}$	Air drag pitch moment acting about the vehicle-fixed y-axis
$C_{y m}$	Air drag yaw moment acting about the vehicle-fixed z-axis
A_{f}	Frontal area
R	Atmospheric specific gas constant
T	Environmental air temperature
$P_{a b s}$	Environmental absolute pressure
w_{x}, w_{y}, w_{z}	Wind speed along the vehicle-fixed $x-, y$-, and z-axes
W_{x}, W_{y}, W_{z}	Wind speed along inertial X-, Y-, and Z-axes

Ports

Input

FSusp - Suspension forces on vehicle

3-by-6 array
Suspension longitudinal, lateral, and vertical suspension forces applied to the vehicle at the hardpoint location, in N , specified as a 3-by-6 array.

$$
F S u s p=\left[\begin{array}{llllll}
F_{F L x} & F_{F R x} & F_{M L x} & F_{M R x} & F_{R L x} & F_{R R x} \\
F_{F L y} & F_{F R y} & F_{M L y} & F_{M R y} & F_{R L y} & F_{R R y} \\
F_{F L z} & F_{F R z} & F_{M L z} & F_{M R z} & F_{R L z} & F_{R R z}
\end{array}\right]
$$

Array Element	Axle	Track	Force Axis
FSusp (1,1)	Front	Left	Vehicle-fixed x-axis (longitudinal)
FSusp (1,2)	Front	Right	
FSusp (1,3)	Middle	Left	
FSusp (1,4)	Middle	Right	
FSusp (1,5)	Rear	Left	
FSusp (1,6)	Rear	Right	
FSusp (2,1)	Front	Left	Vehicle-fixed y-axis (lateral)

Array Element	Axle	Track	Force Axis
FSusp (2,2)	Front	Right	
FSusp (2,3)	Middle	Left	
FSusp (2,4)	Middle	Right	
FSusp (2,5)	Rear	Left	
FSusp (2,6)	Rear	Right	
FSusp (3,1)	Front	Left	Vehicle-fixed z-axis (vertical)
FSusp (3,2)	Front	Right	
FSusp (3,3)	Middle	Left	
FSusp (3,4)	Middle	Right	
FSusp (3,5)	Rear	Left	
FSusp (3,6)	Rear	Right	

MSusp - Suspension moment on vehicle
3-by-6 array
Suspension longitudinal, lateral, and vertical suspension moments applied about the vehicle at the hardpoint location, in N , specified as a 3-by-6 array.

$$
\text { MSusp }=\left[\begin{array}{llllll}
M_{F L x} & M_{F R x} & M_{M L x} & M_{M R x} & M_{R L x} & M_{R R x} \\
M_{F L y} & M_{F R z} & M_{M L y} & M_{M R y} & M_{R L y} & M_{R R y} \\
M_{F L z} & M_{F R z} & M_{M L z} & M_{M R z} & M_{R L z} & M_{R R z}
\end{array}\right]
$$

Array Element	Axle	Track	Moment Axis
$\operatorname{MSusp}(1,1)$	Front	Left	Vehicle-fixed x-axis (longitudinal)
MSusp (1,2)	Front	Right	
MSusp (1,3)	Middle	Left	
MSusp (1,4)	Middle	Right	
MSusp (1,5)	Rear	Left	
MSusp (1,6)	Rear	Right	
MSusp (2,1)	Front	Left	Vehicle-fixed y-axis (lateral)
MSusp (2,2)	Front	Right	
MSusp $(2,3)$	Middle	Left	
MSusp $(2,4)$	Middle	Right	
MSusp $(2,5)$	Rear	Left	
MSusp (2,6)	Rear	Right	
MSusp (3,1)	Front	Left	Vehicle-fixed z-axis (vertical)
MSusp (3,2)	Front	Right	
MSusp (3,3)	Middle	Left	
MSusp (3,4)	Middle	Right	

Array Element	Axle	Track	Moment Axis
MSusp $(3,5)$	Rear	Left	
MSusp $(3,6)$	Rear	Right	

FExt - External forces acting on vehicle vector

External forces on the vehicle, in N, specified as a 1-by-3 or 3-by-1 vector.

Array Element	Force Axis
FExt $(1,1)$	Vehicle-fixed x-axis (longitudinal)
FExt $(1,2)$ or	Vehicle-fixed y-axis (lateral)
FExt $(2,1)$	
FExt $(1,3)$ or	Vehicle-fixed z-axis (vertical)
FExt $(3,1)$	

MExt - External moments acting on vehicle
vector
External moments acting on the vehicle, in $\mathrm{N} \cdot \mathrm{m}$, specified as a 1-by-3 or 3-by-1 vector.

$$
\text { MExt }=M_{e x t}=\left[\begin{array}{lll}
M_{e x t_{x}} & M_{e x t_{y}} & M_{e x t_{z}}
\end{array}\right] o r\left[\begin{array}{l}
M_{\text {ext }} \\
M_{\text {ext }} \\
\\
M_{\text {ext }}
\end{array}\right]
$$

Array Element	Force Axis
MExt $(1,1)$	Vehicle-fixed x-axis (longitudinal)
MExt $(1,2)$ or MExt $(2,1)$	Vehicle-fixed y-axis (lateral)
MExt $(1,3)$ or MExt $(3,1)$	Vehicle-fixed z-axis (vertical)

Fh - Hitch force on the body
array
Hitch force applied to the body at the hitch location, $F h_{x}, F h_{y}, F h_{z}$, in the vehicle-fixed frame, in N, specified as a 1-by-3 or 3-by-1 array.

Dependencies

To enable this port, under Input signals, select Hitch forces.
Mh - Hitch moment about body array

Hitch moment at the hitch location, $M h_{x}, M h_{y}, M h_{z}$, about the vehicle-fixed frame, in $\mathrm{N} \cdot \mathrm{m}$, specified as a 1-by-3 or 3-by-1 array.

Dependencies

To enable this port, under Input signals, select Hitch moments.
WindXYZ - Wind speed
array
Wind speed, W_{x}, W_{y}, W_{z} along inertial $X-, Y$-, and Z-axes, in m/s, specified as a 1-by-3 or 3-by-1 array.

AirTemp - Ambient air temperature

scalar

Ambient air temperature, $T_{\text {air }}$, in K, specified as a scalar.

Dependencies

To enable this port, under Environment, select Air temperature.

Output

Info - Vehicle body information
bus
Vehicle body information, returned as a bug signal containing the following values.

Signal				Description	Value	Units
InertFrm	Cg	Disp	X	Vehicle CM displacement along the earth-fixed X axis	Computed	m
			Y	Vehicle CM displacement along the earth-fixed Y axis	Computed	m
			Z	Vehicle CM displacement along the earth-fixed Z axis	Computed	m
		Vel	Xdot	Vehicle CM velocity along the earth-fixed X-axis	Computed	m/s
			Ydot	Vehicle CM velocity along the earth-fixed Y-axis	Computed	m/s
			Zdot	Vehicle CM velocity along the earth-fixed Z-axis	Computed	m/s
		Ang	phi	Rotation of the vehiclefixed frame about the earth-fixed X-axis (roll)	Computed	rad
			theta	Rotation of the vehiclefixed frame about the earth-fixed Y-axis (pitch)	Computed	rad

Signal				Description	Value	Units
		psi		Rotation of the vehiclefixed frame about the earth-fixed Z-axis (yaw)	Computed	rad
FrntAxl	Lft	Disp	X	Front left axle displacement along the earth-fixed X-axis	Computed	m
			Y	Front left axle displacement along the earth-fixed Y-axis	Computed	m
			Z	Front left axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Front left axle velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \text { Ydo } \\ & \mathrm{t} \end{aligned}$	Front left axle velocity along the earth-fixed Y axis	Computed	m / s
			$\begin{aligned} & \mathrm{Zdo} \\ & \mathrm{t} \end{aligned}$	Front left axle velocity along the earth-fixed Z axis	Computed	m/s
	Rght	Disp	X	Front right axle displacement along the earth-fixed X-axis	Computed	m
			Y	Front right axle displacement along the earth-fixed Y-axis	Computed	m
			Z	Front right axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	$\begin{aligned} & \text { Xdo } \\ & \mathrm{t} \end{aligned}$	Front right axle velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \mathrm{Ydo} \\ & \mathrm{t} \end{aligned}$	Front right axle velocity along the earth-fixed Y axis	Computed	m/s
			$\begin{aligned} & \mathrm{Zdo} \\ & \dagger \end{aligned}$	Front right axle velocity along the earth-fixed Z axis	Computed	m/s
Midlaxl	Lft	Disp	X	Middle left axle displacement along the earth-fixed X-axis	Computed	m
			Y	Middle left axle displacement along the earth-fixed Y-axis	Computed	m

Signal				Description	Value	Units
			Z	Middle left axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Middle left axle velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \text { Ydo } \\ & \mathrm{t} \end{aligned}$	Middle left axle velocity along the earth-fixed Y axis	Computed	m/s
			$\begin{aligned} & \mathrm{Zdo} \\ & \mathrm{t} \end{aligned}$	Middle left axle velocity along the earth-fixed Zaxis	Computed	m/s
	Rght	Disp	X	Middle right axle displacement along the earth-fixed X-axis	Computed	m
			Y	Middle right axle displacement along the earth-fixed Y-axis	Computed	m
			Z	Middle right axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Middle right axle velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \text { Ydo } \\ & \mathrm{t} \end{aligned}$	Middle right axle velocity along the earth-fixed Y axis	Computed	m/s
			$\begin{aligned} & \mathrm{Zdo} \\ & \mathrm{t} \end{aligned}$	Middle right axle velocity along the earth-fixed Zaxis	Computed	m/s
RearAxl	Lft	Disp	X	Rear left axle displacement along the earth-fixed X-axis	Computed	m
			Y	Rear left axle displacement along the earth-fixed Y-axis	Computed	m
			Z	Rear left axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Rear left axle velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \text { Ydo } \\ & \mathrm{t} \end{aligned}$	Rear left axle velocity along the earth-fixed Y axis	Computed	m/s

Signal				Description	Value	Units
			$\begin{aligned} & \mathrm{Zdo} \\ & \mathrm{t} \end{aligned}$	Rear left axle velocity along the earth-fixed Z axis	Computed	m/s
	Rght	Disp	X	Rear right axle displacement along the earth-fixed X-axis	Computed	m
			Y	Rear right axle displacement along the earth-fixed Y-axis	Computed	m
			Z	Rear right axle displacement along the earth-fixed Z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{Xdo} \\ & \mathrm{t} \end{aligned}$	Rear right axle velocity along the earth-fixed X axis	Computed	m/s
			$\begin{aligned} & \text { Ydo } \\ & \mathrm{t} \end{aligned}$	Rear right axle velocity along the earth-fixed Y axis	Computed	m/s
			$\begin{aligned} & \mathrm{Zdo} \\ & \mathrm{t} \end{aligned}$	Rear right axle velocity along the earth-fixed Zaxis	Computed	m/s
Hitch	Disp	X		Hitch offset from the axle plane along the earthfixed X-axis	Computed	m
		Y		Hitch offset from the axle plane along the earthfixed Y-axis	Computed	m
		Z		Hitch offset from the axle plane along the earthfixed Z-axis	Computed	m
	Vel	Xdot		Hitch velocity along the earth-fixed X-axis	Computed	m/s
		Ydot		Hitch velocity along the earth-fixed Y-axis	Computed	m/s
		Zdot		Hitch velocity along the earth-fixed Z-axis	Computed	m/s
Geom	Disp	X		Vehicle chassis offset from the axle plane along the earth-fixed X-axis	Computed	m
		Y		Vehicle chassis offset from center plane along the earth-fixed Y-axis	Computed	m

Signal				Description	Value	Units
					Vehicle chassis offset from the axle plane along the earth-fixed Z-axis	Computed

Signal				Description	Value	Units
		zddot		Vehicle CM acceleration along the vehicle-fixed z axis	Computed	$\mathrm{m} / \mathrm{s}^{\wedge} 2$
	DCM	Direction cosine matrix			Computed	rad
Forces	Body	Fx		Net force on the vehicle CM along the vehiclefixed x-axis	Computed	N
		Fy		Net force on the vehicle CM along the vehiclefixed y-axis	Computed	N
		Fz		Net force on the vehicle CM along the vehiclefixed z-axis	Computed	N
	Ext	Fx		External force on the vehicle CM along the vehicle-fixed x-axis	Input	N
		Fy		External force on the vehicle CM along the vehicle-fixed x-axis	Input	N
		Fz		External force on the vehicle CM along the vehicle-fixed x-axis	Input	N
	FrntAxl	Lft	Fx	Front left axle velocity along the earth-fixed Y axis	Computed	N
			Fy	Lateral force on the left side of the front axle left along the vehicle-fixed y axis	Computed	N
			Fz	Normal force on the left side of the front axle along the vehicle-fixed z axis	Computed	N
		Rght	Fx	Longitudinal force on the right side of the front axle along the vehicle-fixed x axis	Computed	N
			Fy	Lateral force on the right side of the front axle left along the vehicle-fixed y axis	Computed	N
			Fz	Normal force on the right side of the front axle along the vehicle-fixed z axis	Computed	N

Signal					Description	Value	Units
	Hitch	Fx			Hitch force applied to the body at the hitch location along the vehicle-fixed x axis	Computed	N
		Fy			Hitch force applied to the body at the hitch location along the vehicle-fixed y axis	Computed	N
		Fz			Hitch force applied to the body at the hitch location along the vehicle-fixed z axis	Computed	N
	Tires	FrntTir es	$\begin{array}{l\|l} \hline \mathrm{L} & \prime \\ \mathrm{f} \\ \mathrm{t} \end{array},$		Front left tire force along the vehicle-fixed x-axis	Computed	N
				F	Front left tire force along the vehicle-fixed y-axis	Computed	N
				z	Front left tire force along the vehicle-fixed z-axis	Computed	N
					Front right tire force along the vehicle-fixed x axis	Computed	N
					Front right tire force along the vehicle-fixed y axis	Computed	N
					Front right tire force along the vehicle-fixed z axis	Computed	N
		MidlTir es	$\begin{array}{l\|} \hline \mathrm{L} \\ \mathrm{f} \\ \mathrm{t} \end{array}$	F	Middle left tire force along the vehicle-fixed x axis	Computed	N
				F	Middle left tire force along the vehicle-fixed y axis	Computed	N
				F	Middle left tire force along the vehicle-fixed z axis	Computed	N
			R F g \times h 	F	Middle right tire force along the vehicle-fixed x axis	Computed	N
				F	Middle right tire force along the vehicle-fixed y axis	Computed	N
				F	Middle right tire force along the vehicle-fixed z axis	Computed	N

Signal				Description	Value	Units	
Signal		$\begin{aligned} & \text { RearTir } \\ & \text { es } \end{aligned}$	L F f x	Rear left tire force along the vehicle-fixed x-axis	Computed	N	
		$\begin{aligned} & \mathrm{t} \\ & \hline \mathrm{~F} \\ & \mathrm{y} \end{aligned}$	Rear left tire force along the vehicle-fixed y-axis	Computed	N		
		F	Rear left tire force along the vehicle-fixed z-axis	Computed	N		
			Rear right tire force along the vehicle-fixed x-axis	Computed	N		
			Rear right tire force along the vehicle-fixed y-axis	Computed	N		
		$\begin{aligned} & \mathrm{F} \\ & \mathrm{z} \end{aligned}$	Rear right tire force along the vehicle-fixed z-axis	Computed	N		
	Drag		Fx		Drag force on the vehicle CM along the vehiclefixed x-axis	Computed	N
			Fy		Drag force on the vehicle CM along the vehiclefixed y-axis	Computed	N
			Fz		Drag force on the vehicle CM along the vehiclefixed z-axis	Computed	N
	Grvty		FX		Gravity force on the vehicle CM along the vehicle-fixed x-axis	Computed	N
			Fy		Gravity force on the vehicle CM along the vehicle-fixed y-axis	Computed	N
		Fz		Gravity force on the vehicle CM along the vehicle-fixed z-axis	Computed	N	
Moments	Body	Mx		Body moment on the vehicle CM about the vehicle-fixed x-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$	
		My		Body moment on the vehicle CM about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$	
		Mz		Body moment on the vehicle CM about the vehicle-fixed z-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$	
	Drag	Mx		Drag moment on the vehicle CM about the vehicle-fixed x-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$	

Signal				Description	Value	Units
Signal		My		Drag moment on the vehicle CM about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz		Drag moment on the vehicle CM about the vehicle-fixed z-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
	Ext	Mx		External moment on the vehicle CG about the vehicle-fixed x-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		My		External moment on the vehicle CG about the vehicle-fixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz		External moment on the vehicle CG about the vehicle-fixed z-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
	Hitch	Mx		Hitch moment at the hitch location about vehiclefixed x-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		My		Hitch moment at the hitch location about vehiclefixed y-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz		Hitch moment at the hitch location about vehiclefixed z-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
FrntAxl	Lft	Disp	x	Front left axle displacement along the vehicle-fixed x-axis	Computed	m
			y	Front left axle displacement along the vehicle-fixed y-axis	Computed	m
			z	Front left axle displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Front left axle velocity along the vehicle-fixed x axis	Computed	m/s
			$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Front left axle velocity along the vehicle-fixed y axis	Computed	m/s
			$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Front left axle velocity along the vehicle-fixed z axis	Computed	m/s
	Rght	Disp	X	Front right axle displacement along the vehicle-fixed x-axis	Computed	m

Signal				Description	Value	Units
Signal			y	Front right axle displacement along the vehicle-fixed y-axis	Computed	m
			z	Front right axle displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Front right axle velocity along the vehicle-fixed x axis	Computed	m/s
			$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Front right axle velocity along the vehicle-fixed y axis	Computed	m/s
			$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Front right axle velocity along the vehicle-fixed z axis	Computed	m/s
Midlaxl	Lft	Disp	x	Middle left axle displacement along the vehicle-fixed x-axis	Computed	m
			y	Middle left axle displacement along the vehicle-fixed y-axis	Computed	m
			z	Middle left axle displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Middle left axle velocity along the vehicle-fixed x axis	Computed	m/s
			$\begin{aligned} & \text { ydo } \\ & t \end{aligned}$	Middle left axle velocity along the vehicle-fixed y axis	Computed	m/s
			$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Middle left axle velocity along the vehicle-fixed z axis	Computed	m / s
	Rght	Disp	X	Middle right axle displacement along the vehicle-fixed x-axis	Computed	m
			y	Middle right axle displacement along the vehicle-fixed y-axis	Computed	m
			z	Middle right axle displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Middle right axle velocity along the vehicle-fixed x axis	Computed	m/s

Signal				Description	Value	Units
			$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Middle right axle velocity along the vehicle-fixed y axis	Computed	m / s
			$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Middle right axle velocity along the vehicle-fixed z axis	Computed	m/s
RearAxl	Lft	Disp	x	Rear left axle displacement along the vehicle-fixed x-axis	Computed	m
			y	Rear left axle displacement along the vehicle-fixed y-axis	Computed	m
			z	Rear left axle displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{aligned} & \text { xdo } \\ & t \end{aligned}$	Rear left axle velocity along the vehicle-fixed x axis	Computed	m / s
			$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Rear left axle velocity along the vehicle-fixed y axis	Computed	m/s
			$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Rear left axle velocity along the vehicle-fixed z axis	Computed	m/s
	Rght	Disp	x	Rear right axle displacement along the vehicle-fixed x-axis	Computed	m
			y	Rear right axle displacement along the vehicle-fixed y-axis	Computed	m
			z	Rear right axle displacement along the vehicle-fixed z-axis	Computed	m
		Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Rear right axle velocity along the vehicle-fixed x axis	Computed	m / s
			$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Rear right axle velocity along the vehicle-fixed y axis	Computed	m / s
			$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Rear right axle velocity along the vehicle-fixed z axis	Computed	m/s
Hitch	Disp		x	Hitch offset from the axle plane along the vehiclefixed x-axis	Input	m

Signal			Description	Value	Units
		y	Hitch offset from center plane along the vehiclefixed y-axis	Input	m
		z	Hitch offset from the axle plane along the vehiclefixed z-axis	Input	m
	Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Hitch offset velocity along the vehicle-fixed x-axis	Computed	m/s
		$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Hitch offset velocity along the vehicle-fixed y-axis	Computed	m/s
		$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Hitch offset velocity along the vehicle-fixed z-axis	Computed	m/s
Pwr	PwrExt		Applied external power	Computed	W
	Drag		Power loss due to drag	Computed	W
Geom	Disp	X	Vehicle chassis offset from the axle plane along the vehicle-fixed x-axis	Input	m
		y	Vehicle chassis offset from center plane along the vehicle-fixed y-axis	Input	m
		z	Vehicle chassis offset from the axle plane along the vehicle-fixed z-axis	Input	m
	Vel	$\begin{aligned} & \mathrm{xdo} \\ & \mathrm{t} \end{aligned}$	Vehicle chassis offset velocity along the vehiclefixed x-axis	Computed	m/s
		$\begin{aligned} & \mathrm{ydo} \\ & \mathrm{t} \end{aligned}$	Vehicle chassis offset velocity along the vehiclefixed y-axis	Computed	m/s
		$\begin{aligned} & \mathrm{zdo} \\ & \mathrm{t} \end{aligned}$	Vehicle chassis offset velocity along the vehiclefixed z-axis	Computed	m/s
	Ang	$\begin{aligned} & \text { Bet } \\ & \mathrm{a} \end{aligned}$	Body slip angle, β $\beta=\frac{V_{y}}{V_{x}}$	Computed	rad

$\mathbf{V b}$ - Vehicle velocity along vehicle-fixed frame

vector

Vehicle CM velocity along the vehicle-fixed x-, y-, z-axes, respectively, in m / s, returned as a vector.

pqr - Vehicle angular velocity about vehicle-fixed frame

vector

Vehicle CM angular velocity about the vehicle-fixed x - (roll rate), y - (pitch rate), z-axes (yaw rate), respectively, in rad/s, returned as a vector.

DCM - Direction cosine matrix
array
Direction cosine matrix, in rad, returned as an array.
Euler - Euler angles
array
Euler angles, φ, θ, and ψ, respectively, in rad, returned as an array.
Xe - Vehicle position in inertial reference frame vector

Vehicle CM position along inertial-fixed X-, Y-, Z-axes, respectively, in m, returned as a vector.
Ve - Vehicle velocity in inertial reference frame vector

Vehicle CM velocity along inertial-fixed X-, Y-, Z-axes, respectively, in m / s, returned as a vector.

Parameters

Block Options

Input Signals
Hitch forces - Create hitch force input port
off (default) | on
Select to create an input port, Fh, for the hitch forces.
Hitch moments - Create hitch moment input port
off (default) |on
Select to create an input port, Mh , for the hitch moments.

Chassis

Vehicle mass, m - Mass
2000 (default) | scalar
Vehicle mass, m, in kg.
Longitudinal distance from center of mass to front axle, a - Distance from center of mass to front axle
1.4 (default) | scalar

Distance from the vehicle CM to the front axle, a, in m .

Longitudinal distance from center of mass to middle axle, b - Distance from center of mass to middle axle
1.6 (default) | scalar

Distance from the vehicle CM to the middle axle, b, in m.

Longitudinal distance from center of mass to rear axle, c - Distance from center of mass to rear axle
1.8 (default) | scalar

Distance from the vehicle CM to the rear axle, c, in m .

Lateral distance from geometric centerline to center of mass, \mathbf{d} - Distance from geometric centerline to center of mass
0 (default) | scalar
Lateral distance from the geometric centerline to the CM, d, in m , along the vehicle-fixed y. Positive values indicate that the vehicle CM is to the right of the geometric centerline. Negative values indicate that the vehicle CM is to the left of the geometric centerline.

Vertical distance from center of mass to axle plane, \mathbf{h} - Distance
. 35 (default) | scalar
Vertical distance from the vehicle CM to the axle plane, h, in m.

Longitudinal distance from center of mass to hitch, $\mathbf{d h}$ - Longitudinal distance from CM to hitch 1 (default) | scalar

Longitudinal distance from the CM to the hitch, $d h$, in m .

Dependencies

To enable this parameter, on the Input signals pane, select Hitch forces or Hitch moments.
Longitudinal distance from center of mass to hitch, hl - Lateral distance from CM to hitch 0 (default) | scalar

Lateral distance from the CM to the hitch, $h l$, in m.

Dependencies

To enable this parameter, on the Input signals pane, select Hitch forces or Hitch moments.
Vertical distance from hitch to axle plane, $\mathbf{h h}$ - Distance from hitch to axle plane 0.1 (default) | scalar

Vertical distance from the hitch to the axle plane, $h h$, in m.

Dependencies

To enable this parameter, on the Input signals pane, select Hitch forces or Hitch moments.
Initial position in the inertial frame [Xeo, Yeo,ZZe], Xe_o - Initial position
[0,0,0] (default) | vector
Initial position of the vehicle in the inertial frame, Xe_{0}, in m .
Initial velocity in body axes [xdot_o,ydot_o,zdot_o], xbdot_o - Initial velocity
[0,0,0] (default) | vector
Initial vehicle CM velocity along the vehicle-fixed x, y-, and z-axes, respectively, in m / s.
Initial Euler orientation [roll, pitch, yaw], eul_o - Initial Euler rotation
[0,0,0] (default) | vector
Initial Euler rotation of the vehicle-fixed frame about the earth-fixed X - (roll), Y - (pitch), Z-axes (yaw), respectively, in rad.

Initial body rotation rates [p,q,r], p_o - Initial rotation rate [0,0,0] (default) | vector

Initial vehicle CM angular velocity about the vehicle-fixed x - (roll rate), y - (pitch rate), z-axes (yaw rate), respectively, in rad/s.

Chassis inertia tensor, Iveh - Inertia
[430 0 0; 0 1900 0; 002100] (default)|array
Vehicle inertia tensor, $I_{\text {veh, }}$, in $\mathrm{kg}^{*} \mathrm{~m}^{\wedge} 2$. Dimensions are 3-by-3.
Track widths [front,rear], w - Widths
[1.9,1.9,1.9] (default) | vector
Front, middle, and rear track widths, $w f$, $w m$, and, $w r$, respectively, in m. Dimensions are 1-by-3.

Inertial Loads

Tractor Front

Mass, z1m - Tractor front mass
0 (default) | scalar
Mass, $z 1 \mathrm{~m}$, in kg.
Distance vector from front axle, z1R - Tractor front distance from front axle
[-.25,.125,.15] (default)|vector
Distance vector from front axle to load, $z 1 R$, in m. Dimensions are 1-by-3.

Array Element	Description
z1R $(1,1)$	Front suspension hardpoint to load, along the vehicle-fixed x-axis
z1R $(1,2)$	Vehicle centerline to load, along the vehicle-fixed y - axis
z1R $(1,3)$	Front suspension hardpoint to load, along the vehicle-fixed z-axis

For example, this table summarizes the parameter settings that specify the load location.

Example Location	Sign
- Forward of the front axle	- z1R $(1,1)<0$
- Right of the vehicle centerline	- $\operatorname{ziR}(1,2)>0$
- Above the front axle suspension hardpoint	- $\operatorname{z1R}(1,3)>0$

Inertia tensor, z1I - Tractor front inertia

[1.4,-.2,.1;-.2,1.4,.1;.1,.1,2.25].*0 (default)|array
Inertia tensor, $z 11$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. Dimensions are 3-by-3.

$$
z 1 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Cab Overhead

Mass, 22m - Cab overhead mass
0 (default) | scalar
Mass, $z 2 m$, in kg.
Distance vector from front axle, $\mathbf{z 2 R}$ - Cab overhead distance from front axle
[1.4,0, .8] (default) |vector
Distance vector from front axle to load, $z 2 R$, in m. Dimensions are 1-by- 3 .

Array Element	Description
z2R $(1,1)$	Front suspension hardpoint to load, along the vehicle-fixed x-axis
z2R(1,2)	Vehicle centerline to load, along the vehicle-fixed $y-$ axis

Array Element
z2R(1,3)

Description

Front suspension hardpoint to load, along the vehicle-fixed z-axis

For example, this table summarizes the parameter settings that specify the load location.

Example Location	Sign
-	Rear of the front axle
-	Left of the vehicle centerline
-	Above the front axle suspension hardpoint

Inertia tensor, z2I - Cab overhead inertia
[1.4,-.2,.1;-.2,1.4,.1;.1,.1,2.25].*0 (default)|array
Inertia tensor, $z 2 I$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. Dimensions are 3-by-3.

$$
z 2 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Tractor Frame Left

Mass, z3m - Tractor frame left mass
0 (default) | scalar
Mass, $z 3 \mathrm{~m}$, in kg.
Distance vector from front axle, z3R - Tractor frame left distance from front axle
[. 75, -. 5, . 4] (default) | vector
Distance vector from front axle to load, $z 3 R$, in m. Dimensions are 1-by- 3 .

Array Element	Description
z3R $(1,1)$	Front suspension hardpoint to load, along the vehicle-fixed x-axis
z3R $(1,2)$	Vehicle centerline to load, along the vehicle-fixed y - axis
z3R $(1,3)$	Front suspension hardpoint to load, along the vehicle-fixed z-axis

For example, this table summarizes the parameter settings that specify the load location.

Example Location	Sign
- \quad Rear of the front axle	- $\quad z 3 R(1,1)>0$
- Left of the vehicle centerline	- $z 3 R(1,2)<0$
- Above the front axle suspension hardpoint	- $\quad z 3 R(1,3)>0$

Inertia tensor, z3I - Tractor frame left inertia
[5,-.1,-2;-2,9,.1;-.1,.1,6].*0 (default)|array
Inertia tensor, $z 3 I$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. Dimensions are 3-by-3.

$$
z 3 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Tractor Frame Right

Mass, z4m - Tractor frame right mass
0 (default) | scalar
Mass, $z 4 \mathrm{~m}$, in kg.
Distance vector from front axle, $\mathbf{z 4 R}$ - Tractor frame right distance from front axle [.75, .5, .4] (default)|vector

Distance vector from front axle to load, $z 4 R$, in m. Dimensions are 1-by-3.

Array Element	Description
z4R $(1,1)$	Front suspension hardpoint to load, along the vehicle-fixed x-axis
z4R $(1,2)$	Vehicle centerline to load, along the vehicle-fixed y - axis
Z4R $(1,3)$	Front suspension hardpoint to load, along the vehicle-fixed z-axis

For example, this table summarizes the parameter settings that specify the load location.

Example Location	Sign
-	Rear of the front axle
-	Right of the vehicle centerline
-	Above the front axle suspension hardpoint

Inertia tensor, $\mathbf{z 4 I}$ - Tractor frame right inertia

[5,-.1,-2;-2,9,.1;-.1,.1,6].*0 (default)|array

Inertia tensor, $z 4 I$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. Dimensions are 3 -by-3.

$$
z 4 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Cab Left

Mass, z5m - Cab left mass
0 (default) | scalar
Mass, z5m, in kg.
Distance vector from front axle, $\mathbf{z 5 R}$ - Cab left distance from front axle [1.25,-. 5, .4] (default) | vector

Distance vector from front axle to load, $z 5 R$, in m. Dimensions are 1-by-3.

Array Element	Description
$z 5 R(1,1)$	Front suspension hardpoint to load, along the vehicle-fixed x-axis
$z 5 R(1,2)$	Vehicle centerline to load, along the vehicle-fixed y - axis
$z 5 R(1,3)$	Front suspension hardpoint to load, along the vehicle-fixed z-axis

For example, this table summarizes the parameter settings that specify the load location.

Example Location	Sign
- Rear of the front axle	- $\quad \mathrm{z5R}(1,1)>0$
- Left of the vehicle centerline	- $\mathrm{z5R}(1,2)<0$
- Above the front axle suspension hardpoint	• $\mathrm{z5R}(1,3)>0$

Inertia tensor, z5I - Cab left inertia

[5,-.1,-2;-2,9,.1;-.1,.1,6].*0 (default)|array
Inertia tensor, $z 5 I$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. Dimensions are 3-by-3.

$$
z 5 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Cab Right

Mass, z6m - Cab right mass
0 (default) | scalar
Mass, $z 6 \mathrm{~m}$, in kg.
Distance vector from front axle, z6R - Cab right distance from front axle
[1.25, -. 5, .4] (default)|vector
Distance vector from front axle to load, $z 6 R$, in m. Dimensions are 1-by-3.

Array Element	Description
$z 6 R(1,1)$	Front suspension hardpoint to load, along the vehicle-fixed x-axis
$z 6 R(1,2)$	Vehicle centerline to load, along the vehicle-fixed y - axis
$z 6 R(1,3)$	Front suspension hardpoint to load, along the vehicle-fixed z-axis

For example, this table summarizes the parameter settings that specify the load location.

Example Location	Sign
- Rear of the front axle	• $\quad \mathrm{z6R}(1,1)>0$
- Right of the vehicle centerline	- $\quad \mathrm{z6R}(1,2)>0$
- Above the front axle suspension hardpoint	- $\quad \mathrm{z6R}(1,3)>0$

Inertia tensor, $\mathbf{z 6 I}$ - Cab right inertia
[5,-.1,-2;-2,9,.1;-.1,.1,6].*0 (default)|array
Inertia tensor, $z 6 I$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. Dimensions are 3-by-3.

$$
z 6 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Tractor Rear

Mass, $\mathbf{z 7 m}$ - Tractor rear mass
0 (default) | scalar

Mass, $z 7$, in kg.
Distance vector from front axle, $\mathbf{z 7 R}$ - Tractor rear mass distance from front axle [2,0, .25] (default) | vector

Distance vector from front axle to load, $z 7 R$, in m. Dimensions are 1-by-3.

Array Element	Description
z7R $(1,1)$	Front suspension hardpoint to load, along the vehicle-fixed x-axis
z7R $(1,2)$	Vehicle centerline to load, along the vehicle-fixed y - axis
z7R $(1,3)$	Front suspension hardpoint to load, along the vehicle-fixed z-axis

For example, this table summarizes the parameter settings that specify the load location.

Example Location	Sign
-	Rear of the front axle
-	Right of the vehicle centerline
-	Above the front axle suspension hardpoint

Inertia tensor, z71 - Tractor rear inertia
[1.4,-.2,.1;-.2,1.4,.1;.1,.1,2.25].*0 (default)|array
Inertia tensor, $z 71$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$. Dimensions are 3-by-3.

$$
z 7 I=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

The tensor uses a coordinate system with an origin at the load CM.

- x-axis along the vehicle-fixed x-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

Aerodynamic

Longitudinal drag area, Af - Vehicle cross-sectional area
2 (default) | scalar
Effective vehicle cross-sectional area, A_{f} to calculate the aerodynamic drag force on the vehicle, in $\mathrm{m}^{\wedge} 2$.

Longitudinal drag coefficient, Cd - Air drag coefficient
. 3 (default) | scalar
Air drag coefficient, C_{d}, dimensionless.

Longitudinal lift coefficient, CI - Air lift coefficient

. 1 (default) | scalar
Air lift coefficient, C_{l}, dimensionless.

Longitudinal drag pitch moment, Cpm - Pitch drag

. 1 (default) | scalar
Longitudinal drag pitch moment coefficient, $C_{p m}$, dimensionless.
Relative wind angle vector, beta_w - Wind angle
[0:0.001:0.01] (default) | vector
Relative wind angle vector, β_{w}, in rad.
Side force coefficient vector, Cs - Side force drag
[0:0.01:0.1] (default) | vector
Side force coefficient vector coefficient, C_{s}, dimensionless.
Yaw moment coefficient vector, Cym - Yaw moment drag
[0:0.001:0.01] (default)| vector
Yaw moment coefficient vector coefficient, $C_{y m}$, dimensionless.

Environment

Absolute air pressure, Pabs - Pressure

101325 (default) | scalar
Environmental air absolute pressure, $P_{a b s}$, in Pa.
Air temperature, Tair - Ambient air temperature
273 (default) | scalar
Ambient air temperature, $T_{\text {air }}$ in K .
Dependencies
To enable this parameter, clear Air temperature.
Gravitational acceleration, \mathbf{g} - Gravity
9.81 (default) | scalar

Gravitational acceleration, g, in $\mathrm{m} / \mathrm{s}^{\wedge} 2$.

Simulation

Longitudinal velocity tolerance, xdot_tol - Tolerance
. 1 (default) | scalar
Longitudinal velocity tolerance, $x d o t_{\text {tol }}$, in m / s.
The block uses this parameter to avoid a division by zero when it calculates the body slip angle, β.
Geometric longitudinal offset from axle plane, longOff - Longitudinal offset
0 (default) | scalar

Vehicle chassis offset from the axle plane along the body-fixed x-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independently of the vehicle CG.

Geometric lateral offset from center plane, latOff - Lateral offset
 0 (default) | scalar

Vehicle chassis offset from center plane along the body-fixed y-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independently of the vehicle CG.

Geometric vertical offset from axle plane, vertOff - Vertical offset
0 (default) | scalar
Vehicle chassis offset from the axle plane along the body-fixed z-axis, in m . When you use the 3D visualization engine, consider using the offset to locate the chassis independently of the vehicle CG.

Wrap Euler angles, wrapAng - Selection
on (default) | off
Wrap the Euler angles to the interval [-pi, pi]. For vehicle maneuvers that might undergo vehicle yaw rotations that are outside of the interval, consider clearing the parameter if you want to:

- Track the total vehicle yaw rotation.
- Avoid discontinuities in the vehicle state estimators.

Version History

Introduced in R2020b

References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Vehicle Body 3DOF Longitudinal | Vehicle Body 6DOF | Vector Concatenate, Matrix Concatenate

Topics

"Coordinate Systems in Vehicle Dynamics Blockset"

Three-axis Inertial Measurement Unit

Implement three-axis inertial measurement unit (IMU)

Libraries:

Vehicle Dynamics Blockset / Sensors

Description

The Three-Axis Inertial Measurement Unit block implements an inertial measurement unit (IMU) containing a three-axis accelerometer and a three-axis gyroscope.

For a description of the equations and application of errors, see Three-axis Accelerometer (Aerospace Blockset) and Three-axis Gyroscope (Aerospace Blockset).

Limitations

- Vibropendulous error, hysteresis affects, anisoelastic bias and anisoinertial bias are not accounted for in this block.
- This block is not intended to model the internal dynamics of different forms of the instrument.

Ports

Input

A_b - Actual accelerations

three-element vector
Actual accelerations in body-fixed axes, specified as a three-element vector, in selected units.
Data Types: double
\mathbf{w} - Angular rates
three-element vector
Angular rates in body-fixed axes, specified as a three-element vector, in radians per second.
Data Types: double
w_dot - Angular accelerations
three-element vector
Angular accelerations in body-fixed axes, specified as a three-element vector, in radians per second squared.

Data Types: double
CG - Location of center of gravity
three-element vector

Location of the center of gravity, specified as a three-element vector, in selected units.
Data Types: double
g - Gravity
three-element vector
Gravity in body axis, specified as a three-element vector, in selected units.
Data Types: double

Output

A_meas - Measured accelerations
three-element vector
Measured accelerations from the accelerometer, specified as a three-element vector, in selected units.
Data Types: double
w_meas - Measured angular rates
three-element vector
Measured angular rates from the gyroscope, specified as a three-element vector, in radians per second.

Data Types: double

Parameters

Main

Units - Units
Metric (MKS) (default)|English
Input and output units, specified as:

Units	Acceleration	Length
Metric (MKS)	Meters per second squared	Meters
English (British Imperial)	Feet per second squared	Feet

Programmatic Use

Block Parameter: units
Type: character vector
Values: 'Metric (MKS)'|'English'
Default: 'Metric (MKS)'
IMU location - IMU location
$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ (default) | three-element vector
The location of the IMU, which is also the accelerometer group location, from the vehicle center of gravity, along the vehicle-fixed axis. This measurement reference is the same for the center of gravity input. The units are in selected length units.

Programmatic Use
Block Parameter: imu
Type: character vector
Values: three-element vector
Default: '[0 0 0]'
Update rate - Update rate
0 (default) | real, double scalar
Update rate of the accelerometer and gyroscope, specified as a real, double scalar, in seconds. An update rate of 0 creates a continuous accelerometer and continuous gyroscope. If you select the Noise on parameter and the update rate is 0 , the block updates the noise at a rate of 0.1.

Tip If you:

- Update this parameter value to 0 (continuous)
- Configure a fixed-step solver for the model
you must also select the Automatically handle rate transition for data transfer check box in the Solver pane. This check box enables the software to handle rate transitions correctly.

```
Programmatic Use
Block Parameter: a_Ts
Type: character vector
Values: real, double scalar
Default: '0'
Accelerometer
Second order dynamics for accelerometer - Second-order dynamics
on (default) | off
```

To apply second-order dynamics to acceleration readings, select this check box.

```
Programmatic Use
Block Parameter: dtype_a
Type: character vector
Values:'on'|'off'
Default: 'on'
Accelerometer natural frequency (rad/sec) - Accelerometer natural frequency
190 (default) | real, double scalar
```

Natural frequency of the accelerometer, specified as a real, double scalar, in radians per second.

Programmatic Use

Block Parameter: w_a
Type: character vector
Values: real, double scalar
Default: ' 190 '
Dependencies
To enable this parameter, select Second order dynamics for accelerometer.

Accelerometer damping ratio - Accelerometer damping ratio
0.707 (default) | real, double scalar

Damping ratio of the accelerometer, specified as a real, double scalar, with no dimensions.
Programmatic Use
Block Parameter: z_a
Type: character vector
Values: real, double scalar
Default: ' 0.707 '
Dependencies
To enable this parameter, select Second order dynamics for accelerometer.
Accelerometer scale factor and cross-coupling - Scale factor and cross coupling
[1 0 0; 0 1 0; 0 0 1] (default) | 3-by-3 matrix
Scale factor and cross-coupling, specified as a 3-by-3 matrix, to skew the accelerometer from body axes and to scale accelerations along body axes.

Programmatic Use
Block Parameter: a_sf_cc
Type: character vector
Values: 3-by-3 matrix
Default: '[1 0 0; 0 1 0; 00 1]'
Accelerometer measurement bias - Accelerometer measurement bias
[0 0 0] (default)|three-element vector
Long-term biases along the accelerometer axes, specified as a three-element vector, in selected acceleration units.

Programmatic Use
Block Parameter: a_bias
Type: character vector
Values: three-element vector
Default: '[0 0 0]'
Accelerometer upper and lower limits - Minimum and maximum values of acceleration
[-inf -inf -inf inf inf inf] (default)| six-element vector
Three minimum values and three maximum values of acceleration in each of accelerometer axes, specified as a six-element vector, in selected acceleration units.

Programmatic Use
Block Parameter: a_sat
Type: character vector
Values: six-element vector
Default: '[-inf -inf -inf inf inf inf]'
Gyroscope
Second-order dynamics for gyro - Gyroscope second-order dynamics
on (default) | off
To apply second-order dynamics to gyroscope readings, select this check box.

```
Programmatic Use
Block Parameter: dtype_g
Type: character vector
Values: 'on'|'off'
Default: 'on'
Gyro natural frequency (rad/sec) - Gyroscope natural frequency
190 (default) | real, double scalar
```

Natural frequency of the gyroscope, specified as a real, double scalar, in radians per second.

Programmatic Use
 Block Parameter: w_g

Type: character vector
Values: real, double scalar
Default: ' 190 '

Dependencies

To enable this parameter, select Second-order dynamics for gyro.

Gyro damping ratio - Gyroscope damping ratio

0.707 (default) | real, double scalar

Damping ratio of the gyroscope, specified as a real, double scalar, with no dimensions.

Programmatic Use

Block Parameter: z_g
Type: character vector
Values: real, double scalar
Default: '0.707'

Dependencies

To enable this parameter, select Second-order dynamics for gyro.
Gyro scale factors and cross-coupling - Gyroscope scale factors and cross-coupling
[1 0 0; 0 1 0; 0 0 1] (default)| 3-by-3 matrix
Gyroscope scale factors and cross-coupling, specified as a 3-by-3 matrix, to skew the gyroscope from body axes and to scale angular rates along body axes.

Programmatic Use

Block Parameter: g_sf_cc
Type: character vector
Values: 3-by-3 matrix
Default: '[1 0 0; 0 1 0; 00 1]'
Gyro measurement bias - Gyroscope measurement bias
[0 0 0] (default)| three-element vector
Long-term biases along the gyroscope axes, specified as three-element vector, in radians per second.

[^4]Values: three-element vector
Default: '[0 0 0]'
G-sensitive bias - Maximum change in rates
[0 0 0] (default) | three-element vector
Maximum change in rates due to linear acceleration, specified as a three-element vector, in radians per second per g-unit.

Programmatic Use
Block Parameter: g_sens
Type: character vector
Values: three-element vector
Default: '[0 0 0]'
Gyro upper and lower limits - Minimum and maximum values of angular rates [-inf -inf -inf inf inf inf] (default)|six-element vector

Three minimum values and three maximum values of angular rates in each of the gyroscope axes, specified as a six-element vector, in radians per second.

Programmatic Use

Block Parameter: g_sat
Type: character vector
Values: six-element vector
Default:'[-inf -inf -inf inf inf inf]'
Noise
Noise on - White noise
on (default) | off
To apply white noise to acceleration and gyroscope readings, select this check box.
Programmatic Use
Block Parameter: a_rand
Type: character vector
Values: 'on'|'off'
Default: 'on'
Noise seeds - Noise seeds
[23093 23094230952309623097 23098] (default) | six-element vector
Scalar seeds for the Gaussian noise generator for each axis of the accelerometer and gyroscope, specified as a six-element vector.

Programmatic Use
Block Parameter: a_seeds
Type: character vector
Values: six-element vector
Default: '[23093 23094230952309623097 23098]'

Dependencies

To enable this parameter, select Noise on.

Noise power - Noise power

[0.001 0.001 0.001 0.0001 0.0001 0.0001] (default)| six-element vector

Height of the power spectral density (PSD) of the white noise for each axis of the accelerometer and gyroscope, specified as a six-element vector, in:

- ($\mathrm{m} / \mathrm{s}^{2}$)/Hz for Metric (MKS)
- (ft/s²)/Hz for English

Programmatic Use
Block Parameter: a_pow
Type: character vector
Values: six-element vector
Default: '[0.001 0.001 0.001 0.0001 0.0001 0.0001]'
Dependencies
To enable this parameter, select Noise on.

Version History

Introduced in R2020a

References

[1] Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA Education Series, 2000.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Three-axis Gyroscope | Three-axis Accelerometer

Motorcycle Body Longitudinal In-Plane

Longitudinal in-plane motorcycle vehicle motion

Libraries:

Powertrain Blockset / Vehicle Dynamics
Vehicle Dynamics Blockset / Vehicle Body

Description

The Motorcycle Body Longitudinal In-Plane block implements a longitudinal in-plane motorcycle body model to calculate longitudinal, vertical, and pitch motion. The block accounts for:

- Mass of the frame, rear arm, front upper fork, front lower fork, front wheel, and rear wheel
- In-plane dynamic effects of the frame, front lower fork, front wheel, rear wheel, rear suspension, front suspension, rear wheel damper, rear arm, and chain
- External forces, external moments, and aerodynamic drag
- Road incline
- Weight distribution between the axles due to acceleration

Consider using this block to represent motorcycle motion in powertrain and fuel economy studies, for example, in studies with heavy breaking or acceleration or road profiles that contain larger vertical changes.

The block uses rigid-body vehicle motion, suspension system forces, and wind and drag forces to calculate the forces on the motorcycle frames. The block then determines the position and velocity of motorcycle at the front and rear contact patches.

Layout

To determine the rigid-body motorcycle motion, the block uses right-handed (RH) Cartesian reference frames systems attached to the motorcycle. i, j, and k are orthogonal unit vectors attached to the frames.

Frame	Variable in Figure	Description
Road	x, z	Road-fixed coordinate system. x is along road grade, and z points downward.
Motorcycle main frame - $i_{F r m}$ - Forward along vector given by $\theta_{f r m}$ - $k_{\text {Frm }}$ - Downward - $j_{\text {Frm }}$ - Orthogonal to motorcycle plane	$O_{\text {Frm }}$	Main frame origin
	$G_{\text {Frm }}$	Center of mass (CM) of the main frame with respect to $O_{F r m}$, along $i_{F r m}$ and $k_{F r m}$, respectively
	$G_{\text {Rdr }}$	CM of the rider with respect to $O_{\text {Frm }}$, along $i_{F r m}$ and $k_{F r m}$, respectively
	$\theta_{f r m}$	Main frame rotation about $j_{\text {Frm }}$
Upper fork - $i_{\text {FrkU }}$ - Forward along vector given by $\theta_{f r m}$ - $k_{\text {FrkUp }}$ - Downward	$O_{\text {FrkUp }}$	Upper fork origin

Frame	Variable in Figure	Description
- $j_{F r k U p}$ - Orthogonal to motorcycle plane	$G_{\text {FrkUp }}$	CM of the upper fork with respect to $O_{F r k U p}$, along $i_{F r k U_{p}}$ and $k_{F r k U_{p}}$, respectively
Lower fork - $i_{\text {FrkLw }}$ - Forward along vector given by $\theta_{f r m}$ - $k_{\text {FrkLw }}$ - Downward - $j_{\text {FrkLw }}$ - Orthogonal to motorcycle plane	O_{F}	Lower fork origin
	$G_{\text {FrkLw }}$	CM of the lower fork with respect to $O_{\text {FrkLw }}$, along $i_{F r k L w}$ and $k_{F r k L w}$, respectively
Rear arm - $i_{\text {ArmRr }}$ - Forward along vector given by $\theta_{r a}$ - $k_{\text {ArmRr }}$ - Downward - $j_{\text {ArmRr }}$ - Orthogonal to motorcycle plane	$O_{\text {ArmRr }}$	Rear arm origin
	$G_{\text {ArmRr }}$	CM of the rear arm with respect to $O_{\text {ArmRr }}$, along $i_{\text {ArmRr }}$ and $k_{\text {ArmRr }}$, respectively
	$\theta_{r a}$	Rear arm rotation about $j_{A r m R r}$
Front wheel contact patch - $i_{C P F}$ - Forward along vector given by road-fixed x - axis - $k_{C P F}$ - Downward along vector given by road-fixed z - axis - $j_{C P F}$ - Orthogonal to motorcycle plane	$O_{C p F}$	Front wheel contact patch origin
Rear wheel contact patch - $i_{C p R}$ - Forward along vector given by road-fixed x - axis - $k_{C P R}$ - Downward along vector given by road-fixed z - axis - $j_{C p R}$ - Orthogonal to motorcycle plane	$O_{C p R}$	Rear wheel contact patch origin

Use the parameters in this table to specify the geometric layout of your motorcycle.

Parameter			Variable in Figure
Initial conditions	Position	Rear contact patch longitudinal coordinate, CpRrX0	$O_{C P R}$ with respect to road-fixed coordinate system, along x
		Rear contact patch vertical coordinate, CpRrZo	$O_{C P R}$ with respect to road-fixed coordinate system, along z
		Pitch angle of rear arm, ArmRrAng0	$\theta_{r a}$
		Pitch angle of main frame, FrmAng0	$\theta_{\text {Frm }}$

Parameter			Variable in Figure d_{f}
		Fork length, FrkFrL0	
Frame		Center of mass location, FrmCmPxz	$G_{F r m}$ with respect to $O_{\text {Frm }}$, along $i_{\text {Frm }}$ and $k_{F r m}$, respectively
		Length, FrmLen	FrmLen
Rider		Center of mass location, RdrCmPxz	$G_{\text {Rdr }}$ with respect to $O_{\text {Frm }}$, along $i_{\text {Frm }}$ and $k_{F r m}$, respectively
Front Fork	Upper	Position, FrkUpCmPxz	$G_{F r k U p}$ with respect to $O_{F r k U p}$, along $i_{F r k U p}$ and $k_{F r k U p}$, respectively
		Offset, FrkOfs	FrkOfs
	Lower	Position, FrkLwCmPxz	$G_{\text {FrkLw }}$ with respect to $O_{\text {FrkLw }}$, along $i_{F r k L w}$ and $k_{F r k L w}$, respectively
Rear Arm		Position, ArmRrCmPxz	$G_{\text {ArmRr }}$ with respect to $O_{\text {ArmRr }}$, along $i_{A r m R r}$ and $k_{A r m R r}$, respectively
		Length, ArmRrLen	ArmRrLen
Wheels	Front	Radius, WhlFrR	WhlFrR
	Rear	Radius, WhlRrR	WhlRrR
Suspension	Front	Equilibrium length, FrkLwL0	d_{f}
	Rear	Equilibrium angle, ShkRrAng0	$\theta_{\text {Frm }}$

Input Signals

You can use these block parameters to create additional input ports. This table summarizes the settings.

Input Signals Pane Parameter	Input Port	Description
External forces	FExt	External longitudinal and vertical forces applied at equivalent rider and motorcycle center of mass (CM).
External moments	MExt	External moment about equivalent rider and motorcycle CM, for example, moment due to rider physical motion.
External front wheel moment	MWhlF	External moment at the front wheel $G_{\text {WhlFr, for }}$ example, wheel motors and external intermittent friction-related disturbances.
External rear wheel moment	MWhlR	External moment at the rear wheel $G_{\text {WhlRr, }}$ for example, wheel motors and external intermittent friction-related disturbances.
Grade angle	Grade	Road grade angle.
Wind velocity	WindXYZ	Wind speed.
Ambient temperature	Temp	Ambient air temperature. Consider this option if you want to vary the temperature during run- time.

Suspension System

Use the Suspension type parameter to specify the type of suspension.

Setting	Description
Simple	Block models the suspension force and moment as a spring- damper system: - - Suspension force at the upper fork
User-defined	Input the suspension force and moment: - FSuspF - Suspension force at the upper fork - MSuspR - Suspension moment at the rear arm

Wind and Drag Forces

The block subtracts the wind speeds from the vehicle velocity components to obtain a net relative airspeed. To calculate the drag force and moments acting on the motorcycle, the block uses the net relative airspeed.

Use in 3D Environment

To co-simulate in the Unreal Engine ${ }^{\circledR}$ and provide a motorcycle with the motion calculated by the Motorcycle Body Longitudinal In-Plane block:

1 Put the Simulation 3D Motorcycle block in your model.
2 Route these the Info bus port signals to the Simulation 3D Motorcycle input ports Translation and Rotation.

- PosOrgInert
- PosFwBdy
- PosRwBdy
- AngOrgInert

For more information about using the block in the 3D environment, see "Longitudinal Motorcycle Braking Test".

Power Accounting

The block accounts for the power transferred, not transferred, and stored.

Bus Signal			Description
PwrInfo	PwrTrnsfrd - Power transferred between blocks - Positive signals indicate flow into block - Negative signals indicate flow out of block	PwrFxExt	Mechanical power from longitudinal external force
		PwrFzExt	Mechanical power from vertical external force
		PwrMyExt	Mechanical power from external pitch moment
	PwrNotTrnsfrd - Power crossing the block boundary, but not transferred - Positive signals indicate an input - Negative signals indicate a loss	PwrFxDrag	Mechanical power loss from longitudinal drag force
		PwrFzDrag	Mechanical power loss from vertical lift
		PwrMyDrag	Mechanical power loss from pitch moment drag
	PwrStored - Stored energy rate of change - Positive signals indicate an increase - Negative signals indicate a decrease	PwrStoredGrvty	Rate change in gravitational potential energy
		PwrStoredxdot	Rate of change of longitudinal kinetic energy
		PwrStoredzdot	Rate of change of vertical kinetic energy
		PwrStoredq	Rate of change of rotational pitch kinetic energy
		PwrStoredFsFzSprng	Stored spring energy from front suspension
		PwrStoredFsRzSprng	Stored spring energy from rear suspension

Ports

Input

FCpF - Longitudinal and vertical forces at front wheel contact patch

vector

Longitudinal and vertical forces at front wheel contact patch $O_{C P F}$, along $i_{C P F}$ and $k_{C p F}$, in N. Signal vector dimensions are [1×2] or [2×1].

FCpR - Longitudinal and vertical forces at rear wheel contact patch

vector

Longitudinal and vertical forces at rear wheel contact patch $O_{C p R}$, along $i_{C p R}$ and $k_{C p R}$, in N. Signal vector dimensions are [1×2] or [2×1].

MDrvArmR - Drive chain moment at rear arm
scalar
Drive chain moment at rear arm $O_{A r m R r}$, about $j_{A r m R r}$, in $N \cdot \mathrm{~m}$.
MDrvFrm - Drive chain moment at frame
scalar
Drive chain moment at the frame $O_{F r m}$, about $j_{F r m}$, in $\mathrm{N} \cdot \mathrm{m}$.
FExt - External longitudinal and vertical forces at frame
vector
External longitudinal and vertical forces applied at equivalent rider and motorcycle center of mass (CM), along $i_{F r m}$ and $k_{F r m}$, in N. Signal vector dimensions are [1×2] or [2×1].

Dependencies

To create this port, select External forces.
MExt - External moment about frame
scalar

External moment about equivalent rider and motorcycle $\mathrm{CM}, j_{F r m}$, for example, moment due to rider physical motion, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, select External moments.
MBrkF - Brake moment at front wheel
scalar
Brake moment at the front wheel $G_{W h l F r}$, about $j_{W h l F r}$, in $\mathrm{N} \cdot \mathrm{m}$.
MBrkR - Brake moment at rear wheel
scalar
Brake moment at the rear wheel $G_{W h l R r}$, about $j_{W h l R r}$, in $\mathrm{N} \cdot \mathrm{m}$.
MWhIF - External moment at front wheel
scalar
External moment at the front wheel $G_{W h l F r}$, in $\mathrm{N} \cdot \mathrm{m}$.
Dependencies
To create this port, select External front wheel moment.
MWhIR - External moment at rear wheel
scalar

External moment at the rear wheel $G_{W h l R r}$, in $\mathrm{N} \cdot \mathrm{m}$.
Dependencies
To create this port, select External rear wheel moment.

FSuspF - External suspension force at upper fork scalar

External suspension force at upper fork $O_{\text {FrkUp }}$, along $k_{F r k U p}$, in N .

Dependencies

To create this port, set Suspension type to User-defined.
MSuspR - External suspension moment at rear arm
scalar
External suspension force at upper fork $O_{A r m R r}$, about $j_{A r m R r}$, in $\mathrm{N} \cdot \mathrm{m}$.

Dependencies

To create this port, set Suspension type to User-defined.
Grade - Road grade angle scalar

Road grade angle, γ, in deg.

Dependencies

To create this port, select Grade angle.
WindXYZ - Wind speed
array
Wind speed, W_{X}, W_{Y}, W_{Z} along earth-fixed X-, Y-, and Z-axes, in m / s. Signal vector dimensions are [1×3] or [3×1].

Dependencies

To create this port, select Wind velocity.
Temp - Ambient air temperature
scalar
Ambient air temperature, $T_{\text {air }}$, in K . Considering this option if you want to vary the temperature during run-time.

Dependencies

To create this port, select Ambient temperature.

Output

Info - Bus signal
bus
Bus signal containing these block calculations.

Signal	Signal	Units	
Geom	Pos0rgInert	Main frame position along the earth-fixed axes	m

Signal							

Signal						Acc
		dfddot	Signal	Fork length acceleration	$\mathrm{m} / \mathrm{s}^{2}$	
Susp	Genrl	Rear	Moments	Mthetafrm	Rear suspension moment at frame	$\mathrm{N} \cdot \mathrm{m}$
		Frnt	Forces	Fdf	Suspensive force at upper fork	N

VCpF - Longitudinal, lateral, and vertical velocity at front wheel contact patch vector

Longitudinal, lateral, and vertical velocity at front wheel contact patch $O_{C P F}$, along $i_{C P F}$ and $k_{C p F}$, in m / s. Signal vector dimensions are [1x3] or [3x1]. The lateral component is set to 0 .
$\mathbf{P C p F}$ - Longitudinal, lateral, and vertical position at front wheel contact patch vector

Longitudinal, lateral, and vertical position at front wheel contact patch $O_{C P F}$, along $i_{C P F}$ and $k_{C p F}$, in m. Signal vector dimensions are [1×3] or [3×1]. The lateral component is set to 0 .

VCpR - Longitudinal, lateral, and vertical velocity at rear wheel contact patch vector

Longitudinal,lateral, and vertical velocity at rear wheel contact patch $O_{C P R}$, along $i_{C P R}$ and $k_{C P R}$, in m / s. Signal vector dimensions are [1×3] or [3×1]. The lateral component is set to 0 .

PCpR - Longitudinal, lateral, and vertical position at rear wheel contact patch vector

Longitudinal, lateral, and vertical position at rear wheel contact patch $O_{C p R}$, along $i_{C p R}$, and $k_{C p R}$, in m . Signal vector dimensions are [1×3] or [3×1]. The lateral component is set to 0 .

ThetaFrm - Main frame pitch angle

scalar

Main frame pitch angle, $\Theta_{\text {frm }}$, in rad.
ThetaArmR - Rear arm pitch angle
scalar
Rear arm pitch angle, $\Theta_{r a}$ in rad.

Parameters

Options

Suspension type - Type of suspension

Simple (default) | User-defined
Use the Suspension type parameter to specify the type of suspension.

Setting	Description
Simple	Block models the suspension force and moment as a spring- damper system:
	- Suspension force at the upper fork - User-defined Input the suspension force and moment: - FSuspF - Suspension force at the upper fork - MSuspR - Suspension moment at the rear arm

Input signals

External forces - FExt input port
off (default) | on
Specify to create input port FExt.
External moments - MExt input port
off (default) | on
Specify to create input port MExt.
External front wheel moment - MWhlF input port
off (default) | on
Specify to create input port MWhlF. Consider using this port to input external moments such as wheel motors and external intermittent friction-related disturbances.

External rear wheel moment - MWhlR input port
off (default) | on
Specify to create input port MWhlR. Consider using this port to input external moments such as wheel motors and external intermittent friction-related disturbances.

Grade angle - Grade input port
on (default) | off
Specify to create input port Grade.
Wind velocity - WindXYZ input port
on (default) | off
Specify to create input port WindXYZ.
Ambient temperature - Temp input port off (default) | on

Specify to create input port Temp.

Layout

Use the parameters in this table to specify the geometric layout of your motorcycle.

Parameter			Variable in Figure $O_{C P R}$ with respect to road-fixed coordinate system, along x
Initial conditions	Position	Rear contact patch longitudinal coordinate, CpRrX0	
		Rear contact patch vertical coordinate, CpRrZ0	$O_{C p R}$ with respect to road-fixed coordinate system, along z
		Pitch angle of rear arm, ArmRrAng0	$\theta_{\text {ra }}$
		Pitch angle of main frame, FrmAng0	$\theta_{\text {Frm }}$
		Fork length, FrkFrL0	d_{f}

Parameter			Variable in Figure
Frame		Center of mass location, FrmCmPxz	$G_{F r m}$ with respect to $O_{F r m}$, along $i_{F r m}$ and $k_{F r m}$, respectively
		Length, FrmLen	FrmLen
Rider		Center of mass location, RdrCmPxz	$G_{\text {Rdr }}$ with respect to $O_{\text {Frm }}$, along $i_{\text {Frm }}$ and $k_{F r m}$, respectively
Front Fork	Upper	Position, FrkUpCmPxz	$G_{F r k U p}$ with respect to $O_{F r k U p}$, along $i_{F r k U_{p}}$ and $k_{F r k U_{p}}$, respectively
		Offset, FrkOfs	FrkOfs
	Lower	Position, FrkLwCmPxz	$G_{\text {FrkLw }}$ with respect to $O_{\text {FrkLw }}$, along $i_{F r k L w}$ and $k_{F r k L w}$, respectively
Rear Arm		Position, ArmRrCmPxz	$G_{\text {ArmRr }}$ with respect to $O_{\text {ArmRr }}$, along $i_{\text {ArmRr }}$ and $k_{\text {ArmRr }}$, respectively
		Length, ArmRrLen	ArmRrLen
Wheels	Front	Radius, WhlFrR	WhlFrR
	Rear	Radius, WhlRrR	WhlRrR
Suspension	Front	Equilibrium length, FrkLwL0	d_{f}
	Rear	Equilibrium angle, ShkRrAng0	$\theta_{\text {Frm }}$

Frame

Center of mass location, FrmCmPxz - Frame location
[0.255, -0.02] (default)|vector
Center of mass location of the frame, $G_{F r m}$. Specified as a vector with respect to $O_{F r m}$, along $i_{\text {Frm }}$ and $k_{\text {Frm }}$, respectively.

Mass, FrmMass - Frame mass
223 (default) | scalar
Frame mass, FrmMass, in kg.
Mass moment of inertia, Frmlyy - Frame inertia
26.2 (default) | scalar

Mass moment of inertia, FrmIyy, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.
Length, FrmLen - Frame length
0.730 (default) | scalar

Length of the frame, FrmLen, in m.

Rider

Center of mass location, RdrCmPxz - Rider location
[0.275, -0.61] (default)|vector
Center of mass location of the rider, $G_{R d r}$. Specified as a vector with respect to $O_{F r m}$, along $i_{F r m}$ and $k_{\text {Frm }}$, respectively.

Mass, RdrMass - Rider mass
78 (default) | scalar
Rider mass, RdrMass, in kg.
Mass moment of inertia, Rdrlyy - Rider inertia
26.2 (default) | scalar

Rider mass moment of inertia, RdrIyy, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.
Front Fork - Upper
Position, FrkUpCmPxz - Upper fork location
[0.023, -0.098] (default)| vector
Center of mass location of the upper fork, $G_{F r k U p}$. Specified as a vector with respect to $O_{\text {FrkUp }}$, along $i_{F r k U_{p}}$ and $k_{F r k U p}$, respectively.

Mass, FrkUpMass - Upper fork mass
8.8 (default) | scalar

Upper fork mass, FrkUpMass, in kg.
Mass moment of inertia, Frmlyy - Upper fork inertia
0.14 (default) | scalar

Upper fork mass moment of inertia, FrkUpIyy, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.
Offset, FrkOfs - Upper fork offset
0.034 (default) | scalar

Upper fork offset, FrkOfs, in m.

Front Fork - Lower

Position, FrkLwCmPxz - Lower fork location
[-0.029, -0.189] (default) | vector
Center of mass location of the lower fork, $G_{F r k L w}$. Specified as a vector with respect to $O_{\text {FrkLw, }}$ along $i_{\text {FrkLw }}$ and $k_{\text {FrkLw, }}$, respectively.

Mass, FrkLwMass - Lower fork mass
7.0 (default) | scalar

Lower fork mass, FrkLwMass, in kg.
Mass moment of inertia, FrkLwlyy - Lower fork inertia 0.18 (default) | scalar

Lower fork mass moment of inertia, FrkLwIyy, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.

Rear Arm

Position, ArmRrCmPxz - Rear arm location
[0.275, - 0.052] (default) | vector

Center of mass location of the rear arm, $G_{A r m R r}$. Specified as a vector with respect to $O_{A r m R r}$, along $i_{\text {ArmRr }}$ and $k_{\text {ArmRr }}$, respectively.

Mass, ArmRrMass - Rear arm mass
10 (default) | scalar
Rear arm mass, ArmRrMass, in kg.
Mass moment of inertia, ArmRrlyy - Rear arm inertia
0.8 (default) | scalar

Rear arm mass moment of inertia, ArmRrIyy, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.
Length, ArmRrLen - Rear arm length
0.535 (default) | scalar

Rear arm length, ArmRrLen, in m.
Wheels - Front
Mass, WhIFrMass - Front wheel mass
12 (default) | scalar
Front wheel mass, WhlFrMass, in kg.
Radius, WhIFrR - Front wheel radius
0.3 (default) | scalar

Front wheel radius, WhlFrR, in m.

Wheels - Rear

Mass, WhIRrMass - Rear wheel mass
16.2 (default) | scalar

Rear wheel mass, WhlRrMass, in kg.
Radius, WhIRrR - Rear wheel radius
0.33 (default) | scalar

Rear wheel radius, $W h l R r R$, in m.

Suspension - Front

Stiffness, SuspFrK - Front suspension stiffness
25e3 (default) | scalar
Front suspension stiffness at $O_{F r k U p}$, along $k_{F r k U p}$, in N / m.
Damping, SuspFrC - Front suspension damping
1250 (default) | scalar
Front suspension damping, at $O_{F r k U p}$, along $k_{F r k U p}$, in $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}$.
Equilibrium length, FrkLwLO - Front suspension equilibrium length
0.473 (default) | scalar

Front suspension equilibrium length, d_{f}, in m.
Suspension - Rear
Stiffness, SuspRrK - Rear arm suspension stiffness
1500 (default) | scalar
Rear arm suspension stiffness at $O_{A r m R r}$, about $j_{\text {ArmRr }}$, in $\mathrm{N} / \mathrm{rad}$.
Damping, SuspRrC - Rear arm suspension damping
150 (default) | scalar
Rear arm suspension damping at $O_{\text {ArmRr, }}$, about $j_{A r m R r}$, in $\mathrm{N} \cdot \mathrm{s} / \mathrm{rad}$.
Equilibrium angle, ShkRrAng0 - Rear suspension equilibrium angle
0 (default) | scalar
Rear suspension equilibrium angle, $\theta_{\text {Frm }}$, in rad.

Aerodynamic

Longitudinal drag area, Af - Area

2 (default) | scalar
Effective vehicle cross-sectional area, A_{f} to calculate the aerodynamic drag force on the vehicle, in m^{2}.

Longitudinal drag coefficient, Cd - Drag

. 2 (default) | scalar
Air drag coefficient, C_{d}, dimensionless.
Longitudinal lift coefficient, CI - Lift
. 1 (default) | scalar
Air lift coefficient, C_{l}, dimensionless.
Longitudinal drag pitch moment, Cpm - Pitch drag
. 1 (default) | scalar
Longitudinal drag pitch moment coefficient, $C_{p m}$, dimensionless.
Pitch moment length, Lcpm - Pitch drag
2 (default) | scalar
Pitch moment length, Lcpm, in m.

Environment

Gravitational acceleration, \mathbf{g} - Gravity
9.80665 (default) | scalar

Gravitational acceleration, g, in $\mathrm{m} / \mathrm{s}^{2}$.
Absolute air pressure, Pabs - Pressure
101325 (default) | scalar

Environmental air absolute pressure, $P_{\text {abs }}$, in Pa.
Air temperature, Tair - Ambient air temperature
273 (default) | scalar
Ambient air temperature, $T_{\text {air }}$, in K.

Dependencies

To enable this parameter, clear Ambient temperature.

Initial conditions

Position

Rear contact patch longitudinal coordinate, CpRrX0 - Longitudinal coordinate
0 (default) | scalar
Rear contact patch longitudinal coordinate, $O_{C p R}$, with respect to road-fixed coordinate system, along x, in m.

Rear contact patch vertical coordinate, CpRrZO - Vertical coordinate
0 (default) | scalar
Rear contact patch vertical coordinate, $O_{C p R}$, with respect to road-fixed coordinate system, along z, in m.

Pitch angle of rear arm, ArmRrAng0 - Rear arm angle
0.0590379 (default) | scalar

Pitch angle of rear arm, $\theta_{r a}$ in rad.
Pitch angle of main frame, FrmAng0 - Angle length
0.377024 (default) | scalar

Pitch angle of main frame, $\theta_{\text {Frm }}$, in rad.
Fork length, FrkFrLO - Fork length
0.4262193 (default) | scalar

Fork length, d_{f} in m .

Velocity

Longitudinal velocity of rear contact patch - Longitudinal velocity
0 (default) | scalar
Rear contact patch longitudinal coordinate, $\dot{O}_{C p R}$, with respect to road-fixed coordinate system, along x, in m / s.

Vertical velocity of rear contact patch, CpRrVz0 - Vertical velocity
0 (default) | scalar
Vertical velocity of rear contact patch, $\dot{O}_{C p R}$, with respect to road-fixed coordinate system, along z, in m / s.

Pitch rate of rear arm, ArmRrAngV0 - Pitch rate 0 (default) | scalar

Pitch rate of rear arm, $\dot{\theta}_{r a}$, in rad/s.
Pitch rate of main frame, FrmAngV0 - Pitch rate
0 (default) | scalar
Pitch rate of main frame, $\dot{\theta}_{F r m}$, in rad/s.
Lower fork deformation velocity, FrkLwV0 - Deformation velocity
0 (default) | scalar
Lower fork deformation velocity, \dot{d}_{f}, in m / s.

Coordinate Offsets

Longitudinal offset, longOff - Longitudinal offset
0 (default) | scalar
Vehicle main frame offset along the earth-fixed X-axis, in m.
Lateral offset, latOff - Lateral offset
0 (default) | scalar
Vehicle main frame offset along the earth-fixed Y-axis, in m.
Vertical offset, vertOff - Vertical offset
0 (default) | scalar
Vehicle main frame offset along the earth-fixed Z-axis, in m.
Roll offset, pitchOff - Roll offset
0 (default) | scalar
Vehicle main frame offset about the earth-fixed X-axis, in rad.
Pitch offset, pitchOff - Pitch offset
0 (default) | scalar
Vehicle main frame offset about the earth-fixed Y-axis, in rad.
Yaw offset, pitchOff - Yaw offset
0 (default) | scalar
Vehicle main frame offset about the earth-fixed Z-axis, in rad.

Introduced in R2021b

References

[1] Giner, David Moreno. "Symbolic-Numeric Tools for the Analysis of Motorcycle Dynamics. Development of a Virtual Rider for Motorcycles Based on Model Predictive Control." PhD diss., Universidad Miguel Hernández de Elche, 2016.

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink $®$ Coder $^{\mathrm{TM}}$.

See Also

Motorcycle Chain
Topics
"Coordinate Systems in Vehicle Dynamics Blockset"
"Longitudinal Motorcycle Braking Test"

Motorcycle Chain

Implement motorcycle chain

Libraries:

Powertrain Blockset / Drivetrain / Couplings
Vehicle Dynamics Blockset / Powertrain / Drivetrain / Couplings

Description

The Motorcycle Chain block implements the dynamic effects of a motorcycle chain on the Motorcycle Body Longitudinal In-Plane block, including dynamic tension and moment drive coupling.

This figure shows how the chain relates geometrically to the motorcycle frame, rear arm, and rear wheel.

Frame	Variable in Figure	Description
Motorcycle main frame	O_{m}	Main frame origin
- x_{m} - Forward along vector pointing to front fork		
- z_{m} - Downward		
- $\quad y_{m}$ - Orthogonal to motorcycle plane		

Ports

Input
MDshft - Drive shaft moment on front sprocket
scalar
Drive shaft moment on front sprocket about y_{m}, in $\mathrm{N} \cdot \mathrm{m}$.

FCpR - Longitudinal and vertical forces at rear wheel contact patch vector

Longitudinal and vertical forces at rear wheel contact patch $O_{C p R}$, along $i_{C p R}$ and $k_{C p R}$, in N. Signal vector dimensions are [1×2] or [2×1].

ThetaFrm - Main frame pitch angle scalar

Main frame pitch angle, $\Theta_{f r m}$, in rad.
ThetaArmR - Rear arm pitch angle scalar

Rear arm pitch angle, $\Theta_{r a}$, in rad.
MBrkR — Brake moment at rear wheel
scalar
Brake moment at the rear wheel $G_{W h l R r}$, about $j_{W h l R r}$, in $\mathrm{N} \cdot \mathrm{m}$.
AngAWhIR - Rear wheel angular acceleration
scalar
Rear wheel angular acceleration, in rad/s ${ }^{2}$.

Output

Info - Bus signal
bus
Bus signal containing these block calculations.

Signal	Description	Units
FChn	Chain force applied to rear arm	N
AngVSprtR	Angular velocity of rear sprocket	$\mathrm{rad} / \mathrm{s}$
MDrvSprtR	Wheel damper moment applied to rear sprocket	$\mathrm{N} \cdot \mathrm{m}$
WhlDmpAng	Angle between rear sprocket and rear wheel	rad

MDrvSprtR - Wheel damper moment at rear sprocket
scalar
Wheel damper moment applied to rear sprocket, in $N \cdot m$.
MDrvArmR - Drive chain moment at rear arm
scalar
Drive chain moment at rear arm $O_{A r m R r}$, about $j_{A r m R r}$, in $N \cdot \mathrm{~m}$.
MDrvFrm - Drive chain moment at frame
scalar

Drive chain moment at the frame $O_{\text {Frm }}$, about $j_{F r m}$, in $\mathrm{N} \cdot \mathrm{m}$.

Parameters

This figure shows how the chain relates geometrically to the motorcycle frame, rear arm, and rear wheel.

Front Sprocket

Coordinates, SprktFrPxz - Front sprocket position
[0.05-0.05] (default) | vector
Position of front sprocket, SprktFrPxz, along $x_{m} z_{m}$, respectively, in m.
Mass moment of inertia, SprktFrlyy - Front sprocket inertia
0.005 (default) | scalar

Front sprocket mass moment of inertia, SprktFrIyy, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.
Radius, SprktFrR - Front sprocket radius
0.04 (default) | scalar

Front sprocket radius, SprktFrR, in m.

Rear Sprocket

Mass moment of inertia, SprktRrlyy - Rear sprocket inertia
0.01 (default) | scalar

Rear sprocket mass moment of inertia, SprktRrIyy, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.
Radius, SprktRrR - Rear sprocket radius
0.12 (default) | scalar

Rear sprocket radius, SprktRrR, in m.

Rear Wheel

Mass moment of inertia, WhIRrlyy - Rear wheel inertia
0.66 (default) | scalar

Rear wheel mass moment of inertia, WhlRrIyy, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.

Radius, WhIRrR - Rear wheel radius
0.33 (default) | scalar

Rear wheel radius, WhlRrR, in m.

Swing Arm

Arm length, ArmRrLen - Swing arm length
0.535 (default) | scalar

Arm length, ArmRrLen, in m.

Wheel Damper

Stiffness, WhIDmpK - Wheel damper stiffness
le4 (default) | scalar
Wheel damper stiffness, WhlDmpK, in N/rad.
Damping, WhIDmpC - Wheel damping
1e2 (default) | scalar
Wheel damper damping, WhlDmpC, in $\mathrm{N} \cdot \mathrm{s} / \mathrm{rad}$.
Equilibrium angle - Wheel damper equilibrium angle
-15e-3 (default) | scalar
Equilibrium angle, WhlDmpAng0, in rad.
Initial Conditions
Rear sprocket angular velocity, SprktRrAngV0 - Angular velocity
0 (default) | scalar
Rear sprocket angular velocity, SprktRrAngV0, in rad/s.
Rear wheel angular velocity, WhIRrAngV0 - Angular velocity
0 (default) | scalar
Rear wheel angular velocity, WhlRrAngV0, in rad/s.

Version History

Introduced in R2021b

References

[1] Giner, David Moreno. "Symbolic-Numeric Tools for the Analysis of Motorcycle Dynamics. Development of a Virtual Rider for Motorcycles Based on Model Predictive Control." PhD diss., Universidad Miguel Hernández de Elche, 2016.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Motorcycle Body Longitudinal In-Plane

Topics

"Coordinate Systems in Vehicle Dynamics Blockset"

Vehicle Scenario Blocks

Drive Cycle Source

Standard or specified longitudinal drive cycle

Libraries:

Powertrain Blockset / Vehicle Scenario Builder
Vehicle Dynamics Blockset / Vehicle Scenarios / Drive Cycle and Maneuvers

Description

The Drive Cycle Source block generates a standard or user-specified longitudinal drive cycle. The block output is the specified vehicle longitudinal speed, which you can use to:

- Predict the engine torque and fuel consumption that a vehicle requires to achieve desired speed and acceleration for a given gear shift reference.
- Produce realistic velocity and shift references for closed loop acceleration and braking commands for vehicle control and plant models.
- Study, tune, and optimize vehicle control, system performance, and system robustness over multiple drive cycles.
- Identify the faults within tolerances specified by standardized tests, including:
- EPA dynamometer driving schedules ${ }^{1}$
- Worldwide Harmonised Light Vehicle Test Procedure (WLTP) laboratory tests ${ }^{2}$

For the drive cycles, you can use:

- Drive cycles from predefined sources. By default, the block includes the FTP-75 drive cycle. To install additional drive cycles from a support package, see "Support Package for Maneuver and Drive Cycle Data". The support package has drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
- Workspace variables that define your own drive cycles.
- .mat, .xls, .xlsx, or .txt files.
- Wide open throttle (WOT) parameters, including initial and nominal reference speed, deceleration start time, and final reference speed.

To achieve the goals listed in the table, use the specified Drive Cycle Source block parameter options.

Goal	Action
Repeat the drive cycle if the simulation run time exceeds the drive cycle length.	Select Repeat cyclically.
Output the acceleration, as calculated by Savitzky-Golay differentiation.	Select Output acceleration.

Goal	Action
Specify a sample period for discrete applications.	Specify a Output sample period (0 for continuous), dt parameter.
Update the simulation run time so that it equals the length of the drive cycle.	Click Update simulation time. If a model configuration reference exists, the block does not enable this option.
Plot the drive cycle in a MATLAB ${ }^{\circledR}$ figure.	Click Plot drive cycle.
Specify the drive cycle using a workspace variable.	Click Specify variable. The block: - Sets the Drive cycle source parameter to Workspace variable. - Enables the From workspace parameter. Specify the workspace variable so that it contains time, velocity, and, optionally, the gear shift schedule. For examples, see "Create Drive Cycles Using Workspace Variables" on page 6-5.
Specify the drive cycle using a file.	Click Select file. The block: - Sets the Drive cycle source parameter to .mat, .xls, .xlsx or .txt file. - Enables the Drive cycle source file parameter. Specify a file that contains time, velocity, and, optionally, the gear shift schedule.
Output drive cycle gear.	Specify a drive cycle that contains a gear shift schedule. You can use: - A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC. - Workspace variables. - .mat, .xls, .xlsx, or .txt files. Click Output gear shift data.
Install additional drive cycles from a support package.	Click Install additional drive cycles. The block enables the parameter if you can install additional drive cycles from a support package.
Identify drive cycle faults within tolerances specified by standardized tests.	On the Fault Tracking tab, use the parameters to specify the fault tolerances. If the vehicle speed is not within the allowable speed range, the block sets a fault condition.

Fault and Failure Tracking

On the Fault Tracking tab, use the parameters to specify the fault tolerances. If the vehicle speed or time is not within the allowable range, the block sets a fault condition.

Parameter	Description	Setting	WLTP Tests $^{\mathbf{2}}$
	EPA Standard ${ }^{\mathbf{1}}$	$2.0 \mathrm{~km} / \mathrm{h}$	
Speed tolerance	Speed tolerance above the highest point and below the lowest point of the drive cycle speed trace within the time tolerance.	2.0 mph	1.0 s
Time tolerance	Time that the block uses to determine the speed tolerance.	1.0 s	10
Maximum number of faults	Maximum number of faults during the drive cycle.	Not specified	1.0 s
Maximum single fault time	Maximum fault duration.	2.0 s	Not specified
Maximum total fault time	Maximum accumulated time spent under fault condition.	Not specified	

These figures illustrate how the block uses the velocity and time tolerances to determine the allowable speed range.

Create Drive Cycles Using Workspace Variables

If you set Drive cycle source to Workspace variable, you can specify a workspace variable that defines the drive cycle.

This table provides examples for using workspace variables to create your own drive cycles.

Ports

Input

VelFdbk - Vehicle longitudinal speed scalar

Longitudinal vehicle speed.

Dependencies

To enable this port, on the Fault Tracking tab, select Enable fault tracking. Set the Velocity feedback units, inUnit parameter to the VelFdbk input port signal units.

Output
Info - Bus signal
bus
Bus signal containing these block calculations.

Signal		Description
Reference Speed		Vehicle reference speed
Reference Accel		Vehicle reference acceleration
Gear		Vehicle gear
Fault	UpprBnd	Upper bound of allowable vehicle speed range.
	LowerBnd	Lower bound of allowable vehicle speed range.
	Fault	Boolean value indicating fault condition: - 1 - Fault - 0 - No fault If the vehicle speed is not within the allowable speed range, the block sets a fault condition.
	FaultCnt	Number of faults.
	CumFaultTime	Cumulative time spent in fault condition.
	SnglFaultTime	Tim spent in a single fault.
	Fail	Boolean value indicating fault failure: - 1 - Failure - 0 - No failure If the fault conditions exceed the maximum number of faults, maximum single fault time, or maximum total fault time, the block sets a fault failure.

Dependencies

To enable this port, on the Fault Tracking tab, select Enable fault tracking.
RefSpd - Vehicle reference speed
scalar
Vehicle reference speed, in units that you specify. To specify the units, use the Output velocity units parameter.

RefAcc - Vehicle reference acceleration
scalar

To calculate the acceleration, the block implements Savitzky-Golay differentiation using a secondorder polynomial with a three-sample point filter.

Dependencies

To create the output acceleration port, select Output acceleration. Selecting Output acceleration enables the Output acceleration units parameter.

Gear - Vehicle gear

scalar

Dependencies

To enable this port:
1 Specify a drive cycle that contains a gear shift schedule. You can use:

- A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
- Workspace variables.
- .mat, .xls, .xlsx, or .txt files.

2 Select Output gear shift data.

Parameters

Cycle Setup

Setup

Drive cycle source - Select the drive cycle source
FTP75 (default)|Wide Open Throttle (WOT)|Workspace variable|.mat, .xls, .xlsx or .txt file

- FTP75 - Load the FTP75 drive cycle from a .mat file into a 1-D Lookup Table block. The FTP75 represents a city drive cycle that you can use to determine tailpipe emissions and fuel economy of passenger cars. To install additional drive cycles from a support package, see "Support Package for Maneuver and Drive Cycle Data".
- Wide Open Throttle (WOT) - Use WOT parameters to specify a drive cycle for performance testing.
- Workspace variable - Specify time, speed, and, optionally, gear data as a structure, 2-D array, or time series object.
- .mat, .xls, .xlsx or .txt file - Specify a file that contains time, speed and, optionally, gear data in column format.

Once you have installed additional cycles, you can use set_param to set the drive cycle. For example, to use drive cycle US06:

```
set_param([gcs '/Drive Cycle Source'],'cycleVar','US06')
```


Dependencies

The table summarizes the parameter dependencies.

Drive Cycle Source	Enables Parameter
Wide Open Throttle (WOT)	Start time, t_wot1
	Initial reference speed, xdot_woto
	Nominal reference speed, xdot_wot1
	Time to start deceleration, wot2
	Final reference speed, xdot_wot2
	WOT simulation time, t_wotend
Source velocity units	
	Drive cycle source file
	Source velocity units
	Output gear shift data, if drive cycle includes gear shift schedule

From workspace - Workspace

variable
Monotonically increasing time, velocity, and, optionally, gear data, specified by a structure, 2-D array, or time series object. Enter units for velocity in the Source velocity units parameter field.

A valid point must exist for each corresponding time value. You cannot specify inf, empty, or NaN.
This table provides examples for using workspace variables to create your own drive cycles.

Dependencies

To enable this parameter, select Workspace variable from Drive cycle source.
Drive cycle source file - File name
.mat, .xls, .xlsx or .txt

File containing monotonically increasing time, velocity, and, optionally, gear in column or commaseparated format. The block ignores units in the file. Enter units for velocity in the Source velocity units parameter field.

If you provide the gear schedule using $\mathbf{P}, \mathbf{R}, \mathbf{N}, \mathbf{D}, \mathbf{L}, \mathbf{O D}$, the block maps the gears to integers.

Gear	Integer
P	80
R	-1
N	0
L	1
D	2
OD	Next integer after highest specified gear.

For example, the block converts the gear schedule P P N L D 345654567 OD 7 to 80 8001234565456787.

Dependencies

To enable this parameter, select .mat, .xls, .xlsx or .txt file from Drive cycle source.
Repeat cyclically - Repeat drive cycle
off (default) | on

Repeat the drive cycle if the simulation run time exceeds the length of the drive cycle.
Output acceleration - Output the acceleration off (default)

To calculate the acceleration, the block implements Savitzky-Golay differentiation using a secondorder polynomial with a three-sample point filter.

Dependencies

To create the output acceleration port, select Output acceleration. Selecting Output acceleration enables the Output acceleration units parameter.

Output gear shift data - Output the gear
off (default) | on

Dependencies

- Specify a drive cycle that contains a gear shift schedule. You can use:
- A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
- Workspace variables.
- .mat, .xls, .xlsx, or .txt files.
- Clicking this parameter creates input port Gear.
wOT
Start time, t_wot1 - Drive cycle start time
5 (default) | scalar
Drive cycle start time, in s. For example, this plot shows a drive cycle with a start time of 10 s .

Dependencies

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).

Initial reference speed, xdot_woto - Speed
0 (default) | scalar
Initial reference speed, in units that you specify with the Source velocity units parameter. For example, this plot shows a drive cycle with an initial reference speed of $4 \mathrm{~m} / \mathrm{s}$.

Dependencies

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).
Nominal reference speed, xdot_wot1 - Speed
30 (default) | scalar
Nominal reference speed, in units that you specify with the Source velocity units parameter. For example, this plot shows a drive cycle with a nominal reference speed of $30 \mathrm{~m} / \mathrm{s}$.

Dependencies

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).
Time to start deceleration, wot2 - Time
20 (default) | scalar
Time to start vehicle deceleration, in s. For example, this plot shows a drive cycle with vehicle deceleration starting at 25 s .

Dependencies

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).
Final reference speed, xdot_wot2 - Speed
0 (default) | scalar
Final reference speed, in units that you specify with the Source velocity units parameter. For example, this plot shows a drive cycle with a final reference speed of $2 \mathrm{~m} / \mathrm{s}$.

Dependencies

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).
WOT simulation time, t_wotend - Time
30 (default) | scalar
Drive cycle WOT simulation time, in s. For example, this plot shows a drive cycle with a simulation time of 50 s .

Dependencies

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).

Units and Sample Period

Source velocity units - Specify velocity units
m / s (default)
Input velocity units.

Dependencies

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT), Workspace variable, or .mat, .xls, .xlsx or .txt file.

Output velocity units - Specify velocity units
m/s (default)
Output velocity units.
Output acceleration units - Specify acceleration units $\mathrm{m} / \mathrm{s}^{\wedge} 2$ (default)

Specify the output acceleration units.

Dependencies

To enable this parameter, select Output acceleration.
Output sample period (0) for continuous - Sample rate
0 (default) | scalar
Sample rate. Set to 0 for continuous sample period. For a discrete period, specify a non-zero rate.

Fault Tracking

Fault Settings
Enable fault tracking - Enable fault tracking
off (default) | on
Select this parameter to enable drive cycle fault tracking. Use the parameters to specify the fault tolerances. If the vehicle speed is not within the allowable speed range, the block sets a fault condition.

Dependencies

Selecting this parameter enables these parameters:

- Speed tolerance, velBnd
- Speed tolerance units, velBndUnit
- Velocity feedback units, inUnit
- Time tolerance, timeBnd

Speed tolerance, velBnd - Drive cycle speed tolerance
2.0 (default) | scalar

The speed tolerance above the highest point and below the lowest point of the drive cycle speed trace within the time tolerance. If the vehicle speed is not within the allowable speed range, the block sets a fault condition. For the tolerances specified by the standardized tests, use these settings:

- EPA dynamometer driving schedules - 2.0
- WLTP tests - 2.0

These figures illustrate how the block uses the velocity and time tolerances to determine the allowable speed range.

Dependencies

To enable this parameter, on the Fault Tracking tab, select Enable fault tracking.
Speed tolerance units, velBndUnit - Set units
mph (default)
Speed tolerance units. For the units specified by the standardized tests, use these units:

- EPA dynamometer driving schedules - m/s
- WLTP tests - km/h

Dependencies

To enable this parameter, on the Fault Tracking tab, select Enable fault tracking.
Velocity feedback units, inUnit - Set velocity feedback units
m/s (default)
Velocity feedback units. Set the value to the VelFdbk input port signal units.

Dependencies

To enable this parameter, on the Fault Tracking tab, select Enable fault tracking.

Time tolerance, timeBnd - Time tolerance

1.0 (default) | scalar

Time that the block uses to determine the speed tolerance. If the vehicle speed is not within the allowable speed range, the block sets a fault condition. For the time tolerances specified by the standardized tests, use these settings:

- EPA dynamometer driving schedules - 1.0
- WLTP tests - 1.0

These figures illustrate how the block uses the velocity and time tolerances to determine the allowable speed range.

Dependencies

To enable this parameter, on the Fault Tracking tab, select Enable fault tracking.

Failure Settings

Enable failure tracking - Enable failure tracking
off (default) | on
Select this parameter to enable drive cycle failure tracking.

Dependencies

To enable this parameter, select Enable fault tracking. Selecting Enable failure tracking parameter enables these parameters:

- Stop simulation when trace fails, stopSim
- Maximum number of faults, maxFaultCnt
- Maximum single fault time, maxFaultTime
- Maximum total fault time, maxTotFaultTime

Maximum number of faults, maxFaultCnt - Maximum number of faults
10 (default) | scalar
Maximum number of faults during the drive cycle. For the number specified by the standardized tests, use these settings:

- EPA dynamometer driving schedules - Not specified
- WLTP tests - 10

If the number of faults exceeds the maximum number of faults, the block sets a fault failure.

Dependencies

To enable this parameter, on the Fault Tracking tab, select Enable failure tracking.
Maximum single fault time, maxFaultTime - Maximum duration of single fault
2.0 (default) | scalar

Maximum duration of single fault, in s. For the time specified by the standardized tests, use these settings:

- EPA dynamometer driving schedules - 2.0
- WLTP tests - 1.0

If the fault duration exceeds the maximum single fault time, the block sets a fault failure.

Dependencies

To enable this parameter, on the Fault Tracking tab, select Enable failure tracking.
Maximum total fault time, maxTotFaultTime - Maximum total fault time
15.0 (default) | scalar

Maximum accumulated time spent under fault condition, in s.
If the accumulated time spent under fault condition exceeds the maximum total fault time, the block sets a fault failure.

Dependencies

To enable this parameter, on the Fault Tracking tab, select Enable failure tracking.

Simulation Trace

Display simulation trace - Display velocity trace
off (default) |on
Select this parameter to display a velocity trace window. Selecting this parameter can slow the simulation time.

Dependencies

Selecting this parameter enables these parameters:

- Simulation trace update rate, dtTrace
- Simulation trace display window, traceWindow

Simulation trace update rate, dtTrace - Trace update rate
1 (default) | scalar
Simulation trace update rate, in s. Set to 0 for continuous sample period. For a discrete period, specify a non-zero rate.

Dependencies

To enable this parameter, on the Fault Tracking tab, select Display simulation trace.
Simulation trace display window, traceWindow - Trace window update rate
10 (default) | scalar
Simulation trace window update rate, in s.

Dependencies

To enable this parameter, on the Fault Tracking tab, select Display simulation trace.

Version History

Introduced in R2017a

References

[1] Environmental Protection Agency (EPA). EPA urban dynamometer driving schedule. 40 CFR 86.115-78, July 1, 2001.
[2] European Union Commission. "Speed trace tolerances". European Union Commission Regulation. 32017R1151, Sec 1.2.6.6, June 1, 2017.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Lateral Driver | Longitudinal Driver | Predictive Driver
Topics
"Support Package for Maneuver and Drive Cycle Data"
"Time Series Objects and Collections"

Longitudinal Driver

Longitudinal speed-tracking controller

Libraries:

Powertrain Blockset / Vehicle Scenario Builder
Vehicle Dynamics Blockset / Vehicle Scenarios / Driver

Description

The Longitudinal Driver block implements a longitudinal speed-tracking controller. Based on reference and feedback velocities, the block generates normalized acceleration and braking commands that can vary from 0 through 1 . You can use the block to model the dynamic response of a driver or to generate the commands necessary to track a longitudinal drive cycle.

Configurations

External Actions

Use the External Actions parameters to create input ports for signals that can disable, hold, or override the closed-loop acceleration or deceleration commands. The block uses this priority order for the input commands: disable (highest), hold, override.

This table summarizes the external action parameters.

Goal	External Action Parameter	Input Ports	Data Type
Override the accelerator command with an input acceleration command.	Accelerator override	EnablAccel0vr	Boolean
Hold the acceleration command at the current value.	Accel0rator hold	AccelHld	double
Disable the acceleration command.	Accelerator disable	AccelZero	Boolean
Override the decelerator command with an input deceleration command.	Decelerator override	EnablDecel0vr	Boolean
Hold the decelerator command at current value.	Decelerator hold	DecelHld	double
Disable the decelerator command.	Decelerator disable	DecelZero	Boolean

Controller

Use the Control type, cntrlType parameter to specify one of these control options.

Setting	Block Implementation
PI	Proportional-integral (PI) control with tracking windup and feed-forward gains.
Scheduled PI	PI control with tracking windup and feed-forward gains that are a function of vehicle velocity.
Predictive	Optimal single-point preview (look ahead) control model developed by C. C. MacAdam $1,2,3$. The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block:
- Represents the dynamics as a linear single track (bicycle) vehicle - Minimizes the previewed error signal at a single point T^{*} seconds ahead in time	
Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms	

Shift

Use the Shift type, shftType parameter to specify one of these shift options.

Setting	Block Implementation
None	No transmission. Block outputs a constant gear of 1. Use this setting to minimize the number of parameters you need to generate acceleration and braking commands to track forward vehicle motion. This setting does not allow reverse vehicle motion.
Reverse, Neutral, Drive	Block uses a Stateflow ${ }^{\circledR}$ chart to model reverse, neutral, and drive gear shift scheduling.
Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using simple reverse, neutral, and drive gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses the initial gear and time required to shift to shift the vehicle up into drive or down into reverse or neutral.	
For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.	

Setting	Block Implementation
Scheduled	Block uses a Stateflow chart to model reverse, neutral, park, and N-speed gear shift scheduling. Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, park, and N- speed gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses these parameters to determine the: - \quad Initial gear
	- Upshift and downshift accelerator pedal positions - - Upshift and downshift velocity
	For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.
External	Block uses the input gear, vehicle state, and velocity feedback to generate acceleration and braking commands to track forward and reverse vehicle motion.
For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.	

Gear Signal

Use the Output gear signal parameter to create the GearCmd output port. The GearCmd signal contains the integer value of the commanded vehicle gear.

Gear	Integer
Park	80
Reverse	-1
Neutral	0
Drive	1
Gear	Gear number

Controller: PI Speed-Tracking

If you set the control type to PI or Scheduled PI, the block implements proportional-integral (PI) control with tracking windup and feed-forward gains. For the Scheduled PI configuration, the block uses feed forward gains that are a function of vehicle velocity.

To calculate the speed control output, the block uses these equations.

Setting	Equation
PI	$y=\frac{K_{f f}}{v_{\text {nom }}} v_{r e f}+\frac{K_{p} e_{r e f}}{v_{\text {nom }}}+\int\left(\frac{K_{i} e_{r e f}}{v_{\text {nom }}}+K_{a w} e_{o u t}\right) d t+K_{g} \theta$

Setting Equation

Scheduled PI	$y=\frac{K_{f f}(v)}{v_{\text {nom }}} v_{\text {ref }}+\frac{K_{p}(v) e_{\text {ref }}}{v_{\text {nom }}}+\int\left(\frac{K_{i}(v) e_{\text {ref }}}{v_{\text {nom }}}+K_{\text {aw }} e_{o u t}\right) e_{r e f} d t+K_{g}(v) \theta$.

where:

$$
\begin{aligned}
& e_{\text {ref }}=v_{\text {ref }}-v \\
& e_{\text {out }}=y_{\text {sat }}-y \\
& y_{\text {sat }}=\left\{\begin{array}{cc}
-1 & y<-1 \\
y & -1 \leq y \leq 1 \\
1 & 1<y
\end{array}\right.
\end{aligned}
$$

The velocity error low-pass filter uses this transfer function.

$$
H(s)=\frac{1}{\tau_{e r r} s+1} \text { for } \tau_{\text {err }}>0
$$

To calculate the acceleration and braking commands, the block uses these equations.

$$
\begin{aligned}
& y_{\text {acc }}=\left\{\begin{array}{cc}
0 & y_{\text {sat }}<0 \\
y_{\text {sat }} & 0 \leq y_{\text {sat }} \leq 1 \\
1 & 1<y_{\text {sat }}
\end{array}\right. \\
& y_{\text {dec }}=\left\{\begin{array}{cc}
0 & y_{\text {sat }}>0 \\
-y_{\text {sat }} & -1 \leq y_{\text {sat }} \leq 0 \\
1 & y_{\text {sat }}<-1
\end{array}\right.
\end{aligned}
$$

The equations use these variables.

$v_{\text {nom }}$	Nominal vehicle speed
K_{p}	Proportional gain
K_{i}	Integral gain
$K_{a w}$	Anti-windup gain
$K_{f f}$	Velocity feed-forward gain
K_{g}	Grade angle feed-forward gain
θ	Grade angle
$\tau_{\text {err }}$	Error filter time constant
y	Nominal control output magnitude
$y_{\text {sat }}$	Saturated control output magnitude
$e_{\text {ref }}$	Velocity error
$e_{\text {out }}$	Difference between saturated and nominal control outputs
$y_{a c c}$	Acceleration signal
$y_{d e c}$	Braking signal
v	Velocity feedback signal

$v_{\text {ref }} \quad$ Reference velocity signal

Controller: Predictive Speed-Tracking

If you set the Control type, cntrlType parameter to Predictive, the block implements an optimal single-point preview (look ahead) control model developed by C. C. MacAdam ${ }^{1,2,3}$. The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block:

- Represents the dynamics as a linear single track (bicycle) vehicle
- Minimizes the previewed error signal at a single point T* seconds ahead in time
- Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms

Vehicle Dynamics

For longitudinal motion, the block implements these linear dynamics.

$$
\begin{aligned}
& x_{1}=v \\
& \dot{x}_{1}=x_{2}=\frac{K_{p t}}{m}-g \sin (\gamma)+F_{r} x_{1}
\end{aligned}
$$

In matrix notation:

$$
\dot{x}=F x+g \bar{u}
$$

where:

$$
\begin{aligned}
& x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& F=\left[\begin{array}{cc}
0 & 1 \\
\frac{F_{r}}{m} & 0
\end{array}\right] \\
& g=\left[\begin{array}{c}
0 \\
\frac{K_{p t}}{m}
\end{array}\right] \\
& \bar{u}=u-\frac{m^{2}}{K_{p t}} g \sin (\gamma)
\end{aligned}
$$

The block uses this equation for the rolling resistance.

$$
F_{r}=-\left[\tanh \left(x_{1}\right)\left(\frac{a_{r}}{x_{1}}+c_{r} x_{1}\right)+b_{r}\right]
$$

The single-point model assumes a minimum previewed error signal at a single point T^{*} seconds ahead in time. a^{*} is the driver ability to predict the future vehicle response based on the current steering control input. b^{*} is the driver ability to predict the future vehicle response based on the current vehicle state. The block uses these equations.

$$
\begin{aligned}
& a^{*}=\left(T^{*}\right) m^{T}\left[I+\sum_{n=1}^{\infty} \frac{F^{n}\left(T^{*}\right)^{n}}{(n+1)!}\right] g e \\
& b^{*}=m^{T}\left[I+\sum_{n=1}^{\infty} \frac{F^{n}\left(T^{*}\right)^{n}}{n!}\right]
\end{aligned}
$$

where:

$$
m^{T}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]
$$

The equations use these variables.

a, b	Forward and rearward tire location, respectively
m	Vehicle mass
I	Vehicle rotational inertia
$a^{*}, \boldsymbol{b}^{*}$	Driver prediction scalar and vector gain, respectively
\boldsymbol{x}	Predicted vehicle state vector
v	Longitudinal velocity
\boldsymbol{F}	System matrix
$K_{p t}$	Tractive force and brake limit
γ	Grade angle
\boldsymbol{g}	Control coefficient vector
g	Gravitational constant
T^{*}	Preview time window
$f\left(t+T^{*}\right)$	Previewed path input T* seconds ahead
U	Forward vehicle velocity
\boldsymbol{m}^{T}	Constant observer vector; provides vehicle lateral position
F_{r}	Rolling resistance
a_{r}	Static rolling and driveline resistance
b_{r}	Linear rolling and driveline resistance
c_{r}	Aerodynamic rolling and driveline resistance

Optimization

The single-point model implemented by the block finds the steering command that minimizes a local performance index, J, over the current preview interval, $(t, t+T)$.

$$
J=\frac{1}{T} \int^{t+T}[f(\eta)-y(\eta)]^{2} d \eta
$$

To minimize J with respect to the steering command, this condition must be met.

$$
\frac{d J}{d u}=0
$$

You can express the optimal control solution in terms of a current non-optimal and corresponding nonzero preview output error T^{*} seconds ahead ${ }^{1,2,3}$.

$$
u^{o}(t)=u(t)+\frac{e\left(t+T^{*}\right)}{a^{*}}
$$

The block uses the preview distance and vehicle longitudinal velocity to determine the preview time window.

$$
T^{*}=\frac{L}{U}
$$

The equations use these variables.

T^{*}	Preview time window
$f\left(t+T^{*}\right)$	Previewed path input $T^{*} \sec$ ahead
$y\left(t+T^{*}\right)$	Previewed plant output T^{*} sec ahead
$e\left(t+T^{*}\right)$	Previewed error signal T^{*} sec ahead
$u(t), u^{o}(t)$	Steer angle and optimal steer angle, respectively
L	Preview distance
J	Performance index
U	Forward (longitudinal) vehicle velocity

Driver Lag

The single-point model implemented by the block introduces a driver lag. The driver lag accounts for the delay when the driver is tracking tasks. Specifically, it is the transport delay deriving from perceptual and neuromuscular mechanisms. To calculate the driver transport delay, the block implements this equation.

$$
H(s)=e^{-s \tau}
$$

The equations use these variables.

τ	Driver transport delay
$y\left(t+T^{*}\right)$	Previewed plant output $T^{*} \sec$ ahead
$e\left(t+T^{*}\right)$	Previewed error signal T^{*} sec ahead
$u(t), u^{o}(t)$	Steer angle and optimal steer angle, respectively
J	Performance index

Ports

Input
VelRef - Reference vehicle velocity
scalar
Reference velocity, $v_{\text {ref, }}$ in m / s.
EnbIAcceIOvr - Enable acceleration command override scalar

Enable acceleration command override.

Dependencies

To enable this port, select Acceleration override.
Data Types: Boolean
AccelOvrCmd - Acceleration override command scalar

Acceleration override command, normalized from 0 through 1.

Dependencies

To enable this port, select Acceleration override.
Data Types: double
AccelHId - Acceleration hold
scalar
Boolean signal that holds the acceleration command at the current value.

Dependencies

To enable this port, select Acceleration hold.
Data Types: Boolean
AccelZero - Disable acceleration command scalar

Disable acceleration command.

Dependencies

To enable this port, select Acceleration disable.
Data Types: Boolean
EnblDecelOvr - Enable deceleration command override
scalar
Enable deceleration command override.

Dependencies

To enable this port, select Deceleration override.
Data Types: Boolean
DecelOvrCmd - Deceleration override command scalar

Deceleration override command, normalized from 0 through 1.

Dependencies

To enable this port, select Deceleration override.
Data Types: double

DecelHId - Deceleration hold scalar

Boolean signal that holds the deceleration command at the current value.

Dependencies

To enable this port, select Deceleration hold.
Data Types: Boolean
DecelZero - Disable deceleration command
scalar
Disable deceleration command.

Dependencies

To enable this port, select Deceleration disable.

Data Types: Boolean

ExtGear - Gear
scalar

Gear	Integer
Park	80
Reverse	-1
Neutral	0
Drive	1
Gear	Gear number

Dependencies

To enable this port, set Shift type, shftType to External.
VelFdbk - Longitudinal vehicle velocity
scalar
Longitudinal vehicle velocity, U, in the vehicle-fixed frame, in m / s.
Grade - Road grade angle
scalar
Road grade angle, θ or γ, in deg.
Output
Info - Bus signal
bus
Bus signal containing these block calculations.

Signal		Variable	Description
Accel		$y_{a c c}$	Commanded vehicle acceleration, normalized from 0 through 1
Decel		$y_{\text {dec }}$	Commanded vehicle deceleration, normalized from 0 through 1
Gear			Integer value of commanded gear
Clutch			Clutch command
Err		$e_{\text {ref }}$	Difference in reference vehicle speed and vehicle speed
ErrSqrSum		$\int_{0}^{t} e_{r e f}{ }^{2} d t$	Integrated square of error
ErrMax		$\max \left(e_{r e f}(t)\right)$	Maximum error during simulation
ErrMin		$\min \left(e_{r e f}(t)\right)$	Minimum error during simulation
ExtActions	EnblAccel0vr		Override the accelerator command with an input acceleration command
	Accel0vrCmd		Input accelerator override command
	AccelHld		Hold the acceleration command at the current value
	AccelZero		Disable the acceleration command
	EnblDecel0vr		Override the decelerator command with an input deceleration command
	Decel0vrCmd		Input deceleration override command
	DecelHld		Hold the decelerator command at current value
	DecelZero		Disable the decelerator command

AccelCmd - Commanded vehicle acceleration

scalar

Commanded vehicle acceleration, $y_{a c c}$, normalized from 0 through 1.
DecelCmd - Commanded vehicle deceleration
scalar
Commanded vehicle deceleration, $y_{\text {dec }}$, normalized from 0 through 1.
GearCmd - Commanded vehicle gear
scalar
Integer value of commanded vehicle gear.

Gear	Integer
Park	80
Reverse	-1

Gear	Integer
Neutral	0
Drive	1
Gear	Gear number

Dependencies

To enable this port, select Output gear signal.

Parameters

External Actions

Accelerator override - Override acceleration command
off (default) | on
Select to override the acceleration command with an input acceleration command.

Dependencies

Selecting this parameter creates the EnblAccelOvr and AccelOvrCmd input ports.
Accelerator hold - Hold acceleration command
off (default) | on
Select to hold the acceleration command.

Dependencies

Selecting this parameter creates the AccelHld input port.
Accelerator disable - Disable acceleration command
off (default) | on
Select to disable the acceleration command.

Dependencies

Selecting this parameter creates the AccelZero input port.
Decelerator override - Override deceleration command
off (default) | on
Select to override the deceleration command with an input deceleration command.

Dependencies

Selecting this parameter creates the EnblDecelOvr and DecelOvrCmd input ports.
Decelerator hold - Hold deceleration command
off (default) | on
Select to hold the deceleration command.

Dependencies

Selecting this parameter creates the DecelHld input port.
Decelerator disable - Disable deceleration command
off (default) | on
Select to disable the deceleration command.

Dependencies

Selecting this parameter creates the DecelZero input port.

Configuration

Control type, cntriType - Longitudinal control
PI (default) | Scheduled PI|Predictive
Type of longitudinal control.

Setting	Block Implementation
PI	Proportional-integral (PI) control with tracking windup and feed-forward gains.
Scheduled PI	PI control with tracking windup and feed-forward gains that are a function of vehicle velocity.
Predictive	Optimal single-point preview (look ahead) control model developed by C. C. MacAdam $1,2,3$ during path-following model represents driver steering control behavior (look ahead) to follow a predefined avoidance maneuvers. Drivers preview the block: implement the MacAdam model,
- Represents the dynamics as a linear single track (bicycle) vehicle - Minimizes the previewed error signal at a single point T^{*} seconds ahead in time	
Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms	

Shift type, shftType - Shift type
None (default)|Reverse, Neutral, Drive|Scheduled|External
Shift type.

Setting	Block Implementation
None	No transmission. Block outputs a constant gear of 1.
Use this setting to minimize the number of parameters you need to generate acceleration and braking commands to track forward vehicle motion. This setting does not allow reverse vehicle motion.	

Setting	Block Implementation
Reverse, Neutral, Drive	Block uses a Stateflow chart to model reverse, neutral, and drive gear shift scheduling. Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using simple reverse, neutral, and drive gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses the initial gear and time required to shift to shift the vehicle up into drive or down into reverse or neutral.
For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.	
Block uses a Stateflow chart to model reverse, neutral, park, and N-speed gear shift scheduling.	
Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, park, and N- speed gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses these parameters to determine the:	
- Initial gear	
- Upshift and downshift accelerator pedal positions	
- Upshift and downshift velocity	
- Timing for shifting and engaging forward and reverse from neutral	
For neutral gears, the block uses braking commands to control the vehicle	
speed. For reverse gears, the block uses an acceleration command to	
generate torque and a brake command to reduce vehicle speed.	

Reference and feedback units, velUnits - Velocity units

m / s (default)
Vehicle velocity reference and feedback units.

Dependencies

If you set Control type, cntrlType control type to Scheduled or Scheduled PI, the block uses the Reference and feedback units, velUnits for the Nominal speed, vnom parameter dimension.

If you set Shift Type, shftType to Scheduled, the block uses the Longitudinal velocity units, velUnits for these parameter dimensions:

- Upshift velocity data table, upShftTbl

- Downshift velocity data table, dwnShftTbl

Output gear signal - Create GearCmd output port
off (default) | on
Specify to create output port GearCmd.

Control

Longitudinal
Proportional gain, Kp - Gain
10 (default) | scalar
Proportional gain, K_{p}, dimensionless.

Dependencies

To create this parameter, set Control type to PI.
Integral gain, Ki - Gain
5 (default) | scalar
Proportional gain, K_{i}, dimensionless.

Dependencies

To create this parameter, set Control type to PI.
Velocity feed-forward, Kff - Gain
. 1 (default) | scalar
Velocity feed-forward gain, $K_{f f}$, dimensionless.

Dependencies

To create this parameter, set Control type to PI.
Grade angle feed-forward, Kg - Gain
0 (default) | scalar
Grade angle feed-forward gain, K_{g}, in 1/deg.

Dependencies

To create this parameter, set Control type to PI.
Velocity gain breakpoints, VehVelVec - Breakpoints
[0 100] (default)|vector
Velocity gain breakpoints, VehVelVec, dimensionless.

Dependencies

To create this parameter, set Control type to Scheduled PI.
Velocity feed-forward gain values, KffVec - Gain
[. 1 . 1] (default) |vector

Velocity feed-forward gain values, KffVec, as a function of vehicle velocity, dimensionless.

Dependencies

To create this parameter, set Control type to Scheduled PI.
Proportional gain values, KpVec - Gain
[10 10] (default) | vector
Proportional gain values, $K p V e c$, as a function of vehicle velocity, dimensionless.

Dependencies

To create this parameter, set Control type to Scheduled PI.
Integral gain values, KiVec - Gain
[5 5] (default) | vector
Integral gain values, KiVec, as a function of vehicle velocity, dimensionless.

Dependencies

To create this parameter, set Control type to Scheduled PI.
Grade angle feed-forward values, KgVec - Grade gain
[0 0] (default) | vector
Grade angle feed-forward values, KgVec , as a function of vehicle velocity, in 1/deg.

Dependencies

To create this parameter, set Control type to Scheduled PI.
Nominal speed, vnom - Nominal vehicle speed
5 (default) | scalar
Nominal vehicle speed, $v_{\text {nom }}$, in units specified by the Reference and feedback units, velUnits parameter. The block uses the nominal speed to normalize the controller gains.

Dependencies

To create this parameter, set Control type to PI or Scheduled PI.
Anti-windup, Kaw - Gain
1 (default) | scalar
Anti-windup gain, $K_{\text {aw }}$, dimensionless.
Dependencies
To create this parameter, set Control type to PI or Scheduled PI.
Error filter time constant, tauerr - Filter
. 01 (default) | scalar
Error filter time constant, $\tau_{\text {err }}$, in s . To disable the filter, enter 0.

Dependencies

To create this parameter, set Control type to PI or Scheduled PI.

Predictive

Vehicle mass, m - Mass
1500 (default) | scalar
Vehicle mass, m, in kg.

Dependencies

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Effective vehicle total tractive force, Kpt - Tractive force
3000 (default) | scalar
Effective vehicle total tractive force, $K_{p t}$, in N.

Dependencies

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Driver response time, tau - Tau
. 1 (default) | scalar
Driver response time, τ, in s.
Dependencies
To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Preview distance, L - Distance
2 (default) | scalar
Driver preview distance, L, in m.

Dependencies

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Rolling resistance coefficient, aR - Resistance
200 (default) | scalar
Static rolling and driveline resistance coefficient, a_{R}, in N. Block uses the parameter to estimate the constant acceleration or braking effort.

Dependencies

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Rolling and driveline resistance coefficient, bR - Resistance
2.5 (default) | scalar

Rolling and driveline resistance coefficient, b_{R}, in $N \cdot \mathrm{~s} / \mathrm{m}$. Block uses the parameter to estimate the linear velocity-dependent acceleration or braking effort.

Dependencies

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Aerodynamic drag coefficient, cR - Drag
. 5 (default) | scalar
Aerodynamic drag coefficient, c_{R}, in $\mathrm{N} \cdot \mathrm{s}^{\wedge} 2 / \mathrm{m}^{\wedge} 2$. Block uses the parameter to estimate the quadratic velocity-dependent acceleration or braking effort.

Dependencies

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Gravitational constant, \mathbf{g} - Gravitational constant
9.81 (default) | scalar

Gravitational constant, g , in $\mathrm{m} / \mathrm{s}^{\wedge} 2$.

Dependencies

To create this parameter, set Longitudinal control type, cntrlType to Predictive.

Shift

Reverse, Neutral, Drive
Initial gear, GearInit - Initial gear
0 (default) | scalar
Integer value of the initial gear. The block uses the initial gear to generate acceleration and braking commands to track forward and reverse vehicle motion.

Gear	Integer
Park	80
Reverse	-1
Neutral	0
Drive	1
Gear	Gear number

Dependencies

To create this parameter, set Shift type, shftType to Reverse, Neutral, Drive or Scheduled. If you specify Reverse, Neutral, Drive, the Initial Gear, GearInit parameter value can be only -1, 0, or 1.

Time required to shift, tShift - Time

. 1 (default)| scalar

Time required to shift, t Shift, in s. The block uses the time required to shift to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, and drive gear shift scheduling.

Dependencies

To create this parameter, set Shift type, shftType to Reverse, Neutral, Drive.
Scheduled
Initial gear, GearInit - Initial gear
0 (default) | scalar
Integer value of the initial gear. The block uses the initial gear to generate acceleration and braking commands to track forward and reverse vehicle motion.

Gear	Integer
Park	80
Reverse	-1
Neutral	0
Drive	1
Gear	Gear number

Dependencies

To create this parameter, set Shift type, shftType to Reverse, Neutral, Drive or Scheduled. If you specify Reverse, Neutral, Drive, the Initial Gear, GearInit parameter value can be only -1, 0 , or 1 .

Up and down shift accelerator pedal positions, pdIVec - Pedal position breakpoints
[0.1 0.4 0.5 0.9] (default)|[1-by-m] vector
Pedal position breakpoints for lookup tables when calculating upshift and downshift velocities, dimensionless. Vector dimensions are 1 by the number of pedal position breakpoints, m.

Dependencies

To create this parameter, set Shift type, shftType to Scheduled.
Upshift velocity data table, upShftTbI - Table
[m-by-n] array
Upshift velocity data as a function of pedal position and gear, in units specified by the Reference and feedback units, velUnits parameter. Upshift velocities indicate the vehicle velocity at which the gear should increase by 1 .

The array dimensions are m pedal positions by n gears. The first column of data, when n equals 1 , is the upshift velocity for the neutral gear.

Dependencies

To create this parameter, set Shift type, shftType to Scheduled.
Downshift velocity data table, dwnShftTbl - Table
[m-by-n] array
Downshift velocity data as a function of pedal position and gear, in units specified by the Reference and feedback units, velUnits parameter. Downshift velocities indicate the vehicle velocity at which the gear should decrease by 1 .

The array dimensions are m pedal positions by n gears. The first column of data, when n equals 1 , is the downshift velocity for the neutral gear.

Dependencies

To create this parameter, set Shift type, shftType to Scheduled.
Time required to shift, tClutch - Time
. 5 (default) | scalar
Time required to shift, $t_{\text {Clutch }}$, in s .

Dependencies

To create this parameter, set Shift type, shftType to Scheduled.
Time required to engage reverse from neutral, tRev - Time

```
. 5 (default) | scalar
```

Time required to engage reverse from neutral, $t_{\text {Rev, }}$ in s .

Dependencies

To create this parameter, set Shift type, shftType to Scheduled.
Time required to engage park from neutral, tPark - Time

120 (default) | scalar

Time required to engage park from neutral, $t_{\text {Park, }}$, in s .

Dependencies

To create this parameter, set Shift type, shftType to Scheduled.

Version History

Introduced in R2017a

References

[1] MacAdam, C. C. "An Optimal Preview Control for Linear Systems". Journal of Dynamic Systems, Measurement, and Control. Vol. 102, Number 3, Sept. 1980.
[2] MacAdam, C. C. "Application of an Optimal Preview Control for Simulation of Closed-Loop Automobile Driving ". IEEE Transactions on Systems, Man, and Cybernetics. Vol. 11, Issue 6, June 1981.
[3] MacAdam, C. C. Development of Driver/Vehicle Steering Interaction Models for Dynamic Analysis. Final Technical Report UMTRI-88-53. Ann Arbor, Michigan: The University of Michigan Transportation Research Institute, Dec. 1988.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink \circledR_{\circledR} Coder ${ }^{\mathrm{TM}}$.

See Also

Drive Cycle Source | Lateral Driver | Predictive Driver

Lateral Driver

Lateral path-tracking controller

Libraries:

Vehicle Dynamics Blockset / Vehicle Scenarios / Driver

Description

The Lateral Driver block implements a control model to generate normalized steering commands that track a lateral reference displacement. The normalized steering commands can vary between -1 to 1 . To model the dynamics, the block uses a linear single track (bicycle) model. Use the Lateral Driver block to:

- Close the loop between a predefined path and actual vehicle motion.
- Generate steering commands that track predefined paths. You can connect the Lateral Driver block output to steering block inputs.

Configurations

External Actions

Use the External Actions parameters to create input ports for signals that can disable, hold, or override the closed-loop steering command. The block uses this priority order for the input commands: disable (highest), hold, override. The block uses this priority order for the input commands: disable (highest), hold, override.

This table summarizes the external action parameters.

Goal	External Action Parameter	Input Ports	Data Type
Override the steering command with an input steering command.	Steering override	EnblSteer0vr	Boolean
	Steer0vrCmd	double	
Hold the steering command at the current value.	Steering hold	SteerHld	Boolean
Disable the steering command.	Steering disable	SteerZero	Boolean

Use the Output handwheel angle parameter to specify the units for the steering ports.

Setting	Block Implementation	Port
off (default)	Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit Tire wheel angle limit, theta parameter to normalize the command.	SteerCmd - Output
	Overrides the steering command with an input steering command normalized from -1 through 1.	Steer0vrCmd - Input
on	Commanded steer angle, in units specified by Angular units, angUnits.	SteerCmd - Output
	Overrides the steering command with an input steering command, in units specified by Angular units, angUnits.	Steer0vrCmd - Input

Also, you can specify a tire wheel angle saturation limit using the Tire wheel angle limit, theta parameter.

Control Type and Units

Use the Lateral control type, controlTypeLat parameter to specify the type of lateral control. The table specifies the block implementation.

Setting	Block Implementation
Predictive (default)	Optimal single-point preview (look ahead) control model developed by C. C. MacAdam duri, 3. The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path.

Setting	Block Implementation	
Stanley	Controller that uses the Stanley ${ }^{4}$ method to minimize the position error and the angle error of the current pose with respect to the reference pose. On the Reference Control pane, use the: - Vector input for poses parameter to input the to specify the input.	
	Setting	Implementation
	off (default)	Block uses the longitudinal, lateral, and yaw reference (LongRef, LatRef, LatRef) input ports and the feedback (LongFdbk, LatFdbk, LatFdbk) input ports for the reference and feedback pose.
	on	Block uses input ports, RefPose and CurrPose, for the reference and feedback pose, respectively.
	- Include dynamics parameter to specify the type of model for the controller to use.	
	Setting	Implementation
	off (default)	Controller uses a kinematic bicycle model that is suitable for path following in low-speed environments such as parking lots, where inertial effects are minimal.
	on	Controller uses a dynamic bicycle model that is suitable for path following in high-speed environments such as highways, where inertial effects are more pronounced.

Use the Angular units, angUnits parameter to specify the angular units for the input and output ports.

Controller: Predictive Lateral Path-Tracking

If you set Lateral control type, controlTypeLat to Predictive, the Lateral Driver block implements an optimal single-point preview (look ahead) control model developed by C. C. MacAdam ${ }^{1,}$ ${ }^{2,3}$. The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block:

- Represents the dynamics as a linear single track (bicycle) vehicle
- Minimizes the previewed error signal at a single point T* seconds ahead in time
- Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms

This figure illustrates the block implementation of the single-point version of the driver model.

Vehicle Dynamics

For lateral and yaw motion, the block implements these linear dynamic equations.

$$
\begin{aligned}
& \dot{y}=v+U \psi \\
& \dot{v}=\left[-\frac{2\left(C_{\alpha F}+C_{\alpha R}\right)}{m U}\right] v+\left[\frac{2\left(b C_{\alpha R}-a C_{\alpha F}\right)}{m U}-U\right] r+\left(\frac{2 C_{\alpha F}}{m}\right) \delta_{F} \\
& \dot{r}=\left[\frac{2\left(b C_{\alpha R}-a C_{\alpha F}\right)}{I U}\right] v+\left[-\frac{2\left(a^{2} C_{\alpha F}+b^{2} C_{\alpha R}\right)}{I U}\right] r+\left(\frac{2 a C_{\alpha F}}{I}\right) \delta_{F} \\
& \dot{\psi}=r
\end{aligned}
$$

In matrix notation:

$$
\dot{x}=F x+g \delta_{F}
$$

where:

$$
\chi=\left[\begin{array}{l}
y \\
v \\
r \\
\psi
\end{array}\right]
$$

$$
F=\left[\begin{array}{cccc}
0 & 1 & 0 & U \\
0 & -2 \frac{C_{\alpha F}+C_{\alpha R}}{m U} & 2 \frac{b C_{\alpha R}-a C_{\alpha F}}{m U}-U & 0 \\
0 & 2 \frac{b C_{\alpha R}-a C_{\alpha F}}{I U} & -2 \frac{a^{2} C_{\alpha F}+b^{2} C_{\alpha R}}{I U} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

$$
x=\left[\begin{array}{l}
0 \\
\frac{2 C_{\alpha F}}{m} \\
\frac{2 a C_{\alpha F}}{I} \\
0
\end{array}\right]
$$

The single-point model assumes a minimum previewed error signal at a single point T^{*} seconds ahead in time. a* is the driver ability to predict the future vehicle response based on the current steering control input. b* is the driver ability to predict the future vehicle response based on the current vehicle state. The block uses these equations.

$$
\begin{aligned}
& a^{*}=T^{*} m^{T}\left[I+\sum_{n=1}^{\infty} \frac{F^{n}\left(T^{*}\right)^{n}}{(n+1)!}\right] g \\
& b^{*}=m^{T}\left[I+\sum_{n=1}^{\infty} \frac{F^{n}\left(T^{*}\right)^{n}}{n!}\right]
\end{aligned}
$$

where:

$$
m^{T}=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]
$$

The equations use these variables.

a, b	Forward and rearward tire location, respectively
m	Vehicle mass
I	Vehicle rotational inertia
$C_{\alpha F}$	Front tire cornering coefficient
$C_{\alpha R}$	Rear tire cornering coefficient
$a^{*}, \boldsymbol{b}^{*}$	Driver prediction scalar and vector gain, respectively
\boldsymbol{x}	Predicted vehicle state vector
v	Lateral velocity

r	Yaw rate
Ψ	Front wheel heading angle
y	Lateral displacement
\boldsymbol{F}	System matrix
δ, δ_{F}	Steer angle and front axle steer angle, respectively
\boldsymbol{g}	Control coefficient vector
U	Forward (longitudinal) vehicle velocity
T^{*}	Preview time window
$f\left(t+T^{*}\right)$	Previewed path input T* seconds ahead
U	Forward vehicle velocity
\boldsymbol{m}^{T}	Constant observer vector; provides vehicle lateral position
Optimization	

The single-point model implemented by the block finds the steering command that minimizes a local performance index, J, over the current preview interval, $(t, t+T)$.

$$
J=\frac{1}{T} \int^{t+T}[f(\eta)-y(\eta)]^{2} d \eta
$$

To minimize J with respect to the steering command, this condition must be met.

$$
\frac{d J}{d u}=0
$$

You can express the optimal control solution in terms of a current non-optimal and corresponding nonzero preview output error T^{*} seconds ahead ${ }^{1,2,3}$.

$$
u^{o}(t)=u(t)+\frac{e\left(t+T^{*}\right)}{a^{*}}
$$

The block uses the preview distance and vehicle longitudinal velocity to determine the preview time window.

$$
T^{*}=\frac{L}{U}
$$

The equations use these variables.

T^{*}	Preview time window
$f\left(t+T^{*}\right)$	Previewed path input $T^{*} \sec$ ahead
$y\left(t+T^{*}\right)$	Previewed plant output T^{*} sec ahead
$e\left(t+T^{*}\right)$	Previewed error signal T^{*} sec ahead
$u(t), u^{o}(t)$	Steer angle and optimal steer angle, respectively
L	Preview distance
J	Performance index
U	Forward (longitudinal) vehicle velocity

Driver Lag

The single-point model implemented by the block introduces a driver lag. The driver lag accounts for the delay when the driver is tracking tasks. Specifically, it is the transport delay deriving from perceptual and neuromuscular mechanisms. To calculate the driver transport delay, the block implements this equation.

$$
H(s)=e^{-s \tau}
$$

The equations use these variables.

τ	Driver transport delay
$y\left(t+T^{*}\right)$	Previewed plant output $T^{*} \sec$ ahead
$e\left(t+T^{*}\right)$	Previewed error signal T^{*} sec ahead
$u(t), u^{o}(t)$	Steer angle and optimal steer angle, respectively
J	Performance index

Controller: Stanley Lateral Path-Tracking

If you set Lateral control type, controlTypeLat to Stanley, the block implements the Stanley method ${ }^{4}$. To compute the steering angle command, the Stanley controller minimizes the position error and the angle error of the current pose with respect to the reference pose. The driving direction of the vehicle determines these error values.

To compute the steering angle command, the controller minimizes the position error and the angle error of the current pose with respect to the reference pose.

- The position error is the lateral distance from the vehicle center-of-gravity (CG) to the reference point on the path.
- The angle error is the angle of the vehicle with respect to reference path.

Ports

Input

LongRef - Longitudinal displacement reference
scalar
Longitudinal center of mass (CM) displacement reference, in the inertial reference frame, in m .

Dependencies

To enable this port:

- Set Lateral control type, controlTypeLat to Stanley
- Clear Vector input for poses

LatRef - Lateral displacement reference
scalar
Lateral center of mass (CM) displacement reference, in the inertial reference frame, in m .

Dependencies

To enable this port, do either of these:

- Set Lateral control type, controlTypeLat to Stanley and clear Vector input for poses.
- Set Lateral control type, controlTypeLat to Predictive.

EnblSteerOvr - Enable steering command override
scalar
Enable steering command override.

Dependencies

To enable this port, select Steering override.
Data Types: Boolean
SteerOvrCmd - Steering override command
scalar
Steering override command.
Use the Output handwheel angle parameter to specify the units for the steering ports.

Setting	Block Implementation	Port
off (default)	Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit Tire wheel angle limit, theta parameter to normalize the command.	SteerCmd - Output
	Overrides the steering command with an input steering command normalized from -1 through 1.	SteerOvrCmd - Input
on	Commanded steer angle, in units specified by Angular units, angUnits.	SteerCmd - Output
	Overrides the steering command with an input steering command, in units specified by Angular units, angUnits.	SteerOvrCmd - Input

Dependencies

To enable this port, select Steering override.

Data Types: double

SteerHId - Steering hold
scalar
Boolean signal that holds the steering command at the current value.

Dependencies

To enable this port, select Steering hold.
Data Types: Boolean

SteerZero - Disable steering command
scalar
Disable steering command.
Dependencies
To enable this port, select Steering disable.
Data Types: Boolean
YawRef - Yaw angle reference
scalar
Vehicle yaw angle, Ψ_{o}, in the inertial reference frame, in units specified by Angular units, angUnits.

Dependencies

To enable this port:

- Set Lateral control type, controlTypeLat to Stanley
- Clear Vector input for poses

RefPose - Reference pose
$[x, y, \Theta]$ vector
Reference pose, specified as an $[x, y, \Theta]$ vector. x and y are in meters, and Θ are in units specified by Angular units, angUnits.
x and y specify the reference point to steer the vehicle toward. Θ specifies the orientation angle of the path at this reference point and is positive in the counterclockwise direction.

The reference point is the point on the path that is closest to the vehicle CG. You can use the either the Z-up or Z-down vehicle coordinate system, as long you use the same coordinate system (Z-up or Z-down) for block inputs and parameters.

Dependencies

To enable this port, set Lateral control type, controlTypeLat to Stanley and select Vector input for poses.

Data Types: single|double

VelFdbk - Longitudinal vehicle velocity
scalar
Longitudinal vehicle velocity, U, in the vehicle-fixed frame, in m/s.
CurrPose - Current pose
$[x, y, \Theta]$ vector
Current pose of the vehicle, specified as an $[x, y, \Theta]$ vector. x and y are in meters, and Θ is in units specified by Angular units, angUnits.
x and y specify the location of the vehicle, which is defined as the vehicle CG. You can use the either the Z-up or Z-down vehicle coordinate system, as long you use the same coordinate system (Z-up or Z-down) for block inputs and parameters.

Dependencies

To enable this port, set Lateral control type, controlTypeLat to Stanley and select Vector input for poses.

Data Types: single | double
LatFdbk - Lateral displacement
scalar
Lateral CM displacement, y_{o}, in the inertial reference frame, in m.

Dependencies

To enable this port, do either of these:

- Set Lateral control type, controlTypeLat to Stanley and clear Vector input for poses.
- Set Lateral control type, controlTypeLat to Predictive.

LatVelFdbk - Lateral vehicle velocity
scalar
Lateral vehicle velocity, v_{o}, in the vehicle-fixed frame, in m / s.

Dependencies

To enable this port, Set Lateral control type, controlTypeLat to Predictive.
YawFdbk - Vehicle yaw angle
scalar

Vehicle yaw angle, Ψ_{o}, in the inertial reference frame, in units specified by Angular units, angUnits.

Dependencies

To enable this port, do either of these:

- Set Lateral control type, controlTypeLat to Stanley and clear Vector input for poses.
- Set Lateral control type, controlTypeLat to Predictive.

YawVelFdbk - Yaw rate
scalar
Yaw rate, r_{0}, in the vehicle-fixed frame, in units specified by Angular units, angUnits per sec.

Dependencies

To enable this port, Set Lateral control type, controlTypeLat to Predictive.

Output

Info - Bus signal
bus
Bus signal containing these block calculations.

Signal		Variable	Description
Predicted	y	y	Predicted lateral displacement, in the vehicle-fixed frame.
	ydot	v	Predicted lateral velocity, in the vehicle-fixed frame.
	psi	Ψ	Predicted front wheel heading angle.
	r	r	Predicted yaw rate, in the vehicle-fixed frame.
SteerCmd		δ_{F}	Commanded steer angle.
Err		$e_{\text {ref }}$	Difference in reference vehicle position and vehicle position.
ErrSqrSum		$\int_{0}^{t} e_{r e f}{ }^{2} d t$	Integrated square of error.
ErrMax		$\max \left(e_{\text {ref }}(t)\right)$	Maximum error during simulation.
ErrMin		$\min \left(e_{r e f}(t)\right)$	Minimum error during simulation.
ExtActions	EnblSteer0vr		Override the steering command with an input deceleration command.
	Steer0vrCmd		Input steering override command
	SteerHld		Hold the steering command at the current value
	SteerZero		Disable the steering command

SteerCmd - Steer angle command
scalar
Commanded steer angle, δ_{F}.

Use the Output handwheel angle parameter to specify the units for the steering ports.

Setting	Block Implementation	Port
off (default)	Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit Tire wheel angle limit, theta parameter to normalize the command.	SteerCmd - Output
	Overrides the steering command with an input steering command normalized from -1 through 1.	SteerOvrCmd - Input
on	Commanded steer angle, in units specified by Angular units, angUnits.	SteerCmd - Output
	Overrides the steering command with an input steering command, in units specified by Angular units, angUnits.	SteerOvrCmd - Input

Parameters

Configuration

Steering override - Override steering command
off (default) | on
Select to override the steering command with an input steering command.

Dependencies

Selecting this parameter creates the EnblSteerOvr and SteerOvrCmd input ports.
Steering hold - Hold steering command
off (default) | on
Select to hold the steering command.

Dependencies

Selecting this parameter creates the SteerHld input port.
Steering disable - Disable steering command
off (default) | on
Select to disable the steering command.

Dependencies

Selecting this parameter creates the SteerZero input port.
Output handwheel angle - Steering port units in rad
off (default) | on
Use the Output handwheel angle parameter to specify the units for the steering ports.

Setting	Block Implementation	Port
off (default)	Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit Tire wheel angle limit, theta parameter to normalize the command.	SteerCmd - Output
	Overrides the steering command with an input steering command normalized from -1 through 1.	Steer0vrCmd - Input
on	Commanded steer angle, in units specified by Angular units, angUnits.	SteerCmd - Output
	Overrides the steering command with an input steering command, in units specified by Angular units, angUnits.	Steer0vrCmd - Input

Dependencies

To create the SteerOvrCmd input port, select Steering override.
Lateral control type, controlTypeLat - Controller
Predictive (default) | Stanley
Use the Lateral control type, controlTypeLat parameter to specify the type of lateral control. The table specifies the block implementation.

Setting	Block Implementation
Predictive (default)	Optimal single-point preview (look ahead) control model developed by C. C. MacAdam duri,3. The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path.

Setting	Block Implementation	
Stanley	Controller that uses the Stanley ${ }^{4}$ method to minimize the position error and the angle error of the current pose with respect to the reference pose. On the Reference Control pane, use the: - Vector input for poses parameter to input the to specify the input.	
	Setting	Implementation
	off (default)	Block uses the longitudinal, lateral, and yaw reference (LongRef, LatRef, LatRef) input ports and the feedback (LongFdbk, LatFdbk, LatFdbk) input ports for the reference and feedback pose.
	on	Block uses input ports, RefPose and CurrPose, for the reference and feedback pose, respectively.
	- Include dynami controller to use.	arameter to specify the type of model for the
	Setting	Implementation
	off (default)	Controller uses a kinematic bicycle model that is suitable for path following in low-speed environments such as parking lots, where inertial effects are minimal.
	on	Controller uses a dynamic bicycle model that is suitable for path following in high-speed environments such as highways, where inertial effects are more pronounced.

Angular units, angUnits - Input and output port angular units

rad (default) | deg

Input and output port angular units.

Reference Control

Predictive

Driver response time, tau - Response time
0.1 (default) | scalar

Driver response time, τ, in s.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Predictive.
Preview distance, L - Distance
3 (default) | scalar

Driver preview distance, L, in m . Used to determine the preview time window, T^{*}.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Predictive.

Stanley

Vector input for poses - Select to create RefPose and CurrPose input ports
off (default) | on
Select this parameter to create the RefPose and CurrPose input ports.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Stanley.
Include dynamics - Select to include dynamics
off (default) | on
The controller computes this command using the Stanley method, whose control law is based on both a kinematic and dynamic bicycle model. To change between models, use this parameter.

Setting	Implementation
off	Controller uses a kinematic bicycle model that is suitable for path following in low-speed environments such as parking lots, where inertial effects are minimal.
on	Controller uses a dynamic bicycle model that is suitable for path following in high-speed environments such as highways, where inertial effects are more pronounced.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Stanley.
Position gain of forward motion, PositionGainF - Position gain of vehicle in forward motion
2.5 (default) | positive real scalar

Position gain of the vehicle when it is in forward motion, specified as a positive scalar. This value determines how much the position error affects the steering angle. Typical values are in the range [1, 5]. Increase this value to increase the magnitude of the steering angle.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Stanley.
Position gain of reverse motion, PositionGainF - Position gain of vehicle in reverse motion 2.5 (default) | positive real scalar

Position gain of the vehicle when it is in reverse motion, specified as a positive scalar. This value determines how much the position error affects the steering angle. Typical values are in the range [1, 5]. Increase this value to increase the magnitude of the steering angle.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Stanley.

Yaw rate feedback gain, YawRateGain - Yaw rate feedback gain

. 2 (default) | nonnegative real scalar

Yaw rate feedback gain, specified as a nonnegative real scalar. This value determines how much weight is given to the current yaw rate of the vehicle when the block computes the steering angle command.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Stanley and select Include dynamics.

Steering angle feedback gain, DelayGain - Steering angle feedback gain
. 2 (default) | nonnegative real scalar
Steering angle feedback gain, specified as a nonnegative real scalar. This value determines how much the difference between the current steering angle command, SteerCmd, and the current steering angle, CurrSteer, affects the next steering angle command.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Stanley and select Include dynamics.

Vehicle Parameters

Forward location of tire, a - Along vehicle longitudinal axis
1.41 (default) | scalar

Forward location of tire, a, in m . Distance from vehicle cg to forward tire location, along vehicle longitudinal axis.

Rearward location of tire, \mathbf{b} - Along vehicle longitudinal axis
1.41 (default) | scalar

Rearward location of tire, b, in m. Absolute value of distance from vehicle cg to rearward tire location, along vehicle longitudinal axis.

Vehicle mass, \mathbf{m} - Mass
2016 (default) | scalar
Vehicle mass, m, in kg.

Dependencies

To enable this port, do either of these:

- Set Lateral control type, controlTypeLat to Stanley and select Include dynamics.
- Set Lateral control type, controlTypeLat to Predictive.

Front tire cornering coefficient, Cy_f - Coefficient
25266 (default) | scalar
Cornering stiffness coefficient, $C_{\alpha F}$, in $\mathrm{N} / \mathrm{rad}$.

Dependencies

To enable this port, do either of these:

- Set Lateral control type, controlTypeLat to Stanley and select Include dynamics.
- Set Lateral control type, controlTypeLat to Predictive.

Rear tire cornering coefficient, Cy_r - Coefficient
70933 (default) | scalar
Cornering stiffness coefficient, $C_{\alpha R}$, in $\mathrm{N} / \mathrm{rad}$.
Dependencies
To enable this port, set Lateral control type, controlTypeLat to Predictive.
Vehicle rotational inertia, I - Inertia about yaw axis
4013 (default) | scalar
Vehicle rotational inertia, I, about the vehicle yaw axis, in $N \cdot m \cdot s^{\wedge} 2$.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Predictive.
Nominal steering ratio, Ksteer - Steering ratio
18 (default) | scalar
Steering ratio, $K_{\text {steer }}$. The value has no dimension.

Dependencies

To enable this parameter, select Output handwheel angle.
Tire wheel angle limit, theta - Angle limit
45*pi/180 (default) | scalar
Tire wheel angle limit, θ, in rad.

Version History

Introduced in R2018a

References

[1] MacAdam, C. C. "An Optimal Preview Control for Linear Systems". Journal of Dynamic Systems, Measurement, and Control. Vol. 102, Number 3, Sept. 1980.
[2] MacAdam, C. C. "Application of an Optimal Preview Control for Simulation of Closed-Loop Automobile Driving ". IEEE Transactions on Systems, Man, and Cybernetics. Vol. 11, Issue 6, June 1981.
[3] MacAdam, C. C. Development of Driver/Vehicle Steering Interaction Models for Dynamic Analysis. Final Technical Report UMTRI-88-53. Ann Arbor, Michigan: The University of Michigan Transportation Research Institute, Dec. 1988.
[4] Hoffmann, Gabriel M., Claire J. Tomlin, Michael Montemerlo, and Sebastian Thrun. "Autonomous Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental Validation and Racing." American Control Conference. 2007, pp. 2296-2301. doi:10.1109/ ACC.2007.4282788

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Longitudinal Driver | Predictive Driver

Predictive Driver

Predictive driver controller to track longitudinal speed and lateral path

Libraries:
Vehicle Dynamics Blockset / Vehicle Scenarios / Driver

Description

The Predictive Driver block implements a controller that generates normalized steering, acceleration, and braking commands to track longitudinal velocity and a lateral reference displacement. The normalized commands can vary between -1 to 1 . The controller uses a single-track (bicycle) model for optimal single-point preview control.

Configurations

External Actions

Use the External Actions parameters to create input ports for signals that you can use to simulate standard test maneuvers. The block uses this priority order for the input commands: disable (highest), hold, override.

This table summarizes the external action parameters.

Goal	External Action Parameter	Input Ports	Data Type
Override the accelerator command with an input acceleration command.	Accelerator override	EnablAccel0vr	Boolean
Hold the acceleration command at the current value.	Accel0vrCmd hold	AccelHld	double
Disable the acceleration command.	Accelerator disable	AccelZero	Boolean
Override the decelerator command with an input deceleration command.	Decelerator override	EnablDecel0vr	Boolean
	Decel0vrCmd	double	
Hold the decelerator command at current value.	Decelerator hold	DecelHld	Boolean
Disable the decelerator command.	Decelerator disable	DecelZero	Boolean

Goal	External Action Parameter	Input Ports	Data Type
Override the steering command with an input steering command.	Steering override	EnblSteerOvr	Boolean
	Steer0vrCmd	double	
Hold the steering command at the current value.	Steering hold	SteerHld	Boolean
Disable the steering command.	Steering disable	SteerZero	Boolean

Controllers

Use the Longitudinal control type, cntrlType parameter to specify one of these control options.

Setting	Block Implementation
PI	Proportional-integral (PI) control with tracking windup and feed-forward gains.
Scheduled PI	PI control with tracking windup and feed-forward gains that are a function of vehicle velocity.
Predictive	Optimal single-point preview (look ahead) control model developed by C. C. MacAdam 1,2, . The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block:
- Represents the dynamics as a linear single track (bicycle) vehicle - Minimizes the previewed error signal at a single point T^{*} seconds ahead in time	
Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms	

Use the Lateral control type, controlTypeLat parameter to specify the type of lateral control. The table specifies the block implementation.

Setting	Block Implementation
Predictive (default)	Optimal single-point preview (look ahead) control model developed by C. C. MacAdam 1,2,3. The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path.

Setting	Block Implementation	
Stanley	Controller that uses the Stanley ${ }^{4}$ method to minimize the position error and the angle error of the current pose with respect to the reference pose. On the Reference Control pane, use the: - Vector input for poses parameter to input the to specify the input.	
	Setting	Implementation
	off (default)	Block uses the longitudinal, lateral, and yaw reference (LongRef, LatRef, LatRef) input ports and the feedback (LongFdbk, LatFdbk, LatFdbk) input ports for the reference and feedback pose.
	on	Block uses input ports, RefPose and CurrPose, for the reference and feedback pose, respectively.
	- Include dynamics parameter to specify the type of model for the controller to use.	
	Setting	Implementation
	off (default)	Controller uses a kinematic bicycle model that is suitable for path following in low-speed environments such as parking lots, where inertial effects are minimal.
	on	Controller uses a dynamic bicycle model that is suitable for path following in high-speed environments such as highways, where inertial effects are more pronounced.

Shift

Use the Shift type, ShftType parameter to specify one of these shift options.

Setting	Block Implementation
None	No transmission. Block outputs a constant gear of 1.
Use this setting to minimize the number of parameters you need to generate acceleration and braking commands to track forward vehicle motion. This setting does not allow reverse vehicle motion.	

Setting	Block Implementation			
Reverse, Neutral, Drive	Block uses a Stateflow chart to model reverse, neutral, and drive gear shift scheduling. Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using simple reverse, neutral, and drive gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses the initial gear and time required to shift to shift the vehicle up into drive or down into reverse or neutral.			
For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.				
Block uses a Stateflow chart to model reverse, neutral, park, and N-speed gear shift scheduling.				
Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, park, and N- speed gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses these parameters to determine the:				
- Initial gear				
- Upshift and downshift accelerator pedal positions				
- Upshift and downshift velocity				
- Timing for shifting and engaging forward and reverse from neutral				
For neutral gears, the block uses braking commands to control the vehicle		$	$	speed. For reverse gears, the block uses an acceleration command to
:---				
generate torque and a brake command to reduce vehicle speed.				

Units

Use the and Longitudinal velocity units, velUnits and Angular units, angUnits parameter to specify the units for the input and output ports.

Gear Signal

Use the Output gear signal parameter to create the GearCmd output port. The GearCmd signal contains the integer value of the commanded vehicle gear.

Gear	Integer
Park	80
Reverse	-1

Gear	Integer
Neutral	0
Drive	1
Gear	Gear number

Output Handwheel Angle
Use the Output handwheel angle parameter to specify the units for the steering ports.

Setting	Block Implementation	Port
off (default)	Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit Tire wheel angle limit, theta parameter to normalize the command.	SteerCmd - Output
	Overrides the steering command with an input steering command normalized from -1 through 1.	SteerOvrCmd - Input
on	Commanded steer angle, in units specified by Angular units, angUnits.	SteerCmd - Output
Overrides the steering command with an input steering command, in units specified by Angular units, angUnits.	SteerOvrCmd - Input	

Controller: PI Speed-Tracking

If you set the control type to PI or Scheduled PI, the block implements proportional-integral (PI) control with tracking windup and feed-forward gains. For the Scheduled PI configuration, the block uses feed forward gains that are a function of vehicle velocity.

To calculate the speed control output, the block uses these equations.

Setting	Equation
PI	$y=\frac{K_{f f}}{v_{\text {nom }}} v_{r e f}+\frac{K_{p} e_{r e f}}{v_{\text {nom }}}+\int\left(\frac{K_{i} e_{r e f}}{v_{\text {nom }}}+K_{a w} e_{o u t}\right) d t+K_{g} \theta$
Scheduled PI	$y=\frac{K_{f f}(v)}{v_{\text {nom }}} v_{r e f}+\frac{K_{p}(v) e_{r e f}}{v_{\text {nom }}}+\int\left(\frac{K_{i}(v) e_{r e f}}{v_{\text {nom }}}+K_{a w} e_{o u t}\right) e_{r e f} d t+K_{g}(v) \theta$

where:

$$
\begin{aligned}
& e_{\text {ref }}=v_{\text {ref }}-v \\
& e_{\text {out }}=y_{\text {sat }}-y \\
& y_{\text {sat }}=\left\{\begin{array}{cc}
-1 & y<-1 \\
y & -1 \leq y \leq 1 \\
1 & 1<y
\end{array}\right.
\end{aligned}
$$

The velocity error low-pass filter uses this transfer function.

$$
H(s)=\frac{1}{\tau_{e r r} s+1} \text { for } \tau_{\text {err }}>0
$$

To calculate the acceleration and braking commands, the block uses these equations.

$$
\begin{aligned}
& y_{\text {acc }}=\left\{\begin{array}{cc}
0 & y_{\text {sat }}<0 \\
y_{\text {sat }} & 0 \leq y_{\text {sat }} \leq 1 \\
1 & 1<y_{\text {sat }}
\end{array}\right. \\
& y_{\text {dec }}=\left\{\begin{array}{cc}
0 & y_{\text {sat }}>0 \\
-y_{\text {sat }} & -1 \leq y_{\text {sat }} \leq 0 \\
1 & y_{\text {sat }}<-1
\end{array}\right.
\end{aligned}
$$

The equations use these variables.

$v_{\text {nom }}$	Nominal vehicle speed
K_{p}	Proportional gain
K_{i}	Integral gain
$K_{a w}$	Anti-windup gain
$K_{f f}$	Velocity feed-forward gain
K_{g}	Grade angle feed-forward gain
θ	Grade angle
$\tau_{\text {err }}$	Error filter time constant
y	Nominal control output magnitude
$y_{\text {sat }}$	Saturated control output magnitude
$e_{r e f}$	Velocity error
$e_{\text {out }}$	Difference between saturated and nominal control outputs
$y_{a c c}$	Acceleration signal
$y_{d e c}$	Braking signal
v	Velocity feedback signal
$v_{r e f}$	Reference velocity signal

Controller: Predictive Speed-Tracking

If you set the Longitudinal control type, cntrlType or Lateral control type, cntrlType to Predictive, the block implements an optimal single-point preview (look ahead) control model developed by C. C. MacAdam ${ }^{1,2,3}$. The model represents driver steering control behavior during pathfollowing and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block:

- Represents the dynamics as a linear single track (bicycle) vehicle
- Minimizes the previewed error signal at a single point T^{*} seconds ahead in time
- Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms

Vehicle Dynamics

For lateral and yaw motion, the block implements these linear dynamic equations.
$x_{1}=U$
$\dot{x}_{1}=x_{2}=\frac{K_{p t}}{m}+v r-g \sin (\gamma)+F_{r} \chi_{1}$
$\dot{y}=v+U \psi$
$\dot{v}=\left[-\frac{2\left(C_{\alpha F}+C_{\alpha R}\right)}{m U}\right] v+\left[\frac{2\left(b C_{\alpha R}-a C_{\alpha F}\right)}{m U}-U\right] r+\left(\frac{2 C_{\alpha F}}{m}\right) \delta_{F}$
$\dot{r}=\left[\frac{2\left(b C_{\alpha R}-a C_{\alpha F}\right)}{I U}\right] v+\left[-\frac{2\left(a^{2} C_{\alpha F}+b^{2} C_{\alpha R}\right)}{I U}\right] r+\left(\frac{2 a C_{\alpha F}}{I}\right) \delta_{F}$
$\dot{\psi}=r$
In matrix notation:
$\dot{x}=F x+g u$
where:
$x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ y \\ v \\ r \\ \psi\end{array}\right]$
$F=\left[\begin{array}{cccccc}0 & 1 & 0 & 0 & 0 & 0 \\ \frac{F_{r}}{m} & 0 & 0 & 0 & v & 0 \\ 0 & 0 & 0 & 1 & 0 & U \\ 0 & 0 & 0 & -\frac{2\left(C_{\alpha F}+C_{\alpha R}\right)}{m U} & \frac{2\left(b C_{\alpha R}-a C_{\alpha F}\right)}{m U}-U & 0 \\ 0 & 0 & 0 & \frac{2\left(b C_{\alpha R}-a C_{\alpha F}\right)}{I U} & -\frac{2\left(a^{2} C_{\alpha F}+b^{2} C_{\alpha R}\right)}{I U} & 0 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$
$g=\left[\begin{array}{cc}0 & 0 \\ \frac{K_{p t}}{m} & 0 \\ 0 & 0 \\ 0 & \frac{2 C_{\alpha F}}{m} \\ 0 & \frac{2 a C_{\alpha F}}{I} \\ 0 & 0\end{array}\right]$
$u=\left[\begin{array}{l}\bar{u} \\ \delta_{F}\end{array}\right]$
$\bar{u}=u-\frac{m^{2}}{K_{p t}} g \sin (\gamma)$

The single-point model assumes a minimum previewed error signal at a single point T^{*} seconds ahead in time. a^{*} is the driver ability to predict the future vehicle response based on the current steering control input. b^{*} is the driver ability to predict the future vehicle response based on the current vehicle state. The block uses these equations.

$$
\begin{aligned}
& a^{*}=\left(T^{*}\right) m^{T}\left[I+\sum_{n=1}^{\infty} \frac{F^{n}\left(T^{*}\right)^{n}}{(n+1)!}\right] g \\
& b^{*}=m^{T}\left[I+\sum_{n=1}^{\infty} \frac{F^{n}\left(T^{*}\right)^{n}}{n!}\right] \\
& m^{T}=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The equations use these variables.

a, b	Forward and rearward tire location, respectively
m	Vehicle mass
I	Vehicle rotational inertia
$C_{\alpha F}$	Front tire cornering coefficient
$C_{\alpha R}$	Rear tire cornering coefficient
$a^{*}, \boldsymbol{b}^{*}$	Driver prediction scalar and vector gain, respectively
\boldsymbol{x}	Predicted vehicle state vector
v	Lateral velocity
r	Yaw rate
Ψ	Front wheel heading angle
y	Lateral displacement
\boldsymbol{F}	System matrix
δ, δ_{F}	Steer angle and front axle steer angle, respectively
γ	Grade angle
\boldsymbol{g}	Control coefficient vector
U	Forward (longitudinal) vehicle velocity
T^{*}	Preview time window
$f\left(t+T^{*}\right)$	Previewed path input T* seconds ahead
\boldsymbol{u}	Tractive force
\boldsymbol{m}^{T}	Constant observer vector; provides vehicle lateral position
a_{r}	Static rolling and driveline resistance
b_{r}	Linear rolling and driveline resistance
c_{r}	Aerodynamic rolling and driveline resistance
F_{r}	Rolling resistance

Optimization

The single-point model implemented by the block finds the steering command that minimizes a local performance index, J, over the current preview interval, $(t, t+T)$.

$$
J=\frac{1}{T} \int^{t+T}[f(\eta)-y(\eta)]^{2} d \eta
$$

To minimize J with respect to the steering command, this condition must be met.

$$
\frac{d J}{d u}=0
$$

You can express the optimal control solution in terms of a current non-optimal and corresponding nonzero preview output error T^{*} seconds ahead ${ }^{1,2,3}$.

$$
u^{o}(t)=u(t)+\frac{e\left(t+T^{*}\right)}{a^{*}}
$$

The block uses the preview distance and vehicle longitudinal velocity to determine the preview time window.

$$
T^{*}=\frac{L}{U}
$$

The equations use these variables.

T^{*}	Preview time window
$f\left(t+T^{*}\right)$	Previewed path input $T^{*} \sec$ ahead
$y\left(t+T^{*}\right)$	Previewed plant output T^{*} sec ahead
$e\left(t+T^{*}\right)$	Previewed error signal T^{*} sec ahead
$u(t), u^{o}(t)$	Steer angle and optimal steer angle, respectively
L	Preview distance
J	Performance index
U	Forward (longitudinal) vehicle velocity

Driver Lag

The single-point model implemented by the block introduces a driver lag. The driver lag accounts for the delay when the driver is tracking tasks. Specifically, it is the transport delay deriving from perceptual and neuromuscular mechanisms. To calculate the driver transport delay, the block implements this equation.

$$
H(s)=e^{-s \tau}
$$

The equations use these variables.

τ	Driver transport delay
$y\left(t+T^{*}\right)$	Previewed plant output T^{*} sec ahead
$e\left(t+T^{*}\right)$	Previewed error signal T^{*} sec ahead
$u(t), u^{\circ}(t)$	Steer angle and optimal steer angle, respectively
J	Performance index

Controller: Stanley Lateral Path-Tracking

If you set Lateral control type, controlTypeLat to Stanley, the block implements the Stanley method ${ }^{4}$. To compute the steering angle command, the Stanley controller minimizes the position error
and the angle error of the current pose with respect to the reference pose. The driving direction of the vehicle determines these error values.

To compute the steering angle command, the controller minimizes the position error and the angle error of the current pose with respect to the reference pose.

- The position error is the lateral distance from the vehicle center-of-gravity (CG) to the reference point on the path.
- The angle error is the angle of the vehicle with respect to reference path.

Ports

Input
VelRef - Reference vehicle velocity
scalar
Reference velocity, $v_{\text {ref }}$, in units specified by Longitudinal velocity units, velUnits.
LongRef - Longitudinal displacement reference
scalar
Longitudinal center of mass (CM) displacement reference, in the inertial reference frame, in m .

Dependencies

To enable this port:
1 Set Lateral control type, controlTypeLat to Stanley.
2 Clear Vector input for poses.
LatRef - Lateral displacement reference
scalar
Lateral center of mass (CM) displacement reference, in the inertial reference frame, in m .

Dependencies

To enable this port, do one of these:

- Set Lateral control type, controlTypeLat to Stanley and clear Vector input for poses.
- Set Lateral control type, controlTypeLat to Predictive.

YawRef - Yaw angle reference
scalar
Vehicle yaw angle, Ψ_{o}, in the inertial reference frame, in units specified by Angular units, angUnits.

Dependencies

To enable this port:

- Set Lateral control type, controlTypeLat to Stanley
- Clear Vector input for poses

EnblSteerOvr - Enable steering command override scalar

Enable steering command override.

Dependencies

To enable this port, select Steering override.
Data Types: Boolean
SteerOvrCmd - Steering override command scalar

Steering override command.
Use the Output handwheel angle parameter to specify the units for the steering ports.

Setting	Block Implementation	Port
off (default)	Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit Tire wheel angle limit, theta parameter to normalize the command.	SteerCmd - Output
	Overrides the steering command with an input steering command normalized from -1 through 1.	SteerOvrCmd - Input
on	Commanded steer angle, in units specified by Angular units, angUnits.	SteerCmd - Output
Overrides the steering command with an input steering command, in units specified by Angular units, angUnits.	SteerOvrCmd - Input	

Dependencies

To enable this port, select Steering override.
Data Types: double
SteerHId - Steering hold
scalar
Boolean signal that holds the steering command at the current value.

Dependencies

To enable this port, select Steering hold
Data Types: Boolean
SteerZero - Disable steering command
scalar
Disable steering command.

Dependencies

To enable this port, select Steering disable.
Data Types: Boolean
EnblAccelOvr - Enable acceleration command override
scalar
Enable acceleration command override.
Dependencies
To enable this port, select Acceleration override.
Data Types: Boolean
AccelOvrCmd - Acceleration override command
scalar
Acceleration override command, normalized from 0 through 1.

Dependencies

To enable this port, select Acceleration override.
Data Types: double
AccelHId - Acceleration hold
scalar
Boolean signal that holds the acceleration command at the current value.
Dependencies
To enable this port, select Acceleration hold.
Data Types: Boolean
AccelZero - Disable acceleration command
scalar
Disable acceleration command.

Dependencies

To enable this port, select Acceleration disable.
Data Types: Boolean
EnbIDeceIOvr - Enable deceleration command override scalar

Enable deceleration command override.

Dependencies

To enable this port, select Deceleration override.
Data Types: Boolean

DecelOvrCmd - Deceleration override command scalar

Deceleration override command, normalized from 0 through 1.

Dependencies

To enable this port, select Deceleration override.
Data Types: double
DecelHId - Deceleration hold
scalar
Boolean signal that holds the deceleration command at the current value.

Dependencies

To enable this port, select Deceleration hold.
Data Types: Boolean
DecelZero - Disable deceleration command
scalar
Disable deceleration command.

Dependencies

To enable this port, select Deceleration disable.
Data Types: Boolean
ExtGear - Gear
scalar

Gear	Integer
Park	80
Reverse	-1
Neutral	0
Drive	1
Gear	Gear number

Dependencies

To enable this port, set Shift type, shftType to External.
Grade - Road grade angle scalar

Road grade angle, γ, in deg.
RefPose - Reference pose
$[x, y, \Theta]$ vector

Reference pose, specified as an $[x, y, \Theta]$ vector. x and y are in meters, and Θ are in units specified by Angular units, angUnits.
x and y specify the reference point to steer the vehicle toward. Θ specifies the orientation angle of the path at this reference point and is positive in the counterclockwise direction.

The reference point is the point on the path that is closest to the vehicle CG. You can use the either the Z-up or Z-down vehicle coordinate system, as long you use the same coordinate system (Z-up or Z-down) for block inputs and parameters.

Dependencies

To enable this port:
1 Set Lateral control type, controlTypeLat to Stanley.
2 Select Vector input for poses.
Data Types: single | double
VeIFdbk - Longitudinal vehicle velocity
scalar
Longitudinal vehicle velocity, U, in the vehicle-fixed frame, in units specified by Longitudinal velocity units, velUnits.

CurrPose - Current pose
$[x, y, \Theta]$ vector

Current pose of the vehicle, specified as an $[x, y, \Theta]$ vector. x and y are in meters, and Θ is in units specified by Angular units, angUnits.
x and y specify the location of the vehicle, which is defined as the vehicle CG. You can use the either the Z-up or Z-down vehicle coordinate system, as long you use the same coordinate system (Z-up or Z-down) for block inputs and parameters.

Dependencies

To enable this port, set Lateral control type, controlTypeLat to Stanley and select Vector input for poses.
Data Types: single | double
LatFdbk - Lateral displacement
scalar
Lateral CM displacement, y_{o}, in the inertial reference frame, in m.

Dependencies

To enable this port, do either of these:

- Set Lateral control type, controlTypeLat to Stanley and clear Vector input for poses.
- Set Lateral control type, controlTypeLat to Predictive.

LatVeIFdbk - Lateral vehicle velocity
scalar
Lateral vehicle velocity, v_{0}, in the vehicle-fixed frame, in m / s.

Dependencies

To enable this port, Set Lateral control type, controlTypeLat to Predictive.
YawFdbk - Vehicle yaw angle
scalar
Vehicle yaw angle, Ψ_{o}, in the inertial reference frame, in units specified by Angular units, angUnits.

Dependencies

To enable this port, do either of these:

- Set Lateral control type, controlTypeLat to Stanley and clear Vector input for poses.
- Set Lateral control type, controlTypeLat to Predictive.

YawVelFdbk - Yaw rate
scalar
Yaw rate, r_{0}, in the vehicle-fixed frame, in units specified by Angular units, angUnits per sec.

Dependencies

To enable this port, Set Lateral control type, controlTypeLat to Predictive.

Output

Info - Bus signal
bus
Bus signal containing these block calculations.

Signal			Variable	Description
Steer			δ_{F}	Commanded steer angle, normalized from 0 through 1
Accel			$y_{\text {acc }}$	Commanded vehicle acceleration, normalized from 0 through 1
Decel			$y_{\text {dec }}$	Commanded vehicle deceleration, normalized from 0 through 1
Gear				Integer value of commanded gear
Clutch				Clutch command
Err	LatErr	Err	$e_{\text {ref }}$	Difference in reference vehicle position and vehicle position.
		ErrSqrSum	$\int_{0}^{t} e_{r e f^{2} d t}$	Integrated square of error.
		ErrMax	$\max _{\mathrm{m})}\left(e_{r e f}(t\right.$	Maximum error during simulation.
		ErrMin	$\min _{)}\left(e_{r e f}(t\right.$	Minimum error during simulation.
	LngErr	Err	$e_{\text {ref }}$	Difference in reference vehicle speed and vehicle speed

Signal		Variable	Description
	ErrSqrSum	$\int_{0}^{t} e_{r e f^{2} d t}$	Integrated square of error
	ErrMax	$\max _{)}\left(e_{r e f}(t\right.$	Maximum error during simulation
	ErrMin	$\left.\min _{\mathrm{m}}\right)\left(e_{r e f}(t\right.$	Minimum error during simulation
ExtAct ions	EnblSteer0vr		Override the steering command with an input deceleration command
	SteerOvrCmd		Input steering override command
	SteerHld		Hold the steering command at the current value
	SteerZero		Disable the steering command
	EnblAccel0vr		Override the accelerator command with an input acceleration command
	Accel0vrCmd		Input accelerator override command
	Accelhld		Hold the acceleration command at the current value
	AccelZero		Disable the acceleration command
	EnblDecel0vr		Override the decelerator command with an input deceleration command
	Decel0vrCmd		Input deceleration override command
	Decelhld		Hold the decelerator command at current value
	DecelZero		Disable the decelerator command

SteerCmd - Steer angle command
scalar
Commanded steer angle, δ_{F}.
Use the Output handwheel angle parameter to specify the units for the steering ports.

Setting	Block Implementation	Port
off (default)	Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit Tire wheel angle limit, theta parameter to normalize the command.	SteerCmd - Output
	Overrides the steering command with an input steering command normalized from -1 through 1.	SteerOvrCmd - Input
on	Commanded steer angle, in units specified by Angular units, angUnits.	SteerCmd - Output
	Overrides the steering command with an input steering command, in units specified by Angular units, angUnits.	SteerOvrCmd - Input

AccelCmd - Commanded vehicle acceleration scalar

Commanded vehicle acceleration, $y_{\text {acc }}$, normalized from 0 through 1.
DecelCmd - Commanded vehicle deceleration
scalar
Commanded vehicle deceleration, $y_{d e c}$, normalized from 0 through 1.
GearCmd - Commanded vehicle gear
scalar
Integer value of commanded vehicle gear.

Gear	Integer
Park	80
Reverse	-1
Neutral	0
Drive	1
Gear	Gear number

Dependencies

To enable this port, select Output gear signal.

Parameters

Configuration

External Actions

Accelerator override - Override acceleration command
off (default) | on
Select to override the acceleration command with an input acceleration command.

Dependencies

Selecting this parameter creates the EnblAccelOvr and AccelOvrCmd input ports.

Accelerator hold - Hold acceleration command

off (default) | on
Select to hold the acceleration command.

Dependencies

Selecting this parameter creates the AccelHld input port.
Accelerator disable - Disable acceleration command
off (default) | on
Select to disable the acceleration command.

Dependencies

Selecting this parameter creates the AccelZero input port.
Decelerator override - Override deceleration command off (default) | on

Select to override the deceleration command with an input deceleration command.

Dependencies

Selecting this parameter creates the EnblDecelovr and DecelovrCmd input ports.
Decelerator hold - Hold deceleration command
off (default) |on
Select to hold the deceleration command.

Dependencies

Selecting this parameter creates the DecelHld input port.
Decelerator disable - Disable deceleration command
off (default) | on
Select to disable the deceleration command.

Dependencies

Selecting this parameter creates the DecelZero input port.
Steering override - Override steering command
off (default) | on
Select to override the steering command with an input steering command.

Dependencies

Selecting this parameter creates the EnblSteerOvr and SteerOvrCmd input ports.
Steering hold - Hold steering command
off (default) | on
Select to hold the steering command.

Dependencies

Selecting this parameter creates the SteerHld input port.
Steering disable - Disable steering command
off (default) |on
Select to disable the steering command.

Dependencies

Selecting this parameter creates the SteerZero input port.

Control and Shift

Longitudinal control type, cntriType - Longitudinal control
PI (default) | Scheduled PI | Predictive
Type of longitudinal control.

Setting	Block Implementation
PI	Proportional-integral (PI) control with tracking windup and feed-forward gains.
Scheduled PI	PI control with tracking windup and feed-forward gains that are a function of vehicle velocity.
Predictive	Optimal single-point preview (look ahead) control model developed by C. C. MacAdam 1,2, . The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block:
- Represents the dynamics as a linear single track (bicycle) vehicle - Minimizes the previewed error signal at a single point T^{*} seconds ahead in time	
Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms	

Lateral control type, controlTypeLat - Controller

Predictive (default) | Stanley
Use the Lateral control type, controlTypeLat parameter to specify the type of lateral control. The table specifies the block implementation.

Setting	Block Implementation
Predictive (default)	Optimal single-point preview (look ahead) control model developed by C. C. MacAdam 1,2,3. The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path.

Setting	Block Implementat	
Stanley	Controller that uses the Stanley ${ }^{4}$ method to minimize the position error and the angle error of the current pose with respect to the reference pose. On the Reference Control pane, use the: - Vector input for poses parameter to input the to specify the input.	
	Setting	Implementation
	off (default)	Block uses the longitudinal, lateral, and yaw reference (LongRef, LatRef, LatRef) input ports and the feedback (LongFdbk, LatFdbk, LatFdbk) input ports for the reference and feedback pose.
	on	Block uses input ports, RefPose and CurrPose, for the reference and feedback pose, respectively.
	- Include dynamics parameter to specify the type of model for the controller to use.	
	Setting	Implementation
	off (default)	Controller uses a kinematic bicycle model that is suitable for path following in low-speed environments such as parking lots, where inertial effects are minimal.
	on	Controller uses a dynamic bicycle model that is suitable for path following in high-speed environments such as highways, where inertial effects are more pronounced.

Shift type, shftType - Shift type
None (default)|Reverse, Neutral, Drive|Scheduled|External
Shift type

Setting	Block Implementation
None	No transmission. Block outputs a constant gear of 1.
Use this setting to minimize the number of parameters you need to generate acceleration and braking commands to track forward vehicle motion. This setting does not allow reverse vehicle motion.	

Setting	Block Implementation
Reverse, Neutral, Drive	Block uses a Stateflow chart to model reverse, neutral, and drive gear shift scheduling. Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using simple reverse, neutral, and drive gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses the initial gear and time required to shift to shift the vehicle up into drive or down into reverse or neutral.
For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.	
Block uses a Stateflow chart to model reverse, neutral, park, and N-speed gear shift scheduling.	
Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, park, and N- speed gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses these parameters to determine the:	
- Initial gear	
- Upshift and downshift accelerator pedal positions	
- Upshift and downshift velocity	
- Timing for shifting and engaging forward and reverse from neutral	
For neutral gears, the block uses braking commands to control the vehicle	
speed. For reverse gears, the block uses an acceleration command to	
generate torque and a brake command to reduce vehicle speed.	

Longitudinal velocity units, velUnits - Velocity units

m / s (default)
Vehicle velocity reference and feedback units.

Dependencies

If you set Longitudinal control type, CntrlType control type to Scheduled or Scheduled PI, the block uses the Longitudinal velocity units, velUnits for the Nominal speed, vnom parameter dimension.

If you set Shift Type, shftType to Scheduled, the block uses the Longitudinal velocity units, velUnits for these parameter dimensions:

- Upshift velocity data table, upShftTbl

- Downshift velocity data table, dwnShftTbl

Angular units, angUnits - Input and output port angular units

rad (default) | deg

Input and output port angular units.
Output gear signal - Create GearCmd output port
off (default) | on
Specify to create output port GearCmd.
Output handwheel angle - Steering port units in rad
off (default) | on
Use the Output handwheel angle parameter to specify the units for the steering ports.

Setting	Block Implementation	Port
off (default)	Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit Tire wheel angle limit, theta parameter to normalize the command.	SteerCmd - Output
	Overrides the steering command with an input steering command normalized from -1 through 1.	SteerOvrCmd - Input
on	Commanded steer angle, in units specified by Angular units, angUnits.	SteerCmd - Output
	Overrides the steering command with an input steering command, in units specified by Angular units, angUnits.	SteerOvrCmd - Input

Dependencies

To create the SteerOvrCmd input port, select Steering override.

Reference Control

Longitudinal

Proportional gain, Kp - Gain
10 (default) | scalar
Proportional gain, K_{p}, dimensionless.

Dependencies

To create this parameter, set Control type to PI.
Integral gain, Ki - Gain
5 (default) | scalar
Proportional gain, K_{i}, dimensionless.

Dependencies

To create this parameter, set Control type to PI.
Velocity feed-forward, Kff - Gain
. 1 (default) | scalar
Velocity feed-forward gain, $K_{f f}$, dimensionless.

Dependencies

To create this parameter, set Control type to PI.
Grade angle feed-forward, $\mathbf{K g}$ - Gain
0 (default) | scalar
Grade angle feed-forward gain, K_{g}, in $1 /$ deg.

Dependencies

To create this parameter, set Control type to PI.
Velocity gain breakpoints, VehVelVec - Breakpoints
[0 100] (default)|vector
Velocity gain breakpoints, VehVelVec, dimensionless.

Dependencies

To create this parameter, set Control type to Scheduled PI.
Velocity feed-forward gain values, KffVec - Gain
[. 1 . 1] (default) |vector
Velocity feed-forward gain values, KffVec, as a function of vehicle velocity, dimensionless.

Dependencies

To create this parameter, set Control type to Scheduled PI.
Proportional gain values, KpVec - Gain
[10 10] (default) | vector
Proportional gain values, $K p V e c$, as a function of vehicle velocity, dimensionless.

Dependencies

To create this parameter, set Control type to Scheduled PI.
Integral gain values, KiVec - Gain
[5 5] (default)| vector
Integral gain values, KiVec, as a function of vehicle velocity, dimensionless.

Dependencies

To create this parameter, set Control type to Scheduled PI.

Grade angle feed-forward values, $\mathbf{K g V e c}$ - Grade gain

[0 0] (default)| vector
Grade angle feed-forward values, KgVec , as a function of vehicle velocity, in $1 / \mathrm{deg}$.

Dependencies

To create this parameter, set Control type to Scheduled PI.
Nominal speed, vnom - Nominal vehicle speed
5 (default) | scalar
Nominal vehicle speed, $v_{\text {nom }}$, in units specified by the Reference and feedback units, velUnits parameter. The block uses the nominal speed to normalize the controller gains.

Dependencies

To create this parameter, set Control type to PI or Scheduled PI.
Anti-windup, Kaw - Gain
1 (default) | scalar
Anti-windup gain, $K_{a w}$, dimensionless.

Dependencies

To create this parameter, set Control type to PI or Scheduled PI.
Error filter time constant, tauerr - Filter
. 01 (default) | scalar
Error filter time constant, $\tau_{\text {err }}$, in s. To disable the filter, enter 0.

Dependencies

To create this parameter, set Control type to PI or Scheduled PI.

Predictive

Driver response time, tau - Response time
0.1 (default) | scalar

Driver response time, τ, in s.

Dependencies

To enable this parameter, Set Longitudinal control type, cntrlType or Lateral control type, controlTypeLat to Predictive.

Preview distance, L - Distance
3 (default) | scalar
Driver preview distance, L, in m . Used to determine the preview time window, T^{*}.

Dependencies

To enable this parameter, Set Longitudinal control type, cntrlType or Lateral control type, controlTypeLat to Predictive.

Effective vehicle total tractive force, Kpt - Tractive force
3000 (default) | scalar
Effective vehicle total tractive force, $K_{p t}$, in N.

Dependencies

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Rolling resistance coefficient, aR - Resistance
200 (default) | scalar
Static rolling and driveline resistance coefficient, a_{R}, in N. Block uses the parameter to estimate the constant acceleration or braking effort.

Dependencies

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Rolling and driveline resistance coefficient, bR - Resistance
2.5 (default) | scalar

Rolling and driveline resistance coefficient, b_{R}, in $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}$. Block uses the parameter to estimate the linear velocity-dependent acceleration or braking effort.

Dependencies

To create this parameter, set Longitudinal control type, cntrlType to Predictive.

Aerodynamic drag coefficient, cR - Drag

. 5 (default) | scalar
Aerodynamic drag coefficient, c_{R}, in $\mathrm{N} \cdot \mathrm{s}^{\wedge} 2 / \mathrm{m}^{\wedge} 2$. Block uses the parameter to estimate the quadratic velocity-dependent acceleration or braking effort.

Dependencies

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Gravitational constant, \mathbf{g} - Gravitational constant
9.81 (default) | scalar

Gravitational constant, g , in $\mathrm{m} / \mathrm{s}^{\wedge} 2$.

Dependencies

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Stanley
Vector input for poses - Select to create RefPose and CurrPose input ports off (default) | on

Select this parameter to create the RefPose and CurrPose input ports.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Stanley.

Include dynamics - Select to include dynamics

off (default) | on
The controller computes this command using the Stanley method, whose control law is based on both a kinematic and dynamic bicycle model. To change between models, use this parameter.

Setting	Implementation
off	Controller uses a kinematic bicycle model that is suitable for path following in low-speed environments such as parking lots, where inertial effects are minimal.
on	Controller uses a dynamic bicycle model that is suitable for path following in high-speed environments such as highways, where inertial effects are more pronounced.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Stanley.
Position gain of forward motion, PositionGainF - Position gain of vehicle in forward motion 2.5 (default) | positive real scalar

Position gain of the vehicle when it is in forward motion, specified as a positive scalar. This value determines how much the position error affects the steering angle. Typical values are in the range [1, 5]. Increase this value to increase the magnitude of the steering angle.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Stanley.
Position gain of reverse motion, PositionGainF - Position gain of vehicle in reverse motion 2.5 (default) | positive real scalar

Position gain of the vehicle when it is in reverse motion, specified as a positive scalar. This value determines how much the position error affects the steering angle. Typical values are in the range [1, 5]. Increase this value to increase the magnitude of the steering angle.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Stanley.
Yaw rate feedback gain, YawRateGain - Yaw rate feedback gain
. 2 (default) | nonnegative real scalar
Yaw rate feedback gain, specified as a nonnegative real scalar. This value determines how much weight is given to the current yaw rate of the vehicle when the block computes the steering angle command.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Stanley and select Include dynamics.

Steering angle feedback gain, DelayGain - Steering angle feedback gain

.2 (default) | nonnegative real scalar

Steering angle feedback gain, specified as a nonnegative real scalar. This value determines how much the difference between the current steering angle command, SteerCmd, and the current steering angle, CurrSteer, affects the next steering angle command.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Stanley and select Include dynamics.

Vehicle Parameters

Forward location of tire, a - Along vehicle longitudinal axis

1.41 (default) | scalar

Forward location of tire, a, in m . Distance from vehicle cg to forward tire location, along vehicle longitudinal axis.

Rearward location of tire, \mathbf{b} - Along vehicle longitudinal axis
1.41 (default) | scalar

Rearward location of tire, b, in m. Absolute value of distance from vehicle cg to rearward tire location, along vehicle longitudinal axis.

Vehicle mass, m - Mass
2016 (default) | scalar
Vehicle mass, m, in kg.

Dependencies

To enable this port, do either of these:

- Set Lateral control type, controlTypeLat to Stanley and select Include dynamics.
- Set Lateral control type, controlTypeLat to Predictive.

Front tire cornering coefficient, Cy_f - Coefficient
25266 (default) | scalar
Cornering stiffness coefficient, $C_{\alpha F}$, in $\mathrm{N} / \mathrm{rad}$.

Dependencies

To enable this port, do either of these:

- Set Lateral control type, controlTypeLat to Stanley and select Include dynamics.
- Set Lateral control type, controlTypeLat to Predictive.

Rear tire cornering coefficient, Cy_r - Coefficient
70933 (default) | scalar
Cornering stiffness coefficient, $C_{\alpha R}$, in $\mathrm{N} / \mathrm{rad}$.

Dependencies

To enable this port, set Lateral control type, controlTypeLat to Predictive.

Vehicle rotational inertia, I - Inertia about yaw axis
4013 (default) | scalar
Vehicle rotational inertia, I, about the vehicle yaw axis, in $N \cdot m \cdot s^{\wedge} 2$.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Predictive.
Nominal steering ratio, Ksteer - Steering ratio
18 (default) | scalar
Steering ratio, $K_{\text {steer }}$. The value has no dimension.

Dependencies

To enable this parameter, select Output handwheel angle.
Tire wheel angle limit, theta - Angle limit
45*pi/180 (default) | scalar
Tire wheel angle limit, θ, in rad.

Shift

Reverse, Neutral, Drive
Initial gear, GearInit - Initial gear
0 (default) | scalar
Integer value of the initial gear. The block uses the initial gear to generate acceleration and braking commands to track forward and reverse vehicle motion.

Gear	Integer
Park	80
Reverse	-1
Neutral	0
Drive	1
Gear	Gear number

Dependencies

To create this parameter, set Shift type, shftType to Reverse, Neutral, Drive or Scheduled. If you specify Reverse, Neutral, Drive, the Initial Gear, GearInit parameter value can be only -1, 0 , or 1 .

Time required to shift, tShift - Time

. 1 (default) | scalar

Time required to shift, t Shift, in s. The block uses the time required to shift to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, and drive gear shift scheduling.

Dependencies

To create this parameter, set Shift type, shftType to Reverse, Neutral, Drive.
Scheduled
Initial gear, GearInit - Initial gear
0 (default) | scalar
Integer value of the initial gear. The block uses the initial gear to generate acceleration and braking commands to track forward and reverse vehicle motion.

Gear	Integer
Park	80
Reverse	-1
Neutral	0
Drive	1
Gear	Gear number

Dependencies

To create this parameter, set Shift type, shftType to Reverse, Neutral, Drive or Scheduled. If you specify Reverse, Neutral, Drive, the Initial Gear, GearInit parameter value can be only -1, 0 , or 1 .

Up and down shift accelerator pedal positions, pdIVec - Pedal position breakpoints
[0.1 0.4 0.5 0.9] (default)|[1-by-m] vector
Pedal position breakpoints for lookup tables when calculating upshift and downshift velocities, dimensionless. Vector dimensions are 1 by the number of pedal position breakpoints, m.

Dependencies

To create this parameter, set Shift type, shftType to Scheduled.

Upshift velocity data table, upShftTbI - Table
 [m-by-n] array

Upshift velocity data as a function of pedal position and gear, in units specified by the Reference and feedback units, velUnits parameter. Upshift velocities indicate the vehicle velocity at which the gear should increase by 1 .

The array dimensions are m pedal positions by n gears. The first column of data, when n equals 1 , is the upshift velocity for the neutral gear.

Dependencies

To create this parameter, set Shift type, shftType to Scheduled.

Downshift velocity data table, dwnShftTbl - Table

[m-by-n] array
Downshift velocity data as a function of pedal position and gear, in units specified by the Reference and feedback units, velUnits parameter. Downshift velocities indicate the vehicle velocity at which the gear should decrease by 1 .

The array dimensions are m pedal positions by n gears. The first column of data, when n equals 1 , is the downshift velocity for the neutral gear.

Dependencies

To create this parameter, set Shift type, shftType to Scheduled.
Time required to shift, tClutch - Time
. 5 (default) | scalar
Time required to shift, $t_{\text {Clutch }}$, in s .

Dependencies

To create this parameter, set Shift type, shftType to Scheduled.
Time required to engage reverse from neutral, tRev - Time

. 5 (default) | scalar

Time required to engage reverse from neutral, $t_{\text {Rev, }}$ in s .

Dependencies

To create this parameter, set Shift type, shftType to Scheduled.

Time required to engage park from neutral, tPark - Time

120 (default) | scalar
Time required to engage park from neutral, $t_{\text {Park }}$ in s .

Dependencies

To create this parameter, set Shift type, shftType to Scheduled.

Version History

Introduced in R2018a

References

[1] MacAdam, C. C. "An Optimal Preview Control for Linear Systems". Journal of Dynamic Systems, Measurement, and Control. Vol. 102, Number 3, Sept. 1980.
[2] MacAdam, C. C. "Application of an Optimal Preview Control for Simulation of Closed-Loop Automobile Driving ". IEEE Transactions on Systems, Man, and Cybernetics. Vol. 11, Issue 6, June 1981.
[3] MacAdam, C. C. Development of Driver/Vehicle Steering Interaction Models for Dynamic Analysis. Final Technical Report UMTRI-88-53. Ann Arbor, Michigan: The University of Michigan Transportation Research Institute, Dec. 1988.
[4] Hoffmann, Gabriel M., Claire J. Tomlin, Michael Montemerlo, and Sebastian Thrun. "Autonomous Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental Validation and Racing." American Control Conference. 2007, pp. 2296-2301. doi:10.1109/ ACC.2007.4282788

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

See Also

Lateral Driver | Longitudinal Driver

3D Simulation Blocks

Simulation 3D Actor Transform Get

Get actor translation, rotation, scale

Libraries:

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Core Aerospace Blockset / Animation / Simulation 3D
Simulink 3D Animation / Simulation 3D

Description

The Simulation 3D Actor Transform Get block provides the actor translation, rotation, and scale for the Simulink simulation environment.

The block uses a vehicle-fixed coordinate system that is initially aligned with the inertial world coordinate system.

Axis	Description				
X	Forward direction of the vehicle Roll $~-~ R i g h t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$ X				
Y	Extends to the right of the vehicle, initially parallel to the ground plane Pitch $~-~ R i g h t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$ -axis	$	$	Z	Extends upwards
:---	:---				
Yaw - Left-handed rotation about Z-axis					

Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components. Components do not exist by themselves; they are associated with an actor.

Tip Verify that the Simulation 3D Scene Configuration block executes before the Simulation 3D Actor Transform Get block. That way, the Unreal Engine 3D visualization environment prepares the data
before the Simulation 3D Actor Transform Get block receives it. To check the block execution order, right-click the blocks and select Properties. On the General tab, confirm these Priority settings:

- Simulation 3D Scene Configuration - 0
- Simulation 3D Actor Transform Get - 1

For more information about execution order, see "Control and Display Execution Order".

Ports

Output

Translation - Actor translation
array
Actor translation, in m. Array dimensions are number of parts per actor-by-3.

- Translation(1,1), Translation(1,2), and Translation(1,3) - Vehicle displacement along world X-, Y, and Z - axes, respectively.
- Translation(...,1), Translation(...,2), and Translation(..., 3) - Actor displacement relative to vehicle, in vehicle-fixed coordinate system initially aligned with world X-, Y, and Z - axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Translation signal:

- Dimensions are [5x3].
- Contains translation information according to the axle and wheel locations, relative to vehicle.
Translation $=\left[\begin{array}{ccc}X_{v} & Y_{v} & Z_{v} \\ X_{F L} & Y_{F L} & Z_{F L} \\ X_{F R} & Y_{F R} & Z_{F R} \\ X_{R L} & Y_{R L} & Z_{R L} \\ X_{R R} & Y_{R R} & Z_{R R}\end{array}\right]$

Translation	Array Element
Vehicle, X_{v}	Translation $(1,1)$
Vehicle, Y_{v}	Translation(1,2)
Vehicle, Z_{v}	Translation(1,3)
Front left wheel, $X_{F L}$	Translation(2,1)
Front left wheel, $Y_{F L}$	Translation(2,2)
Front left wheel, $Z_{F L}$	Translation(2,3)
Front right wheel, $X_{F R}$	Translation(3,1)
Front right wheel, $Y_{F R}$	Translation(3,2)
Front right wheel, $Z_{F R}$	Translation(3,3)
Rear left wheel, $X_{R L}$	Translation(4,1)
Rear left wheel, $Y_{R L}$	Translation(4,2)

Translation	Array Element
Rear left wheel, $Z_{R L}$	Translation $(4,3)$
Rear right wheel, $X_{R R}$	Translation(5,1)
Rear right wheel, $Y_{R R}$	Translation(5,2)
Rear right wheel, $Z_{R R}$	Translation(5,3)

Rotation - Actor rotation
array
Actor rotation across a [-pi/2, pi/2] range, in rad. Array dimensions are number of parts per actor-by-3.

- Rotation(1,1), Rotation(1,2), and Rotation(1,3) - Vehicle rotation about vehicle-fixed pitch, roll, and yaw Y-, Z-, and X - axes, respectively.
- Rotation(...,1), Rotation(...,2), and Rotation(...,3) - Actor rotation about vehiclefixed pitch, roll, and yaw Y-, Z-, and X - axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Rotation signal:

- Dimensions are [5x3].
- Contains rotation information according to the axle and wheel locations.

$$
\text { Rotation }=\left[\begin{array}{ccc}
\text { Pitch }_{v} & \text { Roll }_{v} & \text { Yaw }_{v} \\
\text { Pitch }_{F L} & \text { Roll }_{F L} & \text { Yaw }_{F L} \\
\text { Pitch }_{F R} & \text { Roll }_{F R} & \text { Yaw }_{F R} \\
\text { Pitch }_{R L} & \text { Roll }_{R L} & \text { Yaw }_{R L} \\
\text { Pitch }_{R R} & \text { Roll }_{R R} & \text { Yaw }_{R R}
\end{array}\right]
$$

Rotation	Array Element			
Vehicle, Pitch $_{v}$	Rotation(1,1)			
Vehicle, Roll v	Rotation(1,2)			
Vehicle, Yaw	Rotation(1,3)			
Front left wheel, Pitch $_{F L}$	Rotation(2,1)			
Front left wheel, Roll $_{F L}$	Rotation(2,2)			
Front left wheel, Yaw	RL	\quad Rotation(2,3)	Front right wheel, Pitch $_{F R}$	Rotation(3,1)
:---	:---			
Front right wheel, Roll $_{F R}$	Rotation(3,2)			
Front right wheel, Yaw $_{F R}$	Rotation(3,3)			
Rear left wheel, Pitch $_{R L}$	Rotation(4,1)			
Rear left wheel, Roll $_{R L}$	Rotation(4,2)			
Rear left wheel, Yaw	Rotation(4,3)			
Rear right wheel, Pitch $_{R R}$	Rotation(5,1)			
Rear right wheel, Roll $_{R R}$	Rotation(5,2)			

Rotation	Array Element
Rear right wheel, $\operatorname{Yaw}_{R R}$	Rotation(5,3)

Scale - Actor scale

array
Actor scale. Array dimensions are number of number of parts per actor-by-3.

- Scale (1,1), Scale (1,2), and Scale (1,3) - Vehicle scale along world X-, Y-, and Z - axes, respectively.
- Scale(...,1), Scale(...,2), and Scale(...,3) - Actor scale along world X-, Y-, and Zaxes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Scale signal:

- Dimensions are [5x3].
- Contains scale information according to the axle and wheel locations.

$$
\text { Scale }=\left[\begin{array}{ccc}
X_{V_{\text {scale }}} & Y_{V_{\text {scale }}} & Z_{V_{\text {scale }}} \\
X_{F L_{\text {scale }}} & Y_{F L_{\text {scale }}} & Z_{F L_{\text {scale }}} \\
X_{F R_{\text {scale }}} & Y_{F R_{\text {scale }}} & Z_{F R_{\text {scale }}} \\
X_{R L_{\text {scale }}} & Y_{R L_{\text {scale }}} & Z_{R L_{\text {scale }}} \\
X_{R R_{\text {scale }}} & Y_{R R_{\text {scale }}} & Z_{R R_{\text {scale }}}
\end{array}\right]
$$

Scale	Array Element
Vehicle, $X_{V_{\text {scale }}}$	Scale(1,1)
Vehicle, $Y_{V_{\text {sale }}}$	Scale(1,2)
Vehicle, $Z_{V_{\text {sale }}}$	Scale(1,3)
Front left wheel, $X_{F L_{\text {scale }}}$	Scale (2,1)
Front left wheel, $Y_{F L_{\text {scale }}}$	Scale(2,2)
Front left wheel, $Z_{F L_{\text {sclue }}}$	Scale(2,3)
Front right wheel, $X_{F R_{\text {sale }}}$	Scale(3,1)
Front right wheel, $Y_{F R_{\text {sace }}}$	Scale(3,2)
Front right wheel, $Z_{F R_{\text {sacale }}}$	Scale(3,3)
Rear left wheel, $X_{R L_{\text {scole }}}$	Scale(4,1)
Rear left wheel, $Y_{R L_{\text {sace }}}$	Scale(4,2)
Rear left wheel, $Z_{R L_{\text {scale }}}$	Scale(4,3)
Rear right wheel, $X_{R R_{\text {sale }}}$	Scale (5,1)
Rear right wheel, $Y_{\text {RR }{ }_{\text {scale }}}$	Scale (5,2)
Rear right wheel, $Z_{R R_{\text {scale }}}$	Scale(5,3)

Parameters

Tag for actor in 3D scene, ActorTag - Name
SimulinkActorl (default)| character vector
Actor name.
Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components. Components do not exist by themselves; they are associated with an actor.

The block does not support multiple instances of the same actor tag. To refer to the same scene actor when you use the 3D block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor Transform Set), specify the same Tag for actor in 3D scene, ActorTag parameter.

Number of parts per actor to get, NumberOfParts - Name

1 (default) | scalar
Number of parts per actor. Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components. Components do not exist by themselves; they are associated with an actor. Typically, a vehicle actor with a body and four wheels has 5 parts.

The block does not support multiple instances of the same actor tag. To refer to the same scene actor when you use the 3D block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor Transform Set), specify the same Tag for actor in 3D scene, ActorTag parameter.

Sample time - Sample time

- 1 (default) | scalar

Sample time, T_{s}. The graphics frame rate is the inverse of the sample time.

Version History

Introduced in R2018a

See Also

Simulation 3D Actor Transform Set | Simulation 3D Camera Get | Simulation 3D Scene Configuration | Vehicle Terrain Sensor

Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Unreal Engine Simulation Environment Requirements and Limitations"

Simulation 3D Actor Transform Set

Set actor translation, rotation, scale

Libraries:

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Core
Aerospace Blockset / Animation / Simulation 3D
Simulink 3D Animation / Simulation 3D

Description

The Simulation 3D Actor Transform Set block sets the actor translation, rotation, and scale in the 3D visualization environment.

The block uses a vehicle-fixed coordinate system that is initially aligned with the inertial world coordinate system.

Axis	Description			
X	Forward direction of the vehicle Roll - Right-handed rotation about X-axis			
Y	Extends to the right of the vehicle, initially parallel to the ground plane Pitch $~-~ R i g h t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$ -axis	$	$	Extends upwards
:---	:---			
Yaw - Left-handed rotation about Z-axis				

Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components. Components do not exist by themselves; they are associated with an actor.

Tip Verify that the Simulation 3D Actor Transform Set block executes before the Simulation 3D Scene Configuration block. That way, Simulation 3D Actor Transform Set prepares the signal data
before the Unreal Engine 3D visualization environment receives it. To check the block execution order, right-click the blocks and select Properties. On the General tab, confirm these Priority settings:

- Simulation 3D Scene Configuration - 0
- Simulation 3D Actor Transform Set - - 1

For more information about execution order, see "Control and Display Execution Order".

Ports

Input

Translation - Actor translation
array
Actor translation, in m. Array dimensions are number of parts per actor-by-3.

- Translation(1, 1), Translation(1,2), and Translation(1,3) - Vehicle displacement along world X-, Y, and Z - axes, respectively.
- Translation(...,1), Translation(...,2), and Translation(...,3) - Actor displacement relative to vehicle, in vehicle-fixed coordinate system initially aligned with world X-, Y, and Z - axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Translation signal:

- Dimensions are [5x3].
- Contains translation information according to the axle and wheel locations, relative to vehicle.

Translation $=\left[\begin{array}{ccc}X_{v} & Y_{v} & Z_{v} \\ X_{F L} & Y_{F L} & Z_{F L} \\ X_{F R} & Y_{F R} & Z_{F R} \\ X_{R L} & Y_{R L} & Z_{R L} \\ X_{R R} & Y_{R R} & Z_{R R}\end{array}\right]$

Translation	Array Element
Vehicle, X_{v}	Translation(1,1)
Vehicle, Y_{v}	Translation(1,2)
Vehicle, Z_{v}	Translation(1,3)
Front left wheel, $X_{F L}$	Translation(2,1)
Front left wheel, $Y_{F L}$	Translation(2,2)
Front left wheel, $Z_{F L}$	Translation(2,3)
Front right wheel, $X_{F R}$	Translation(3,1)
Front right wheel, $Y_{F R}$	Translation(3,2)
Front right wheel, $Z_{F R}$	Translation(3,3)
Rear left wheel, $X_{R L}$	Translation(4,1)

Translation	Array Element
Rear left wheel, $Y_{R L}$	Translation (4, 2)
Rear left wheel, $Z_{R L}$	Translation(4, 3)
Rear right wheel, $X_{R R}$	Translation(5, 1)
Rear right wheel, $Y_{R R}$	Translation(5, 2)
Rear right wheel, $Z_{R R}$	Translation(5, 3)

Rotation - Actor rotation

array
Actor rotation across a [-pi/2, pi/2] range, in rad. Array dimensions are number of parts per actor-by-3.

- Rotation(1,1), Rotation(1,2), and Rotation(1,3) - Vehicle rotation about vehicle-fixed pitch, roll, and yaw Y-, Z-, and X - axes, respectively.
- Rotation(..., 1), Rotation(...,2), and Rotation (..., 3) - Actor rotation about vehiclefixed pitch, roll, and yaw Y-, Z-, and X - axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Rotation signal:

- Dimensions are [5×3].
- Contains rotation information according to the axle and wheel locations.

Rotation $=\left[\begin{array}{ccc}\text { Pitch }_{v} & \text { Roll }_{v} & \text { Yaw }_{v} \\ \text { Pitch }_{F L} & \text { Roll }_{F L} & \text { Yaw }_{F L} \\ \text { Pitch }_{F R} & \text { Roll }_{F R} & \text { Yaw }_{F R} \\ \text { Pitch }_{R L} & \text { Roll }_{R L} & \text { Yaw }_{R L} \\ \text { Pitch }_{R R} & \text { Roll }_{R R} & \text { Yaw }_{R R}\end{array}\right]$

Rotation	Array Element
Vehicle, Pitch $_{v}$	Rotation(1,1)
Vehicle, Roll $_{v}$	Rotation(1,2)
Vehicle, Yaw $_{v}$	Rotation(1,3)
Front left wheel, Pitch $_{F L}$	Rotation(2,1)
Front left wheel, Roll $_{F L}$	Rotation(2,2)
Front left wheel, Yaw	Rotation(2,3)
Front right wheel, Pitch $_{F R}$	Rotation(3,1)
Front right wheel, Roll $_{F R}$	Rotation(3,2)
Front right wheel, Yaw	RR
Rear left wheel, Pitch $_{R L}$	Rotation(3,3)
Rear left wheel, Roll $_{R L}$	Rotation(4,1)
Rear left wheel, Yaw Pot	Rotation(4,2)
Rear right wheel, Pitch $_{R R}$	Rotation(4,3)

Rotation	Array Element
Rear right wheel, $\operatorname{Roll}_{R R}$	Rotation(5,2)
Rear right wheel, $\operatorname{Yaw}_{R R}$	Rotation(5,3)

Scale - Actor scale

array
Actor scale. Array dimensions are number of number of parts per actor-by-3.

- Scale (1, 1), Scale (1, 2), and Scale (1,3) - Vehicle scale along world X-, Y-, and Z - axes, respectively.
- Scale (..., 1), Scale (...,2), and Scale(...,3) - Actor scale along world X-, Y-, and Zaxes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Scale signal:

- Dimensions are [5×3].
- Contains scale information according to the axle and wheel locations.
Scale $=\left[\begin{array}{ccc}X_{V_{\text {scale }}} & Y_{V_{\text {scale }}} & Z_{V_{\text {scale }}} \\ X_{F L_{\text {scale }}} & Y_{F L_{\text {scale }}} & Z_{F L_{\text {scale }}} \\ X_{F R_{\text {scale }}} & Y_{F R_{\text {scale }}} & Z_{F R_{\text {scale }}} \\ X_{R L_{\text {scale }}} & Y_{R L_{\text {scale }}} & Z_{R L_{\text {scale }}} \\ X_{R R_{\text {scale }}} & Y_{R R_{\text {scale }}} & Z_{R R_{\text {scale }}}\end{array}\right]$

Scale	Array Element
Vehicle, $X_{V_{\text {scade }}}$	Scale(1,1)
Vehicle, $Y_{V_{\text {sale }}}$	Scale(1,2)
Vehicle, $Z_{V_{\text {scale }}}$	Scale(1,3)
Front left wheel, $X_{F L_{\text {scale }}}$	Scale(2,1)
Front left wheel, $Y_{F L_{\text {scale }}}$	Scale(2,2)
Front left wheel, $Z_{F L_{\text {scale }}}$	Scale (2,3)
Front right wheel, $X_{F R_{\text {sace }}}$	Scale(3,1)
Front right wheel, $Y_{F R_{\text {sade }}}$	Scale(3,2)
Front right wheel, $Z_{F R_{\text {sace }}}$	Scale(3,3)
Rear left wheel, $X_{R L_{\text {sale }}}$	Scale (4,1)
Rear left wheel, $Y_{R L_{\text {scale }}}$	Scale(4,2)
Rear left wheel, $Z_{R L_{\text {scale }}}$	Scale(4,3)
Rear right wheel, $X_{\text {RRsale }}$	Scale (5,1)
Rear right wheel, $Y_{R R_{\text {scale }}}$	Scale (5,2)
Rear right wheel, $Z_{R R_{\text {sale }}}$	Scale(5,3)

Parameters

Actor Setup

Tag for actor in 3D scene, ActorTag - Name
SimulinkActor1 (default) | character vector
Actor name.
Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components. Components do not exist by themselves; they are associated with an actor.

The block does not support multiple instances of the same actor tag. To refer to the same scene actor when you use the 3D block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor Transform Set), specify the same Tag for actor in 3D scene, ActorTag parameter.

Number of parts per actor to set, NumberOfParts - Name

1 (default) | scalar
Number of parts per actor. Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components. Components do not exist by themselves; they are associated with an actor. Typically, a vehicle actor with a body and four wheels has 5 parts.

The block does not support multiple instances of the same actor tag. To refer to the same scene actor when you use the 3D block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor Transform Set), specify the same Tag for actor in 3D scene, ActorTag parameter.

Initial Values
Initial array values to translate actor per part, Translation - Actor initial position
[0 0 0] (default) |array
Actor initial position, along world X-, Y-, and Z - axes, in m.
Array dimensions are number of parts per actor-by-3.

- Translation(1,1), Translation(1,2), and Translation(1,3) - Vehicle displacement along world X-, Y, and Z - axes, respectively.
- Translation(...,1), Translation(...,2), and Translation(..., 3) - Actor displacement relative to vehicle, in vehicle-fixed coordinate system initially aligned with world X-, Y, and Z - axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The parameter:

- Dimensions are [5×3].
- Contains translation information according to the axle and wheel locations, relative to vehicle.

$$
\text { Translation }=\left[\begin{array}{ccc}
X_{V} & Y_{v} & Z_{V} \\
X_{F L} & Y_{F L} & Z_{F L} \\
X_{F R} & Y_{F R} & Z_{F R} \\
X_{R L} & Y_{R L} & Z_{R L} \\
X_{R R} & Y_{R R} & Z_{R R}
\end{array}\right]
$$

Translation	Array Element
Vehicle, X_{v}	Translation(1, 1)
Vehicle, Y_{v}	Translation(1, 2)
Vehicle, Z_{v}	Translation(1, 3)
Front left wheel, $X_{F L}$	Translation(2, 1)
Front left wheel, $Y_{F L}$	Translation(2,2)
Front left wheel, $Z_{F L}$	Translation(2, 3)
Front right wheel, $X_{F R}$	Translation(3, 1)
Front right wheel, $Y_{F R}$	Translation(3, 2)
Front right wheel, $Z_{F R}$	Translation(3, 3)
Rear left wheel, $X_{R L}$	Translation(4, 1)
Rear left wheel, $Y_{R L}$	Translation(4, 2)
Rear left wheel, $Z_{R L}$	Translation(4, 3)
Rear right wheel, $X_{R R}$	Translation(5, 1)
Rear right wheel, $Y_{R R}$	Translation(5, 2)
Rear right wheel, $Z_{R R}$	Translation(5, 3)

Initial array values to rotate actor per part, Rotation - Actor initial rotation
[0 0 0] (default) |array
Actor initial rotation about world $X-, Y$-, and Z - axes across a $[-\mathrm{pi} / 2$, pi/2] range, in rad.
Array dimensions are number of parts per actor-by-3.

- Rotation(1,1), Rotation(1,2), and Rotation(1,3) - Vehicle rotation about vehicle-fixed pitch, roll, and yaw Y-, Z-, and X - axes, respectively.
- Rotation(...,1), Rotation(...,2), and Rotation(...,3) - Actor rotation about vehiclefixed pitch, roll, and yaw Y-, Z-, and X - axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The parameter:

- Dimensions are [5×3].
- Contains rotation information according to the axle and wheel locations.
Rotation $=\left[\begin{array}{ccc}\text { Pitch }_{\nu} & \text { Roll }_{V} & \text { Yaw }_{\nu} \\ \text { Pitch }_{F L} & \text { Roll }_{F L} & \text { Yaw }_{F L} \\ \text { Pitch }_{F R} & \text { Roll }_{F R} & Y a w_{F R} \\ \text { Pitch }_{R L} & \text { Roll }_{R L} & \text { Yaw }_{R L} \\ \text { Pitch }_{R R} & \text { Roll }_{R R} & \text { Yaw }_{R R}\end{array}\right]$

Rotation	Array Element
Vehicle, Pitch $_{v}$	Rotation(1,1)
Vehicle, Roll $_{v}$	Rotation(1,2)
Vehicle, Yaw $_{v}$	Rotation(1,3)

Rotation	Array Element
Front left wheel, Pitch $_{\text {FL }}$	Rotation (2,1)
Front left wheel, Roll $_{F L}$	Rotation (2,2)
Front left wheel, Yaw $_{F L}$	Rotation(2,3)
Front right wheel, Pitch $_{F R}$	Rotation(3,1)
Front right wheel, Roll $_{F R}$	Rotation (3, 2)
Front right wheel, Yaw $_{\text {FR }}$	Rotation(3, 3)
Rear left wheel, Pitch $_{\text {RL }}$	Rotation(4,1)
Rear left wheel, Roll $_{\text {RL }}$	Rotation (4, 2)
Rear left wheel, Yaw $_{R L}$	Rotation(4, 3)
Rear right wheel, Pitch $_{\text {RR }}$	Rotation(5,1)
Rear right wheel, Roll $_{R R}$	Rotation (5,2)
Rear right wheel, Yaw $_{\text {RR }}$	Rotation(5, 3)

Initial array values to scale actor per part, Scale - Actor initial scale
[1 1 1] (default)|array
Actor initial scale.
Array dimensions are number of number of parts per actor-by-3.

- Scale (1, 1), Scale (1, 2), and Scale (1, 3) - Vehicle scale along world X-, Y, and Z - axes, respectively.
- Scale(...,1), Scale(...,2), and Scale(...,3) - Actor scale along world X-, Y, and Z axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The parameter:

- Dimensions are [5x3].
- Contains scale information according to the axle and wheel locations.

$$
\text { Scale }=\left[\begin{array}{ccc}
X_{V_{\text {scale }}} & Y_{V_{\text {scale }}} & Z_{V_{\text {scale }}} \\
X_{F L_{\text {scale }}} & Y_{F L_{\text {scale }}} & Z_{F L_{\text {scale }}} \\
X_{F R_{\text {scale }}} & Y_{F R_{\text {scale }}} & Z_{F R_{\text {scale }}} \\
X_{R L_{\text {scale }}} & Y_{R L_{\text {scale }}} & Z_{R L_{\text {scale }}} \\
X_{R R_{\text {scale }}} & Y_{R R_{\text {scale }}} & Z_{R R_{\text {scale }}}
\end{array}\right]
$$

Scale	Array Element	Scale Axis
Vehicle, $X_{V_{\text {scale }}}$	Scale $(1,1)$	World X-axis
Vehicle, $V_{V_{\text {scal }}}$	Scale $(1,2)$	World Y-axis
Vehicle, $Z_{V_{\text {scal }}}$	Scale $(1,3)$	World Z-axis
Front left wheel, $X_{F L_{\text {scale }}}$	Scale $(2,1)$	World X-axis
Front left wheel, $Y_{F L_{\text {cole }}}$	Scale $(2,2)$	World Y-axis

Scale	Array Element	Scale Axis
Front left wheel, $Z_{F L_{\text {scal }}}$	$\operatorname{Scale}(2,3)$	World Z-axis
Front right wheel, $X_{F R_{\text {scal }}}$	$\operatorname{Scale}(3,1)$	World X-axis
Front right wheel, $Y_{F R_{\text {sale }}}$	$\operatorname{Scale}(3,2)$	World Y-axis
Front right wheel, $Z_{F R_{\text {sale }}}$	Scale $(3,3)$	World Z-axis
Rear left wheel, $X_{R L_{\text {scale }}}$	$\operatorname{Scale}(4,1)$	World X-axis
Rear left wheel, $Y_{R L_{\text {sale }}}$	$\operatorname{Scale}(4,2)$	World Y-axis
Rear left wheel, $Z_{R L_{\text {scale }}}$	$\operatorname{Scale}(4,3)$	World Z-axis
Rear right wheel, $X_{R R_{\text {scal }}}$	$\operatorname{Scale}(5,1)$	World X-axis
Rear right wheel, $Y_{R R_{\text {scale }}}$	$\operatorname{Scale}(5,2)$	World Y-axis
Rear right wheel, $Z_{R R_{\text {sade }}}$	$\operatorname{Scale}(5,3)$	World Z-axis

Sample time - Sample time

- 1 (default) | scalar

Sample time, T_{s}. The graphics frame rate is the inverse of the sample time.

Version History

Introduced in R2018a

See Also

Simulation 3D Actor Transform Get | Simulation 3D Camera Get | Simulation 3D Scene Configuration | Vehicle Terrain Sensor

Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Unreal Engine Simulation Environment Requirements and Limitations"

Simulation 3D Camera Get

Camera image

Libraries:

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Core
Aerospace Blockset / Animation / Simulation 3D
Simulink 3D Animation / Simulation 3D

Description

The Simulation 3D Camera Get block provides an interface to an ideal camera in the 3D visualization environment. The image output is a red, green, and blue (RGB) array.

If you set the sample time to -1, the block uses the sample time specified in the Simulation 3D Scene Configuration block. To use this sensor, ensure that the Simulation 3D Scene Configuration block is in your model.

Tip Verify that the Simulation 3D Scene Configuration block executes before the Simulation 3D Camera Get block. That way, the Unreal Engine 3D visualization environment prepares the data before the Simulation 3D Camera Get block receives it. To check the block execution order, right-click the blocks and select Properties. On the General tab, confirm these Priority settings:

- Simulation 3D Scene Configuration - 0
- Simulation 3D Camera Get - 1

For more information about execution order, see "Control and Display Execution Order".

Ports

Output

Image - 3D output camera image
m-by- n-by-3 array of RGB triplet values
3D output camera image, returned as an m-by- n-by- 3 array of RGB triplet values. m is the vertical resolution of the image, and n is the horizontal resolution of the image.
Data Types: int8 |uint8

Parameters

Mounting
Sensor identifier - Number to identify unique sensor
0 (default) | positive integer
Unique sensor identifier, specified as a positive integer. This number is used to identify a specific sensor. The sensor identifier distinguishes between sensors in a multi-sensor system.

Example: 2

Vehicle name - Name of a vehicle

Scene Origin (default) | character vector
Vehicle name. Block provides a list of vehicles in the model. If you select Scene Origin, the block places a sensor at the scene origin.

Example: SimulinkVehicle1
Vehicle mounting location - Sensor mounting location
Origin (default)|Front bumper|Rear bumper|Right mirror|Left mirror|Rearview mirror|Hood center|Roof center

Sensor mounting location.

- When Vehicle name is Scene Origin, the block mounts the sensor to the origin of the scene, and Mounting location can be set to Origin only. During simulation, the sensor remains stationary.
- When Vehicle name is the name of a vehicle (for example, SimulinkVehicle1) the block mounts the sensor to one of the predefined mounting locations described in the table. During simulation, the sensor travels with the vehicle.

Vehicle Mounting Location	Description	Orientation Relative to Vehicle Origin [Roll, Pitch, Yaw] (deg)
Origin	Forward-facing sensor mounted to the vehicle origin, which is on the ground and at the geometric center of the vehicle (see "Coordinate Systems in Vehicle Dynamics Blockset")	$[0,0]$

Vehicle Mounting Location	Description	Orientation Relative to Vehicle Origin [Roll, Pitch, Yaw] (deg)
Front bumper	Forward-facing sensor mounted to the front bumper	$[0,0,0]$
Rear bumper		

Vehicle Mounting Location	Description	Orientation Relative to Vehicle Origin [Roll, Pitch, Yaw] (deg)
Right mirror	Downward-facing sensor mounted to the right side-view mirror	$[0,-90,0]$

Vehicle Mounting Location	Description	Orientation Relative to Vehicle Origin [Roll, Pitch, Yaw] (deg)
Hood center	Forward-facing sensor mounted to the center of the hood	$[0,0,0]$

The (X, Y, Z) location of the sensor relative to the vehicle depends on the vehicle type. To specify the vehicle type, use the Type parameter of the Simulation 3D Scene Configuration block to which you are mounting. The tables show the X, Y, and Z locations of sensors in the vehicle coordinate system. In this coordinate system:

- The X-axis points forward from the vehicle.
- The Y-axis points to the left of the vehicle, as viewed when facing forward.
- The Z-axis points up from the ground.
- Roll, pitch, and yaw are clockwise-positive when looking in the positive direction of the X-axis, Y axis, and Z-axis, respectively. When looking at a vehicle from the top down, then the yaw angle (that is, the orientation angle) is counterclockwise-positive, because you are looking in the negative direction of the axis.

Box Truck - Sensor Locations Relative to Vehicle Origin

Mounting Location	$\mathbf{X (m)}$	$\mathbf{Y}(\mathbf{m})$	$\mathbf{Z}(\mathbf{m})$
Front bumper	5.10	0	0.60
Rear bumper	-5	0	0.60
Right mirror	2.90	1.60	2.10
Left mirror	2.90	-1.60	2.10
Rearview mirror	2.60	0.20	2.60
Hood center	3.80	0	2.10
Roof center	1.30	0	4.20

Hatchback - Sensor Locations Relative to Vehicle Origin

Mounting Location	$\mathbf{X (m)}$	$\mathbf{Y}(\mathbf{m})$	$\mathbf{Z}(\mathbf{m})$
Front bumper	1.93	0	0.51
Rear bumper	-1.93	0	0.51
Right mirror	0.43	-0.84	1.01
Left mirror	0.43	0.84	1.01
Rearview mirror	0.32	0	1.27
Hood center	1.44	0	1.01
Roof center	0	0	1.57

Muscle Car - Sensor Locations Relative to Vehicle Origin

Mounting Location	$\mathbf{X (m)}$	$\mathbf{Y}(\mathbf{m})$	$\mathbf{Z}(\mathbf{m})$
Front bumper	2.47	0	0.45
Rear bumper	-2.47	0	0.45
Right mirror	0.43	-1.08	1.01
Left mirror	0.43	1.08	1.01
Rearview mirror	0.32	0	1.20
Hood center	1.28	0	1.14
Roof center	-0.25	0	1.58

Sedan - Sensor Locations Relative to Vehicle Origin

Mounting Location	$\mathbf{X}(\mathbf{m})$	$\mathbf{Y}(\mathbf{m})$	$\mathbf{Z}(\mathbf{m})$
Front bumper	2.42	0	0.51
Rear bumper	-2.42	0	0.51
Right mirror	0.59	-0.94	1.09
Left mirror	0.59	0.94	1.09
Rearview mirror	0.43	0	1.31
Hood center	1.46	0	1.11
Roof center	-0.45	0	1.69

Small Pickup Truck - Sensor Locations Relative to Vehicle Origin

Mounting Location	$\mathbf{X}(\mathbf{m})$	$\mathbf{Y}(\mathbf{m})$	$\mathbf{Z}(\mathbf{m})$
Front bumper	3.07	0	0.51
Rear bumper	-3.07	0	0.51
Right mirror	1.10	-1.13	1.52
Left mirror	1.10	1.13	1.52
Rearview mirror	0.85	0	1.77
Hood center	2.22	0	1.59
Roof center	0	0	2.27

Sport Utility Vehicle - Sensor Locations Relative to Vehicle Origin

Mounting Location	$\mathbf{X (m)}$	$\mathbf{Y}(\mathbf{m})$	$\mathbf{Z}(\mathbf{m})$
Front bumper	2.42	0	0.51
Rear bumper	-2.42	0	0.51
Right mirror	0.60	-1	1.35
Left mirror	0.60	1	1.35
Rearview mirror	0.39	0	1.55
Hood center	1.58	0	1.39
Roof center	-0.56	0	2

Example: Origin
Specify offset - Specify offset from mounting location
off (default) | on
Select this parameter to specify an offset from the mounting location.
Relative translation [$\mathbf{X}, \mathbf{Y}, \mathbf{Z}$] - Translation offset from mounting location
[0,0,0] (default) | real-valued 1-by-3 vector
Specify a translation offset from the mount location, about the vehicle coordinate system X, Y, and Z axes. Units are in meters.

- The X-axis points forward from the vehicle.
- The Y-axis points to the left of the vehicle, as viewed when facing forward.
- The Z-axis points up.

Example: [0,0,0.01]
Dependencies
To enable this parameter, select Specify offset.
Relative rotation [Roll, Pitch, Yaw] - Rotational offset from mounting location
[0, 0, 0] (default) | real-valued 1-by-3 vector
Specify a rotational offset from the mounting location, about the vehicle coordinate system X, Y, and Z axes. Units are in degrees.

- Roll angle is the angle of rotation about the X-axis of the vehicle coordinate system. A positive roll angle corresponds to a clockwise rotation when looking in the positive direction of the X-axis.
- Pitch angle is the angle of rotation about the Y-axis of the vehicle coordinate system. A positive pitch angle corresponds to a clockwise rotation when looking in the positive direction of the Y axis.
- Yaw angle is the angle of rotation about the Z of the vehicle coordinate system. A positive yaw angle corresponds to a clockwise rotation when looking in the positive direction of the Z-axis.

Example: [0, 0, 10]

Dependencies

To enable this parameter, select Specify offset.

Sample time - Sample time

-1 (default) | positive scalar
Sample time of the block in seconds. The 3D simulation environment frame rate is the inverse of the sample time.

If you set the sample time to -1 , the block uses the sample time specified in the Simulation 3D Scene Configuration block.

Parameter
Horizontal resolution - Pixels
uint32(1280) (default) | scalar
Horizontal image resolution, in pixels.
Vertical resolution - Pixels
uint32(720) (default) | scalar
Vertical image resolution, in pixels.
Horizontal field of view - Field of view
single(60) (default) | scalar
Horizontal field of view (FOV), in deg.

Tips

- To understand how to set tag of Sim 3d Scene Cap and how it the tag is related to the block, see "Place Cameras on Actors in the Unreal Editor".

Version History

Introduced in R2018a

See Also

Simulation 3D Actor Transform Get | Simulation 3D Actor Transform Set | Simulation 3D Scene Configuration | Vehicle Terrain Sensor

Topics

"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Scene Interrogation in 3D Environment"
"Unreal Engine Simulation Environment Requirements and Limitations"

Simulation 3D Scene Configuration

Scene configuration for 3D simulation environment

Libraries:
Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Core
Aerospace Blockset / Animation / Simulation 3D
Automated Driving Toolbox / Simulation 3D
UAV Toolbox / Simulation 3D
Simulink 3D Animation / Simulation 3D

Description

The Simulation 3D Scene Configuration block implements a 3D simulation environment that is rendered by using the Unreal Engine from Epic Games ${ }^{\circledR}$. Vehicle Dynamics Blockset integrates the 3D simulation environment with Simulink so that you can query the world around the vehicle and virtually test perception, control, and planning algorithms. Using this block, you can also control the position of the sun and the weather conditions of a scene. For more details, see Sun Position and Weather on page 7-36.

You can simulate from a set of prebuilt scenes or from your own custom scenes. Scene customization requires the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package. For more details, see "Customize 3D Scenes for Vehicle Dynamics Simulations".

Note The Simulation 3D Scene Configuration block must execute after blocks that send data to the 3D environment and before blocks that receive data from the 3D environment. To verify the execution order of such blocks, right-click the blocks and select Properties. Then, on the General tab, confirm these Priority settings:

- For blocks that send data to the 3D environment, such as Simulation 3D Vehicle with Ground Following blocks, Priority must be set to -1 . That way, these blocks prepare their data before the 3D environment receives it.
- For the Simulation 3D Scene Configuration block in your model, Priority must be set to 0 .
- For blocks that receive data from the 3D environment, such as Simulation 3D Message Get blocks, Priority must be set to 1 . That way, the 3D environment can prepare the data before these blocks receive it.

For more information about execution order, see "Control and Display Execution Order".

Parameters

Scene

Scene Selection

Scene source - Source of scene
Default Scenes (default)|Unreal Executable|Unreal Editor

Source of the scene in which to simulate, specified as one of the options in the table.

Option	Description
Default Scenes	Simulate in one of the default, prebuilt scenes specified in the Scene name parameter.
Unreal Executable	Simulate in a scene that is part of an Unreal Engine executable file. Specify the executable file in the Project name parameter. Specify the scene in the Scene parameter.
Unreal Editor	Select this option to simulate in custom scenes that have been packaged into an executable for faster simulation.
Simulate in a scene that is part of an Unreal Engine project (. uproject) file and is open in the Unreal® Editor. Specify the project file in the Project parameter.	
Select this option when developing custom scenes. By clicking Open Unreal Editor, you can co-simulate within Simulink and the Unreal Editor and modify your scenes based on the simulation results.	

Scene name - Name of prebuilt 3D scene

Straight road (default)|Curved road|Parking lot|Double lane change|Open surface|US city block|US highway|Virtual Mcity|Large parking lot

Name of the prebuilt 3D scene in which to simulate, specified as one of these options. For details about a scene, see its listed corresponding reference page.

- Straight road - Straight Road
- Curved road - Curved Road
- Parking lot - Parking Lot
- Double lane change - Double Lane Change
- Open surface - Open Surface
- US city block - US City Block
- US highway - US Highway
- Virtual Mcity - Virtual Mcity
- Large parking lot - Large Parking Lot

The Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects contains customizable versions of these scenes. For details about customizing scenes, see "Customize 3D Scenes for Vehicle Dynamics Simulations".

Dependencies

To enable this parameter, set Scene source to Default Scenes.

Project name - Name of Unreal Engine executable file
VehicleSimulation.exe (default) | valid executable file name
Name of the Unreal Engine executable file, specified as a valid executable project file name. You can either browse for the file or specify the full path to the project file, using backslashes. To specify a scene from this file to simulate in, use the Scene parameter.

By default, Project name is set to VehicleSimulation.exe, which is on the MATLAB search path.

Example: C:\Local\WindowsNoEditor\AutoVrtlEnv.exe

Dependencies

To enable this parameter, set Scene source to Unreal Executable.
Select ASAM OpenDRIVE file - Specify an ASAM OpenDRIVE file
off (default) | on
Specify an ASAM OpenDRIVE ${ }^{\circledR}$ file. Select the Simulation 3D Scene Configuration block parameter Select ASAM OpenDRIVE file to specify an ASAM OpenDRIVE file. You will need an ASAM OpenDRIVE file if you want to perform any lane detection applications with custom scenes using the Simulation 3D Vision Detection Generator block.

Dependencies

This parameter is available when you set Scene Source is set to either Unreal Executable or Unreal Engine.
Data Types: Boolean
Scene - Name of scene from executable file
/Game/Maps/HwStrght (default) | path to valid scene name
Name of a scene from the executable file specified by the Project name parameter, specified as a path to a valid scene name.

When you package scenes from an Unreal Engine project into an executable file, the Unreal Editor saves the scenes to an internal folder within the executable file. This folder is located at the path / Game/Maps. Therefore, you must prepend /Game/Maps to the scene name. You must specify this path using forward slashes. For the file name, do not specify the . umap extension. For example, if the scene from the executable in which you want to simulate is named myScene. umap, specify Scene as /Game/Maps/myScene.

Alternatively, you can browse for the scene in the corresponding Unreal Engine project. These scenes are typically saved to the Content/Maps subfolder of the project. This subfolder contains all the scenes in your project. The scenes have the extension . umap. Select one of the scenes that you packaged into the executable file specified by the Project name parameter. Use backward slashes and specify the . umap extension for the scene.

By default, Scene is set to /Game/Maps/HwStrght, which is a scene from the default VehicleSimulation. exe executable file specified by the Project name parameter. This scene corresponds to the prebuilt Straight Road scene.

Example: /Game/Maps/scenel

Example: C:\Local\myProject\Content \Maps\scene1.umap

Dependencies

To enable this parameter, set Scene source to Unreal Executable.
Project - Name of Unreal Engine project file
valid project file name
Name of the Unreal Engine project file, specified as a valid project file name. You can either browse for the file or specify the full path to the file, using backslashes. The file must contain no spaces. To simulate scenes from this project in the Unreal Editor, click Open Unreal Editor. If you have an Unreal Editor session open already, then this button is disabled.

To run the simulation, in Simulink, click Run. Before you click Play in the Unreal Editor, wait until the Diagnostic Viewer window displays this confirmation message:

```
In the Simulation 3D Scene Configuration block, you set the scene source to 'Unreal Editor'.
```

In Unreal Editor, select 'Play' to view the scene.

This message confirms that Simulink has instantiated the scene actors, including the vehicles and cameras, in the Unreal Engine 3D environment. If you click Play before the Diagnostic Viewer window displays this confirmation message, Simulink might not instantiate the actors in the Unreal Editor.

Dependencies

To enable this parameter, set Scene source to Unreal Editor.

Scene Parameters

Scene view - Configure placement of virtual camera that displays scene

Scene Origin|vehicle name

Configure the placement of the virtual camera that displays the scene during simulation.

- If your model contains no Simulation 3D Vehicle or Simulation 3D Vehicle with Ground Following blocks, then during simulation, you view the scene from a camera positioned at the scene origin.
- If your model contains at least one vehicle block, then by default, you view the scene from behind the first vehicle that was placed in your model. To change the view to a different vehicle, set
Scene view to the name of that vehicle. The Scene view parameter list is populated with all the Name parameter values of the vehicle blocks contained in your model.

If you add a Simulation 3D Scene Configuration block to your model before adding any vehicle blocks, the virtual camera remains positioned at the scene. To reposition the camera to follow a vehicle, update this parameter.

When Scene view is set to a vehicle name, during simulation, you can change the location of the camera around the vehicle.

To smoothly change the camera views, use these key commands.

Key	Camera Vie	
2	Back	View Animated GIF
3	Back right	
4	Left	
5	Internal	
6	Right	
7	Front left	
8	Front	
9	Front right	
0	Overhead	

For additional camera controls, use these key commands.

Key	Camera Control
Tab	Cycle the view between all vehicles in the scene. View Animated GIF

Key	Camera Control
Mouse scroll wheel	Control the camera distance from the vehicle. View Animated GIF
L	Toggle a camera lag effect on or off. When you enable the lag effect, the camera view includes: Position lag, based on the vehicle translational acceleration Rotation lag, based on the vehicle rotational velocity This lag enables improved visualization of overall vehicle acceleration and rotation. View Animated GIF

Key	Camera Control
F	Toggle the free camera mode on or off. When you enable the free camera mode, you can use the mouse to change the pitch and yaw of the camera. This mode enables you to orbit the camera around the vehicle. View Animated GIF

Sample time - Sample time of visualization engine
. 02 (default) | scalar greater than or equal to 0.01
Sample time, $T_{s^{\prime}}$ of the visualization engine, specified as a scalar greater than or equal to 0.01 . Units are in seconds.

The graphics frame rate of the visualization engine is the inverse of the sample time. For example, if
Sample time is $1 / 60$, then the visualization engine solver tries to achieve a frame rate of 60 frames per second. However, the real-time graphics frame rate is often lower due to factors such as graphics card performance and model complexity.

By default, blocks that receive data from the visualization engine, such as Simulation 3D Message blocks, inherit this sample rate.

Display 3D simulation window - Unreal Engine visualization

```
on (default)| off
```

Select whether to run simulations in the 3D visualization environment without visualizing the results, that is, in headless mode.

Consider running in headless mode in these cases:

- You want to run multiple 3D simulations in parallel to test models in different Unreal Engine scenarios.
- You want to optimize model parameters without visualizing the results. For example, consider using headless mode if you want to tune vehicle suspension parameters over a terrain scenario defined in Unreal Engine.

Dependencies

To enable this parameter, set Scene source to Default Scenes or Unreal Executable.

Weather

Override scene weather - Control the scene weather and sun position
off (default) |on
Select whether to control the scene weather and sun position during simulation. Use the enabled parameters to change the sun position, clouds, fog, and rain.

This table summarizes sun position settings for specific times of day.

Time of Day	Settings	Unreal Editor Environment
Midnight	Sun altitude: -90 Sun azimuth: 180	
Sunrise in the	Sun altitude: 0	
Noon	Sun altitude: 90	
	Sun azimuth: 180	
		v

This table summarizes settings for specific cloud conditions.

Cloud Condition	Settings	Unreal Editor Environment
Clear	Cloud opacity: 0	
Heavy	Cloud opacity: 85	
		\ddots

This table summarizes settings for specific fog conditions.

Fog Condition	Settings	Unreal Editor Environment
None	Fog density: 0	

This table summarizes settings for specific rain conditions.

Rain Condition	Settings	Unreal Editor Environment	
Light	Cloud opacity: 10		
	Rain density: 25		
Heavy	Cloud opacity: 10		
	Rain density: 80		

Sun altitude - Altitude angle between sun and horizon
40 (default) | any value between -90 and 90
Altitude angle in a vertical plane between the sun's rays and the horizontal projection of the rays, in deg.

Use the Sun altitude and Sun azimuth parameters to control the time of day in the scene. For example, to specify sunrise in the north, set Sun altitude to 0 deg and Sun azimuth to 180 deg.

Dependencies

To enable this parameter, select Override scene weather.
Sun azimuth - Azimuth angle from south to horizontal projection of the sun ray
90 (default) | any value between 0 and 360
Azimuth angle in the horizontal plane measured from the south to the horizontal projection of the sun rays, in deg.

Use the Sun altitude and Sun azimuth parameters to control the time of day in the scene. For example, to specify sunrise in the north, set Sun altitude to 0 deg and Sun azimuth to 180 deg.

Dependencies

To enable this parameter, select Override scene weather.
Cloud opacity - Unreal Editor Cloud Opacity global actor target value
10 (default) | any value between 0 and 100
Parameter that corresponds to the Unreal Editor Cloud Opacity global actor target value, in percent. Zero is a cloudless scene.

Use the Cloud opacity and Cloud speed parameters to control clouds in the scene.

Dependencies

To enable this parameter, select Override scene weather.
Cloud speed - Unreal Editor Cloud Speed global actor target value
1 (default) | any value between - 100 and 100
Parameter that corresponds to the Unreal Editor Cloud Speed global actor target value. The clouds move from west to east for positive values and east to west for negative values.

Use the Cloud opacity and Cloud speed parameters to control clouds in the scene.
Dependencies
To enable this parameter, select Override scene weather.
Fog density - Unreal Editor Set Fog Density and Set Start Distance target values
0 (default) | any value between 0 and 100
Parameter that corresponds to the Unreal Editor Set Fog Density and Set Start Distance target values, in percent.

Dependencies

To enable this parameter, select Override scene weather.
Rain density - Unreal Editor local actor controlling rain density, wetness, rain puddles, and ripples
0 (default) | any value between 0 and 100
Parameter corresponding to the Unreal Editor local actor that controls rain density, wetness, rain puddles, and ripples, in percent.

Use the Cloud opacity and Rain density parameters to control rain in the scene.
Dependencies
To enable this parameter, select Override scene weather.

More About

Sun Position and Weather

To control the scene weather and sun position, on the Weather tab, select Override scene weather.
Use the enabled parameters to change the sun position, clouds, fog, and rain during the simulation.

Sun Position

Use Sun altitude and Sun azimuth to control the sun position.

- Sun altitude - Altitude angle in a vertical plane between the sun rays and the horizontal projection of the rays.
- Sun azimuth - Azimuth angle in the horizontal plane measured from the south to the horizontal projection of the sun rays.

This table summarizes sun position settings for specific times of day.

| Time of Day | Settings | Unreal Editor Environment |
| :--- | :--- | :--- | :--- |
| Midnight | Sun altitude: -90 | |
| Sun azimuth: 180 | | |

Clouds

Use Cloud opacity and Cloud speed to control clouds in the scene.

- Cloud opacity - Unreal Editor Cloud Opacity global actor target value. Zero is a cloudless scene.
- Cloud speed - Unreal Editor Cloud Speed global actor target value. The clouds move from west to east for positive values and east to west for negative values.

This table summarizes settings for specific cloud conditions.

Cloud Condition	Settings	Unreal Editor Environment
Clear	Cloud opacity: 0	
Heavy	Cloud opacity: 85	
		\ddots

Fog
Use Fog density to control fog in the scene. Fog density corresponds to the Unreal Editor Set Fog Density.

This table summarizes settings for specific fog conditions.

Fog Condition	Settings	Unreal Editor Environment
None	Fog density: 0	
Heavy		

Rain

Use Cloud opacity and Rain density to control rain in the scene.

- Cloud opacity - Unreal Editor Cloud Opacity global actor target value.
- Rain density - Unreal Editor local actor that controls rain density, wetness, rain puddles, and ripples.

This table summarizes settings for specific rain conditions.

Rain Condition	Settings	Unreal Editor Environment
Light	Cloud opacity: 10 Rain density: 25	
Heavy	Cloud opacity: 10 Rain density: 80	

Version History

Introduced in R2018a

See Also

Simulation 3D Vehicle with Ground Following | Simulation 3D Vehicle

Topics

"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Scene Interrogation in 3D Environment"
"Unreal Engine Simulation Environment Requirements and Limitations"
"Customize 3D Scenes for Vehicle Dynamics Simulations"
"Prepare Custom Vehicle Mesh for the Unreal Editor"

Vehicle Terrain Sensor

Vehicle and tire distances to objects

Libraries:

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Vehicle / Components

Description

The Vehicle Terrain Sensor block implements ray tracing to detect the terrain below the tires and objects in front of the vehicle. Specifically, for these actor components, the block returns the hit location (in the world coordinate system) and the distance to an object.

- Vehicle body
- Left front wheel
- Right front wheel
- Left rear wheel
- Right rear wheel

Tip Verify that the Vehicle Terrain Sensor block executes before the Simulation 3D Fisheye Camera block. That way, the Unreal Engine 3D visualization environment prepares the data before the Vehicle Terrain Sensor block receives it. To check the block execution order, right-click the blocks and select Properties. On the General tab, confirm these Priority settings:

- Simulation 3D Scene Configuration - 0
- Vehicle Terrain Sensor - 1

For more information about execution order, see "Control and Display Execution Order".

Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components. Components do not exist by themselves; they are associated with an actor.

Hit Distance

To calculate the hit distances shown in the illustration, the block implements these equations.

Front of vehicle to object,	DistToHitVh = GetLength(CntrLocVh, HitLocVh)
DistToHitVhAdjust	DistToHitVhAdjust = DistToHitVh - VehCntrLngthVal
	EndLocVh = CntrLocVh + VehRayLngth - VehRayOffset VehRayOffset = CntrLocVh - StartLocVh VehRayLngth = StartLocVh - EndLocVh

Tires to terrain,	
DistToHitTrAdjust	DistToHitTr $=$ GetLength(CntrLocTr, HitLocTr)
DistToHitTrAdjust $=$ DistToHitTr - TireRadiiVal	
EndLocTr = CntrLocTr + LengthTr - OffsetTr	
OffsetTr = CntrLocTr - StartLocTr	
LengthTr = StartLocTr - EndLocTr	

This illustration and equations use these variables.

CntrLocVh	Vehicle center location
DistToHitVh	Distance from vehicle center location to object
DistToHitVhAdjust	Distance from the front of the vehicle to object
EndLocVh	Vehicle ray trace end
HitLocVh	Vehicle hit location
OffsetVh	Vehicle trace offset
StartLocVh	Vehicle ray trace start
VehRayLngth	Vehicle trace length
VehCntrLngthVal	Distance from vehicle center to front
CntrLocTr	Tire center location
DistToHitTr	Distance from tire center location to terrain
DistToHitTrAdjust	Distance from tire to terrain
HitLocTr	Tire hit location
EndLocTr	Tire ray trace end
OffsetTr	Tire trace offset
StartLocTr	Tire ray trace start

LengthTr	Tire trace length
TireRadiiVal	Tire radius

Hit Event

To determine a hit event, the block uses the ray trace. The block provides the hit location in the world coordinate system.

Miss Event

To determine a miss event, the block uses the ray trace.

Ports

Input
VehCntr - Vehicle distance from center to front
scalar
Distance from the vehicle center to front, VehCntrLngthVal, in m.

Dependencies

Distance to vehicle center	Creates Port	Creates Parameter
Constant	None	Distance from vehicle center to front, VehCntrLngthVal
External input	VehCntr	None

TireRadii - Tire radii
array
Tire radii, TireRadiiVal, in m.

Dependencies

Distance to tire center Setting	Creates Port	Creates Parameter
Constant	None	Distance from tire center to ground, TireRadiiVal
External input	TireRadii	None

Output

Info - Bus signal
bus
Bus signal containing block values. The signals are arrays that depend on the wheel location.

Signal	Description	Variable	Units
HitFlg	Vehicle and wheel hit flag: - Hit an object - 1 - Miss an object - 0	$\left[\begin{array}{c}\text { Vehicle } \\ \text { FrontLeft } \\ \text { FrontRight } \\ \text { RearLeft } \\ \text { RearRight }\end{array}\right]$	NA
HitLoc	Vehicle, HitLocVh, and tire, HitLocTr, hit locations, in world coordinate system X-, Y, and Z- axes, respectively	$\left[\begin{array}{ccc}\text { Vehicle }_{X} & \text { Vehicle }_{Y} & \text { Vehicle }_{Z} \\ \text { FrontLeft }_{X} & \text { FrontLeft }_{Y} & \text { FrontLeft }_{Z} \\ \text { FrontRight }_{X} & \text { FrontRight }_{Y} & \text { FrontRight }_{Z}\end{array}\right]$	m
StartLoc	Vehicle, StartLocVh, and tire, StartLocTr, ray trace start locations, in world coordinate system X-, Y, and Z - axes, respectively	$\left[\begin{array}{lll}\text { RearLeft }_{X} & \text { RearLeft }_{Y} & \text { RearLeft }_{Z} \\ \text { RearRear }_{X} & \text { RearRear }_{Y} & \text { RearRear }_{Z}\end{array}\right]$	m

VehHitDist - Front of vehicle distance to object
scalar
Distance from the front of the vehicle to object, DistToHitVhAdjust, in m.
TireHitDist - Tire distance to terrain
vector
Distance from tire to terrain, DistToHitTrAdjust, in m.
DistToHitTrAdjust $=[$ FrontLeft FrontRight RearLef RearRight $]$

Parameters

Actor Setup

Tag for actor in 3D scene, ActorTag - Name
SimulinVehicle1 (default) | character vector
Actor name.

Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components. Components do not exist by themselves; they are associated with an actor.

The block does not support multiple instances of the same actor tag. To refer to the same scene actor when you use the 3D block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor Transform Set), specify the same Tag for actor in 3D scene, ActorTag parameter.

Distance to vehicle center - Selection
Constant (default)|External input
Configure how to provide the distance to the vehicle center.
Dependencies

Distance to vehicle center	Creates Port	Creates Parameter
Constant	None	Distance from vehicle center to front, VehCntrLngthVal
External input	VehCntr	None

Distance to tire center - Selection
Constant (default)|External input
Configure how to provide the distance to the tire center.

Dependencies

Distance to tire center Setting	Creates Port	Creates Parameter
Constant	None	Distance from tire center to ground, TireRadiiVal
External input	TireRadii	None

Distance from vehicle center to front, VehCntrLngthVal - Vehicle center
0 (default) | scalar
Distance from the vehicle center to front, VehCntrLngthVal, in m.

Dependencies

Distance to vehicle center	Creates Port	Creates Parameter
Constant	None	Distance from vehicle center to front, VehCntrLngthVal
External input	VehCntr	None

Distance from tire center to ground, TireRadiiVal - Tire radii

0 (default) | scalar
Tire radius, TireRadiiVal, in m.

Dependencies

Distance to tire center Setting	Creates Port	Creates Parameter
Constant	None	Distance from tire center to ground, TireRadiiVal
External input	TireRadii	None

Trace Lengths

Vehicle body x-axis trace length, VehRayLngth - Trace length
5 (default) | scalar
Vehicle body trace length, VehRayLngth, in m.

Left front wheel \mathbf{z}-axis trace length, LfRayLngth - Trace length

5 (default) | scalar
Left front wheel trace length, LfRayLngth and LengthTr, in m.
Right front wheel z-axis trace length, RfRayLngth - Trace length
5 (default) | scalar
Right front wheel trace length, RfRayLngth and LengthTr, in m.
Left rear wheel z-axis trace length, LrRayLngth - Trace length
5 (default) | scalar
Left rear wheel trace length, LrRayLngth and LengthTr, in m.
Right rear wheel z-axis trace length, RrRayLngth - Trace length
5 (default) | scalar
Right rear wheel trace length, RrRayLngth and LengthTr, in m.

Starting Point Offsets

Vehicle body x-axis trace offset, VehRayOffset - Offset the vehicle ray trace
0 (default) | scalar
Vehicle body trace offset, OffsetVh, in m.
Left front wheel z-axis trace offset, LfRayOffset - Offset the left front wheel ray trace 0 (default) | scalar

Left front wheel trace offset, LfRayOffset and OffsetTr, in m.
Right front wheel z-axis trace offset, RfRayOffset - Offset the right front wheel ray trace
0 (default) | scalar
Right front wheel trace offset, RfRayOffset and OffsetTr, in m.
Left rear wheel z-axis trace offset, LrRayOffset - Offset the left rear wheel ray trace 0 (default) | scalar

Left rear wheel trace offset, LrRayOffset and OffsetTr, in m.

Right rear wheel z-axis trace offset, RrRayOffset - Offset the right rear wheel ray trace 0 (default) | scalar

Right rear wheel trace offset, RrRayOffset and OffsetTr, in m.
Enable Traces
Vehicle body - Enable vehicle body ray tracing
on (default) | off
Enable vehicle body ray tracing.
Left front tire - Enable left front tire ray tracing
on (default) | off
Enable left front tire ray tracing.
Right front tire - Enable right front tire ray tracing
on (default) | off
Enable right front tire ray tracing.
Left rear tire - Enable left rear tire ray tracing
on (default) | off
Enable left rear tire ray tracing.
Right rear tire - Enable right rear tire ray tracing
on (default) | off
Enable right rear tire ray tracing.
Trace line visualization - Visualize ray traces
on (default) | off
Enable trace line visualization.
Sample time - Sample time

- 1 (default) | scalar

Sample time, T_{s}. The graphics frame rate is the inverse of the sample time.

Version History
 Introduced in R2018a

See Also

Simulation 3D Camera Get | Simulation 3D Scene Configuration | Simulation 3D Vehicle | Simulation 3D Vehicle with Ground Following

Topics

"Scene Interrogation in 3D Environment"

External Websites

Unreal Engine

Simulation 3D Vehicle with Ground Following

Implement vehicle that follows ground in 3D environment

Libraries:

Automated Driving Toolbox / Simulation 3D
Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Vehicle /
Components

Description

The Simulation 3D Vehicle with Ground Following block implements a vehicle with four wheels in a 3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games. The block uses the input (X, Y) position and yaw angle of the vehicle to adjust the elevation, roll angle, and pitch angle of the vehicle so that it follows the ground terrain. The block determines the vehicle velocity and heading and adjusts the steering angle and rotation for each wheel. Use this block for automated driving applications.

To use this block, ensure that the Simulation 3D Scene Configuration block is in your model. If you set the Sample time parameter of the Simulation 3D Vehicle with Ground Following block to -1, the block inherits the sample time specified in the Simulation 3D Scene Configuration block.

The block input uses the vehicle Z-down right-handed (RH) Cartesian coordinate system defined in SAE J670 ${ }^{1}$. The coordinate system is inertial and initially aligned with the vehicle geometric center:

- X-axis - Along vehicle longitudinal axis, points forward
- Y-axis - Along vehicle lateral axis, points to the right
- Z-axis - Points downward

Note The Simulation 3D Vehicle with Ground Following block must execute before the Simulation 3D Scene Configuration block. That way, the Simulation 3D Vehicle with Ground Following block prepares the signal data before the Unreal Engine 3D visualization environment receives it. To check the block execution order, right-click the blocks and select Properties. On the General tab, confirm these Priority settings:

- Simulation 3D Scene Configuration - 0
- Simulation 3D Vehicle with Ground Following - - 1

For more information about execution order, see "Control and Display Execution Order".

You can configure the Simulation 3D Vehicle with Ground Following block to import custom meshes on page 7-56 and control vehicle lights on page 7-57.

Ports

Input

\mathbf{X} - Longitudinal position of vehicle
scalar
Longitudinal position of the vehicle along the X-axis of the scene. \mathbf{X} is in the inertial Z-down coordinate system. Units are in meters.

Y - Lateral position of vehicle
scalar
Lateral position of the vehicle along the Y-axis of the scene. \mathbf{Y} is in the inertial Z-down coordinate system. Units are in meters.

Yaw - Yaw orientation angle of vehicle
scalar
Yaw orientation angle of the vehicle along the Z-axis of the scene. Yaw is in the Z-down coordinate system. Units are in radians.

Light controls - Vehicle lights on or off
1-by-6 vector
Light controls input signal, specified as a 1-by-6 Boolean vector. Each element of the vector turns a specific vehicle light on or off, as indicated in this table. A value of 1 turns the light on; a value of 0 turns the light off

Vector Element	Vehicle Light
$(1,1)$	Headlight high beam
$(1,2)$	Headlight low beam
$(1,3)$	Brake
$(1,4)$	Reverse
$(1,5)$	Left signal
$(1,6)$	Right signal

Dependencies

To create this port, on the Light Controls tab, select Enable light controls.
Data Types: Boolean

Parameters

Vehicle Parameters

Type - Type of vehicle
Muscle car (default) | Sedan|Sport utility vehicle|Small pickup truck|Hatchback|
Box truck|Formula Student Vehicle|Custom

Select the type of vehicle. To obtain the dimensions of each vehicle type, see these reference pages:

- Muscle car - Muscle Car
- Sedan - Sedan
- Sport utility vehicle - Sport Utility Vehicle
- Small pickup truck - Small Pickup Truck
- Hatchback - Hatchback
- Box truck - Box Truck
- Formula Student Vehicle - Formula Student Vehicle

Dependencies

Selecting Custom enables parameters that allow you to import a custom mesh for your vehicle.
Path to custom mesh, MeshPath - Path to custom mesh
/MathWorksSimulation/Vehicles/Muscle/Meshes/SK_MuscleCar.SK_MuscleCar (default)| valid path

Path to custom mesh.
To create a custom vehicle mesh, see "Prepare Custom Vehicle Mesh for the Unreal Editor".
Example: /MathWorksSimulation/Vehicles/Muscle/Meshes/SK_Sedan.SK_Sedan

Dependencies

To enable this parameter, set Type to Custom.
Track width in custom mesh, TrackWidth - Track width
1.9 (default) | scalar

Track width in custom mesh, in m.

Dependencies

To enable this parameter, set Type to Custom.
Wheel base in custom mesh, WheelBase - Wheel base
3 (default) | scalar
Wheel base in custom mesh, in m.

Dependencies

To enable this parameter, set Type to Custom.
Wheel radius in custom mesh, WheelRadius - Wheel radius
0.35 (default) | scalar

Wheel radius in custom mesh, in m.

Dependencies

To enable this parameter, set Type to Custom.

Color - Color of vehicle
Red (default) | Orange | Yellow | Green | Blue | Black | White | Silver
Select the color of the vehicle.
Initial position [X, Y, Z], InitialPos (m) - Initial vehicle position
[0, 0, 0] (default) | real-valued 1-by-3 vector
Initial vehicle position along the X-axis, Y-axis, and Z-axis in the inertial Z-down coordinate system, in m.

Initial rotation [Roll, Pitch, Yaw], InitialRot (rad) - Initial angle of vehicle rotation
[0, 0, 0] (default) | real-valued 1-by-3 vector
Initial angle of vehicle rotation, in rad. The angle of rotation is defined by the roll, pitch, and yaw of the vehicle.

```
Name, ActorName - Name of vehicle
SimulinkVehicle1 (default) | vehicle name
```

Name of vehicle. By default, when you use the block in your model, the block sets the Name parameter to SimulinkVehicle X. The value of X depends on the number of Simulation 3D Vehicle with Ground Following blocks that you have in your model.

Sample time, SampleTime - Sample time

- 1 (default) | positive scalar

Sample time, T_{s}. The graphics frame rate is the inverse of the sample time.
If you set the sample time to -1 , the block uses the sample time specified in the Simulation 3D Scene Configuration block.

Light Controls

Enable light controls, VehLightsControl - Control vehicle lights
off (default) | on
Select whether to control the vehicle headlights. Use the enabled parameters to set the light parameters, including headlight intensity.

Dependencies

Selecting this parameter:

- Creates the input port Light controls
- Enables these light parameters.

Lights	Light Parameters
Headlights	- Headlight color - High beam intensity - Low beam intensity - High beam cone half angle - Low beam cone half angle - Left headlight beam orientation - Right headlight beam orientation
Brake lights	Brake light intensity
Reverse lights	Reverse light intensity
Turn signal lights	- Turn signal light intensity - Period - Pulse width

Headlights

Headlight color [R,G,B], HeadlightColor - Headlight color
[1,1,1] (default) | 1-by-3 vector of RGB triplet values
Headlight color, specified as a normalized 1-by-3 vector of RGB triplet values.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: int8 |uint8

High beam intensity, HighBeamIntensity - High beam intensity
100000 (default) | positive scalar
High beam intensity, in cd.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double
Low beam intensity, LowBeamIntensity - Low beam intensity
60000 (default) | positive scalar
Low beam intensity, in cd.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double
High beam cone half angle, HighBeamConeAngle - High beam cone half angle
1.22 (default) | positive scalar less than pi/2

High beam cone half angle, in rad.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double

Low beam cone half angle, LowBeamConeAngle - Low beam cone half angle
1.22 (default) | positive scalar less than pi/2

Low beam cone half angle, in rad.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double

Left headlight beam orientation [Pitch, Yaw], LeftHeadlightOrientation - Left headlight beam orientation
[0,0] (default) | 1-by-2 vector greater with values between -pi and pi
Pitch and yaw orientation of the left headlight beam orientation in the Z-down coordinate system, specified as a 1-by-2 vector, in rad. The first element of the vector, [1, 1], is the pitch angle. The second element of the vector, [1,2] is the yaw angle.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double

Right headlight beam orientation [Pitch, Yaw], RightHeadlightOrientation - Right headlight beam orientation

```
[0,0] (default) | 1-by-2 vector greater with values between -pi and pi
```

Pitch and yaw orientation of the right headlight beam orientation in the Z-down coordinate system, specified as a 1-by-2 vector, in rad. The first element of the vector, [1, 1], is the pitch angle. The second element of the vector, $[1,2]$ is the yaw angle.

Dependencies

To enable this parameter, select Enable light controls.

Brake Lights

Brake light intensity, BrakelightIntensity - Intensity
500 (default) | positive scalar
Brake light intensity, in $\mathrm{cd} / \mathrm{m}^{\wedge} 2$.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double

Reverse Lights

Reverse light intensity, ReverselightIntensity - Intensity
500 (default) | positive scalar

Reverse light intensity, in cd/m^2.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double
Turn Signal Lights
Turn signal light intensity, SignallightIntensity - Intensity
500 (default) | positive scalar
Turn signal light intensity, in $\mathrm{cd} / \mathrm{m}^{\wedge} 2$.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double

Period, SignallightPeriod - Turn signal light period
1 (default) | positive scalar
Turn signal light period, in s.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double
Pulse width, SignalPulseWidth - Pulse width
50 (default) | positive scalar less than 100
Turn signal light pulse width, as a percent of the period.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double

More About
 Import Custom Meshes

To import custom meshes for defining custom vehicles, follow these steps:
1 Install the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package. See "Customize 3D Scenes for Vehicle Dynamics Simulations".
2 On the block Parameters tab, set Type to Custom.
3 In the Path to custom mesh field, enter the path to the vehicle mesh in the Unreal Engine project. For example, enter /MathWorksSimulation/Vehicles/Muscle/Meshes/ SK_MuscleCar.SK_MuscleCar.

To create a custom vehicle mesh, see "Prepare Custom Vehicle Mesh for the Unreal Editor".

4 Use the vehicle dimensions in the custom mesh to enter the dimensions in the corresponding block parameter fields.

Control Vehicle Lights

To control the lights of vehicles in a scene, follow these steps:
1 Install the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package. See "Customize 3D Scenes for Vehicle Dynamics Simulations".
2 On the block Light Controls tab, select Enable light controls.
3 Use the enabled parameters to specify the vehicle light for:

- Headlights
- Brake lights
- Reverse lights
- Turn signal lights

4 Connect Boolean light control signals to the Signal lights input port.

Version History

Introduced in R2019b

References

[1] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
[2] Technical Committee. Road vehicles - Vehicle dynamics and road-holding ability - Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

See Also

Simulation 3D Scene Configuration | Simulation 3D Vehicle

Topics

"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Prepare Custom Vehicle Mesh for the Unreal Editor"
"Scene Interrogation in 3D Environment"
"Unreal Engine Simulation Environment Requirements and Limitations"

Simulation 3D Vehicle

Implement vehicle in 3D environment

Libraries:

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Vehicle / Components

Description

The Simulation 3D Vehicle block implements a vehicle with four wheels in the 3D simulation environment.

To use this block, ensure that the Simulation 3D Scene Configuration block is in your model. If you set the Sample time parameter of this block to -1, the block uses the sample time specified in the Simulation 3D Scene Configuration block.

The block input uses the vehicle Z-down right-handed (RH) Cartesian coordinate system defined in SAE J670 ${ }^{1}$. The coordinate system is inertial and initially aligned with the vehicle geometric center:

- X-axis - Along vehicle longitudinal axis, points forward
- Y-axis - Along vehicle lateral axis, points to the right
- Z-axis - Points downward

Tip Verify that the Simulation 3D Vehicle block executes before the Simulation 3D Scene Configuration block. That way, Simulation 3D Vehicle prepares the signal data before the Unreal Engine 3D visualization environment receives it. To check the block execution order, right-click the blocks and select Properties. On the General tab, confirm these Priority settings:

- Simulation 3D Scene Configuration - 0
- Simulation 3D Vehicle - - 1

For more information about execution order, see "Control and Display Execution Order".

You can configure the Simulation 3D Vehicle with Ground Following block to import custom meshes on page 7-68 and control vehicle lights on page 7-68.

Ports

Input

Translation - Vehicle translation
5-by-3 array
Vehicle and wheel translation, in m. Array dimensions are 5-by-3.

- Translation(1,1), Translation(1,2), and Translation(1,3) - Vehicle translation along the inertial vehicle Z-down X-, Y-, and Z - axes, respectively.
- Translation(...,1), Translation(...,2), and Translation(...,3) - Wheel translation relative to vehicle, along the vehicle Z-down X-, Y-, and Z - axes, respectively.

The signal contains translation information according to the axle and wheel locations.

$$
\text { Translation }=\left[\begin{array}{ccc}
X_{v} & Y_{v} & Z_{v} \\
X_{F L} & Y_{F L} & Z_{F L} \\
X_{F R} & Y_{F R} & Z_{F R} \\
X_{R L} & Y_{R L} & Z_{R L} \\
X_{R R} & Y_{R R} & Z_{R R}
\end{array}\right]
$$

Translation	Array Element	Translation Axis
Vehicle, X_{v}	Translation(1,1)	Inertial vehicle Z-down X-axis
Vehicle, Y_{v}	Translation(1,2)	Inertial vehicle Z-down Y-axis
Vehicle, Z_{v}	Translation(1,3)	Inertial vehicle Z-down Z-axis
Front left wheel, $X_{F L}$	Translation(2,1)	Vehicle Z-down X-axis
Front left wheel, $Y_{F L}$	Translation(2,2)	Vehicle Z-down Y-axis
Front left wheel, $Z_{F L}$	Translation(2,3)	Vehicle Z-down Z-axis
Front right wheel, $X_{F R}$	Translation(3,1)	Vehicle Z-down X-axis
Front right wheel, $Y_{F R}$	Translation(3,2)	Vehicle Z-down Y-axis
Front right wheel, $Z_{F R}$	Translation(3,3)	Vehicle Z-down Z-axis
Rear left wheel, $X_{R L}$	Translation(4,1)	Vehicle Z-down X-axis
Rear left wheel, $Y_{R L}$	Translation(4,2)	Vehicle Z-down Y-axis
Rear left wheel, $Z_{R L}$	Translation(4,3)	Vehicle Z-down Z-axis
Rear right wheel, $X_{R R}$	Translation(5,1)	Vehicle Z-down X-axis
Rear right wheel, $Y_{R R}$	Translation(5,2)	Vehicle Z-down Y-axis
Rear right wheel, $Z_{R R}$	Translation(5,3)	Vehicle Z-down Z-axis

Rotation - Vehicle rotation
5-by-3 array
Vehicle and wheel rotation, in rad. Array dimensions are 5-by-3.

- Rotation(1,1), Rotation(1,2), and Rotation(1,3) - Vehicle rotation about the inertial vehicle Z-down X-, Y-, and Z - axes, respectively.
- Rotation(...,1), Rotation(...,2), and Rotation(...,3) - Wheel rotation relative to vehicle, about the vehicle Z-down X-, Y-, and Z - axes, respectively.

The signal contains rotation information according to the axle and wheel locations.

$$
\text { Rotation }=\left[\begin{array}{ccc}
\text { Roll }_{v} & \text { Pitch }_{v} & \text { Yaw }_{v} \\
\text { Roll }_{F L} & \text { Pitch }_{F L} & \text { Yaw }_{F L} \\
\text { Roll }_{F R} & \text { Pitch }_{F R} & \text { Yaw }_{F R} \\
\text { Roll }_{R L} & \text { Pitch }_{R L} & \text { Yaw }_{R L} \\
\text { Roll }_{R R} & \text { Pitch }_{R R} & \text { Yaw }_{R R}
\end{array}\right]
$$

Rotation	Array Element	Rotation Axis
Vehicle, Roll ${ }_{v}$	Rotation(1,1)	Inertial vehicle Z-down X-axis
Vehicle, Pitch ${ }_{v}$	Rotation(1,2)	Inertial vehicle Z-down Y-axis
Vehicle, Yaw ${ }_{v}$	Rotation(1,3)	Inertial vehicle Z-down Z-axis
Front left wheel, Roll $_{F L}$	Rotation(2,1)	Vehicle Z-down X-axis
Front left wheel, Pitch $_{F L}$	Rotation(2,2)	Vehicle Z-down Y-axis
Front left wheel, Yaw $_{F L}$	Rotation(2,3)	Vehicle Z-down Z -axis
Front right wheel, Roll $_{F R}$	Rotation(3,1)	Vehicle Z-down X-axis
Front right wheel, Pitch $_{\text {FR }}$	Rotation(3,2)	Vehicle Z-down Y-axis
Front right wheel, Yaw $_{\text {FR }}$	Rotation(3,3)	Vehicle Z-down Z -axis
Rear left wheel, Roll $_{R L}$	Rotation(4,1)	Vehicle Z-down X-axis
Rear left wheel, Pitch $_{R L}$	Rotation(4,2)	Vehicle Z-down Y-axis
Rear left wheel, Yaw ${ }_{\text {RL }}$	Rotation(4,3)	Vehicle Z-down Z-axis
Rear right wheel, Roll $_{\text {RR }}$	Rotation(5,1)	Vehicle Z-down X-axis
Rear right wheel, Pitch $_{\text {RR }}$	Rotation(5,2)	Vehicle Z-down Y-axis
Rear right wheel, Yaw ${ }_{\text {RR }}$	Rotation(5,3)	Vehicle Z-down Z -axis

Scale - Vehicle scale

5-by-3
Vehicle and wheel scale, dimensionless. Array dimensions are 5-by-3.

- Scale(1,1), Scale(1,2), and Scale(1,3) - Vehicle scale along the inertial vehicle Z-down $X-, Y$-, and Z - axes, respectively.
- Scale(...,1), Scale(...,2), and Scale(...,3) - Wheel scale relative to vehicle, along vehicle Z-down X-, Y-, and Z - axes, respectively.

The signal contains scale information according to the axle and wheel locations.

$$
\text { Scale }=\left[\begin{array}{ccc}
X_{V_{\text {scale }}} & Y_{V_{\text {scale }}} & Z_{V_{\text {scale }}} \\
X_{F L_{\text {scale }}} & Y_{F L_{\text {scale }}} & Z_{F L_{\text {scale }}} \\
X_{F R_{\text {scale }}} & Y_{F R_{\text {scale }}} & Z_{F R_{\text {scale }}} \\
X_{R L_{\text {scale }}} & Y_{R L_{\text {scale }}} & Z_{R L_{\text {scale }}} \\
X_{R R_{\text {scale }}} & Y_{R R_{\text {scale }}} & Z_{R R_{\text {scale }}}
\end{array}\right]
$$

Scale	Array Element	Scale Axis
Vehicle, $X_{v_{\text {scale }}}$	Scale $(1,1)$	Vehicle Z-down X-axis
Vehicle, $Y_{V_{\text {scale }}}$	Scale $(1,2)$	Vehicle Z-down Y-axis
Vehicle, $Z_{v_{\text {scale }}}$	Scale $(1,3)$	Vehicle Z-down Z-axis
Front left wheel, $X_{F L_{\text {scal }}}$	Scale $(2,1)$	Vehicle Z-down X-axis
Front left wheel, $Y_{F L_{\text {scal }}}$	Scale $(2,2)$	Vehicle Z-down Y-axis

Scale	Array Element	Scale Axis
Front left wheel, $Z_{F L_{\text {scale }}}$	Scale(2,3)	Vehicle Z-down Z-axis
Front right wheel, $X_{F R_{\text {scale }}}$	Scale(3,1)	Vehicle Z-down X-axis
Front right wheel, $Y_{F R_{\text {scale }}}$	Scale(3, 2)	Vehicle Z-down Y-axis
Front right wheel, $Z_{F R_{\text {scale }}}$	Scale(3,3)	Vehicle Z-down Z-axis
Rear left wheel, $X_{R L_{\text {scale }}}$	Scale(4,1)	Vehicle Z-down X-axis
Rear left wheel, $Y_{R L_{\text {scale }}}$	Scale(4,2)	Vehicle Z-down Y-axis
Rear left wheel, $Z_{R L_{\text {scale }}}$	Scale(4,3)	Vehicle Z-down Z-axis
Rear right wheel, $X_{R R_{\text {scale }}}$	Scale(5,1)	Vehicle Z-down X-axis
Rear right wheel, $Y_{R R_{\text {scale }}}$	Scale(5,2)	Vehicle Z-down Y-axis
Rear right wheel, $Z_{R R_{\text {scale }}}$	Scale(5,3)	Vehicle Z-down Z-axis

Light controls - Vehicle lights on or off
1-by-6 vector
Light controls input signal, specified as a 1-by-6 Boolean vector. Each element of the vector turns a specific vehicle light on or off, as indicated in this table. A value of 1 turns the light on; a value of 0 turns the light off

Vector Element	Vehicle Light
$(1,1)$	Headlight high beam
$(1,2)$	Headlight low beam
$(1,3)$	Brake
$(1,4)$	Reverse
$(1,5)$	Left signal
$(1,6)$	Right signal

Dependencies

To create this port, on the Light Controls tab, select Enable light controls.
Data Types: Boolean

Parameters

Vehicle Parameters

Type - Type

Muscle car (default) | Sedan | Sport utility vehicle|Small pickup truck|Hatchback| Box truck|Formula student vehicle

If you set Actor type to Passenger vehicle, use the Vehicle type parameter to specify the vehicle. This table provides links to the vehicle dimensions.

Vehicle type Setting	Vehicle Dimensions
Muscle car	Muscle Car

Vehicle type Setting	Vehicle Dimensions
Sedan	Sedan
Sport utility vehicle	Sport Utility Vehicle
Small pickup truck	Small Pickup Truck
Hatchback	Hatchback
Box truck	Box Truck
Formula student vehicle	Formula Student Vehicle

Dependencies

Selecting Custom enables parameters that allow you to import a custom mesh for your vehicle.
Path to custom mesh, MeshPath - Path to custom mesh
/MathWorksSimulation/Vehicles/Muscle/Meshes/SK_MuscleCar.SK_MuscleCar (default)| valid path

Path to custom mesh.
To create a custom vehicle mesh, see "Prepare Custom Vehicle Mesh for the Unreal Editor".
Example: /MathWorksSimulation/Vehicles/Muscle/Meshes/SK_Sedan.SK_Sedan

Dependencies

To enable this parameter, set Type to Custom.
Color - Color of vehicle
Red (default) | Orange | Yellow|Green | Blue | Black | White | Silver
Select the color of the vehicle.
Name - Name of vehicle
SimulinkVehicle1 (default)| character vector
Name of vehicle. By default, when you use the block in your model, the block sets the Name parameter to SimulinkVehicle X. The value of X depends on the number of Simulation 3D Vehicle with Ground Following and Simulation 3D Vehicle blocks that you have in your model.

Sample time - Sample time

- 1 (default) | scalar

Sample time, T_{s}. The graphics frame rate is the inverse of the sample time.

Light Controls

Enable light controls, VehLightsControl - Control vehicle lights
off (default) | on
Select whether to control the vehicle headlights. Use the enabled parameters to set the light parameters, including headlight intensity.

Dependencies

Selecting this parameter:

- Creates the input port Light controls
- Enables these light parameters.

Lights	Light Parameters
Headlights	$\bullet \quad$ Headlight color
	$\bullet \quad$ High beam intensity
	$\bullet \quad$ Low beam intensity
	$\bullet \quad$ Low beam cone half angle
	$\bullet \quad$ Left headlight beam orientation
	$\bullet \quad$ Right headlight beam orientation
Brake lights	Brake light intensity
Reverse lights	Reverse light intensity
Turn signal lights	$\bullet \quad$ Turn signal light intensity
	$\bullet \quad$ Period

Headlights

Headlight color [R,G,B], HeadlightColor - Headlight color
[1, 1, 1] (default) | 1-by-3 vector of RGB triplet values
Headlight color, specified as a normalized 1-by-3 vector of RGB triplet values.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: int8|uint8
High beam intensity, HighBeamIntensity - High beam intensity
100000 (default) | positive scalar
High beam intensity, in cd.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double
Low beam intensity, LowBeamIntensity - Low beam intensity
60000 (default) | positive scalar
Low beam intensity, in cd.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double

High beam cone half angle, HighBeamConeAngle - High beam cone half angle 1.22 (default) | positive scalar less than pi/2

High beam cone half angle, in rad.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double

Low beam cone half angle, LowBeamConeAngle - Low beam cone half angle
1.22 (default) | positive scalar less than pi/2

Low beam cone half angle, in rad.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double

Left headlight beam orientation [Pitch, Yaw], LeftHeadlightOrientation - Left headlight beam orientation
[0,0] (default) | 1-by-2 vector greater with values between -pi and pi
Pitch and yaw orientation of the left headlight beam orientation in the Z-down coordinate system, specified as a 1 -by-2 vector, in rad. The first element of the vector, [1,1], is the pitch angle. The second element of the vector, [1,2] is the yaw angle.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double
Right headlight beam orientation [Pitch, Yaw], RightHeadlightOrientation - Right headlight beam orientation

```
[0,0] (default) | 1-by-2 vector greater with values between -pi and pi
```

Pitch and yaw orientation of the right headlight beam orientation in the Z-down coordinate system, specified as a 1 -by- 2 vector, in rad. The first element of the vector, [1,1], is the pitch angle. The second element of the vector, [1,2] is the yaw angle.

Dependencies

To enable this parameter, select Enable light controls.

Brake Lights

Brake light intensity, BrakelightIntensity - Intensity
500 (default) | positive scalar
Brake light intensity, in $\mathrm{cd} / \mathrm{m}^{\wedge} 2$.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double

Reverse Lights
Reverse light intensity, ReverselightIntensity - Intensity
500 (default) | positive scalar
Reverse light intensity, in $\mathrm{cd} / \mathrm{m}^{\wedge} 2$.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double

Turn Signal Lights

Turn signal light intensity, SignallightIntensity - Intensity
500 (default) | positive scalar
Turn signal light intensity, in $\mathrm{cd} / \mathrm{m}^{\wedge} 2$.
Dependencies
To enable this parameter, select Enable light controls.
Data Types: double
Period, SignallightPeriod - Turn signal light period
1 (default) | positive scalar
Turn signal light period, in s.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double
Pulse width, SignalPulseWidth - Pulse width
50 (default) | positive scalar less than 100
Turn signal light pulse width, as a percent of the period.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double
Initial Values
Initial array values to translate vehicle per part, Translation - Vehicle initial translation zeros(5, 3) (default) | 5-by-3 array

Initial vehicle and wheel translation, in m. Array dimensions are 5-by-3.

- Translation(1,1), Translation(1,2), and Translation(1,3) - Initial vehicle translation along the inertial vehicle Z-down coordinate system $X-, Y$-, and Z - axes, respectively.
- Translation(...,1), Translation(...,2), and Translation(...,3) - Initial wheel translation relative to vehicle, along the vehicle Z-down X-, Y-, and Z - axes, respectively.

The parameter contains translation information according to the axle and wheel locations.

$$
\text { Translation }=\left[\begin{array}{ccc}
X_{v} & Y_{v} & Z_{v} \\
X_{F L} & Y_{F L} & Z_{F L} \\
X_{F R} & Y_{F R} & Z_{F R} \\
X_{R L} & Y_{R L} & Z_{R L} \\
X_{R R} & Y_{R R} & Z_{R R}
\end{array}\right]
$$

Translation	Array Element	Translation Axis
Vehicle, X_{v}	Translation(1,1)	Inertial vehicle Z-down X-axis
Vehicle, Y_{v}	Translation(1,2)	Inertial vehicle Z-down Y-axis
Vehicle, Z_{v}	Translation(1,3)	Inertial vehicle Z-down Z-axis
Front left wheel, $X_{F L}$	Translation(2,1)	Vehicle Z-down X-axis
Front left wheel, $Y_{F L}$	Translation(2,2)	Vehicle Z-down Y-axis
Front left wheel, $Z_{F L}$	Translation(2,3)	Vehicle Z-down Z-axis
Front right wheel, $X_{F R}$	Translation(3,1)	Vehicle Z-down X-axis
Front right wheel, $Y_{F R}$	Translation(3,2)	Vehicle Z-down Y-axis
Front right wheel, $Z_{F R}$	Translation(3,3)	Vehicle Z-down Z-axis
Rear left wheel, $X_{R L}$	Translation(4,1)	Vehicle Z-down X-axis
Rear left wheel, $Y_{R L}$	Translation(4,2)	Vehicle Z-down Y-axis
Rear left wheel, $Z_{R L}$	Translation(4,3)	Vehicle Z-down Z-axis
Rear right wheel, $X_{R R}$	Translation(5,1)	Vehicle Z-down X-axis
Rear right wheel, $Y_{R R}$	Translation(5,2)	Vehicle Z-down Y-axis
Rear right wheel, $Z_{R R}$	Translation(5,3)	Vehicle Z-down Z-axis

Initial array values to rotate vehicle per part, Rotation - Vehicle initial rotation zeros(5, 3) (default) | 5-by-3 array

Initial vehicle and wheel rotation, about the vehicle Z-down X-, Y-, and Z - axes.
Array dimensions are 5-by-3.

- Rotation(1, 1), Rotation(1,2), and Rotation(1,3) - Initial vehicle rotation about the inertial vehicle Z-down coordinate system X-, Y-, and Z - axes, respectively.
- Rotation(..., 1), Rotation(...,2), and Rotation(...,3) - Initial wheel rotation relative to vehicle, about the vehicle Z-down X-, Y-, and Z - axes, respectively.

The parameter contains rotation information according to the axle and wheel locations.

Rotation $=\left[\begin{array}{ccc}\text { Roll }_{v} & \text { Pitch }_{\nu} & \text { Yaw }_{\nu} \\ \text { Roll }_{F L} & \text { Pitch }_{F L} & \text { Yaw }_{F L} \\ \text { Roll }_{F R} & \text { Pitch }_{F R} & \text { Yaw }_{F R} \\ \text { Roll }_{R L} & \text { Pitch }_{R L} & \text { Yaw }_{R L} \\ \text { Roll }_{R R} & \text { Pitch }_{R R} & \text { Yaw }_{R R}\end{array}\right]$

Rotation	Array Element	Rotation Axis
Vehicle, Roll ${ }_{v}$	Rotation(1,1)	Inertial vehicle Z-down X-axis
Vehicle, Pitch ${ }_{v}$	Rotation(1,2)	Inertial vehicle Z-down Y-axis
Vehicle, Yaw $_{v}$	Rotation(1,3)	Inertial vehicle Z-down Z-axis
Front left wheel, Roll ${ }_{F L}$	Rotation(2,1)	Vehicle Z-down X-axis
Front left wheel, Pitch $_{F L}$	Rotation(2,2)	Vehicle Z-down Y-axis
Front left wheel, Yaw $_{F L}$	Rotation (2,3)	Vehicle Z-down Z-axis
Front right wheel, Roll $_{F R}$	Rotation(3,1)	Vehicle Z-down X-axis
Front right wheel, Pitch $_{\text {FR }}$	Rotation(3,2)	Vehicle Z-down Y-axis
Front right wheel, Yaw $_{F R}$	Rotation(3,3)	Vehicle Z-down Z-axis
Rear left wheel, Roll $_{R L}$	Rotation(4,1)	Vehicle Z-down X-axis
Rear left wheel, Pitch $_{\text {RL }}$	Rotation(4,2)	Vehicle Z-down Y-axis
Rear left wheel, Yaw ${ }_{R L}$	Rotation(4,3)	Vehicle Z-down Z-axis
Rear right wheel, Roll $_{R R}$	Rotation(5,1)	Vehicle Z-down X-axis
Rear right wheel, Pitch $_{\text {RR }}$	Rotation(5,2)	Vehicle Z-down Y-axis
Rear right wheel, Yaw ${ }_{\text {RR }}$	Rotation(5,3)	Vehicle Z-down Z -axis

Initial array values to scale vehicle per part, Scale - Vehicle initial scale
ones(5, 3) (default) | 5-by-3 array
Initial vehicle and wheel scale, dimensionless. Array dimensions are 5-by-3.

- Scale(1,1), Scale(1,2), and Scale(1,3) - Initial vehicle scale along the inertial vehicle Zdown X-, Y-, and Z - axes, respectively.
- Scale(..., 1), Scale (...,2), and Scale(...,3) - Initial wheel scale relative to vehicle, along vehicle Z-down X-, Y-, and Z - axes, respectively.

The parameter contains scale information according to the axle and wheel locations.

$$
\text { Scale }=\left[\begin{array}{ccc}
X_{V_{\text {scale }}} & Y_{V_{\text {scale }}} & Z_{V_{\text {scale }}} \\
X_{F L_{\text {scale }}} & Y_{F L_{\text {scale }}} & Z_{F L_{\text {scale }}} \\
X_{F R_{\text {scale }}} & Y_{F R_{\text {scale }}} & Z_{F R_{\text {scale }}} \\
X_{R L_{\text {scale }}} & Y_{R L_{\text {scale }}} & Z_{R L_{\text {scale }}} \\
X_{R R_{\text {scale }}} & Y_{R R_{\text {scale }}} & Z_{R R_{\text {scale }}}
\end{array}\right]
$$

Scale	Array Element	Scale Axis
Vehicle, $X_{V_{\text {scale }}}$	Scale(1,1)	Vehicle Z-down X-axis
Vehicle, $Y_{V_{\text {scale }}}$	Scale(1,2)	Vehicle Z-down Y-axis
Vehicle, $Z_{v_{\text {scale }}}$	Scale(1,3)	Vehicle Z-down Z-axis
Front left wheel, $X_{F L_{\text {scale }}}$	Scale(2,1)	Vehicle Z-down X-axis
Front left wheel, $Y_{F L_{\text {scale }}}$	Scale (2,2)	Vehicle Z-down Y-axis
Front left wheel, $Z_{F L_{\text {scale }}}$	Scale(2,3)	Vehicle Z-down Z-axis
Front right wheel, $X_{F R_{\text {sade }}}$	Scale(3,1)	Vehicle Z-down X-axis
Front right wheel, $Y_{F R_{\text {sade }}}$	Scale(3,2)	Vehicle Z-down Y-axis
Front right wheel, $Z_{F R_{\text {scale }}}$	Scale (3, 3)	Vehicle Z-down Z-axis
Rear left wheel, $X_{R L_{\text {scale }}}$	Scale(4,1)	Vehicle Z-down X-axis
Rear left wheel, $Y_{\text {RLscale }}$	Scale(4,2)	Vehicle Z-down Y-axis
Rear left wheel, $Z_{\text {RLsale }}$	Scale (4,3)	Vehicle Z-down Z-axis
Rear right wheel, $X_{R R_{\text {scale }}}$	Scale (5,1)	Vehicle Z-down X-axis
Rear right wheel, $Y_{R R_{\text {sale }}}$	Scale(5,2)	Vehicle Z-down Y-axis
Rear right wheel, $Z_{R R_{\text {scale }}}$	Scale (5,3)	Vehicle Z-down Z-axis

More About

Import Custom Meshes

To import custom meshes for defining custom vehicles, follow these steps:
1 Install the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package. See "Customize 3D Scenes for Vehicle Dynamics Simulations".
2 On the block Parameters tab, set Type to Custom.
3 In the Path to custom mesh field, enter the path to the vehicle mesh in the Unreal Engine project. For example, enter /MathWorksSimulation/Vehicles/Muscle/Meshes/ SK_MuscleCar.SK_MuscleCar.

To create a custom vehicle mesh, see "Prepare Custom Vehicle Mesh for the Unreal Editor".
4 Use the vehicle dimensions in the custom mesh to enter the dimensions in the corresponding block parameter fields.

Control Vehicle Lights

To control the lights of vehicles in a scene, follow these steps:
1 Install the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package. See "Customize 3D Scenes for Vehicle Dynamics Simulations".
2 On the block Light Controls tab, select Enable light controls.
3 Use the enabled parameters to specify the vehicle lights for:

- Headlights
- Brake lights
- Reverse lights
- Turn signal lights

4 Connect Boolean light control signals to the Signal lights input port.

Version History

Introduced in R2019b

References

[1] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
[2] Technical Committee. Road vehicles - Vehicle dynamics and road-holding ability - Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

See Also

Simulation 3D Vehicle with Ground Following | Simulation 3D Scene Configuration

Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Prepare Custom Vehicle Mesh for the Unreal Editor"
"Unreal Engine Simulation Environment Requirements and Limitations"

Simulation 3D Message Get

Retrieve data from Unreal Engine visualization environment

Libraries:

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Core Aerospace Blockset / Animation / Simulation 3D

Description

The Simulation 3D Message Get block retrieves data from the Unreal Engine 3D visualization environment. In your model, ensure that the Simulation 3D Scene Configuration block is at the same level as the Simulation 3D Message Get block.

Tip Verify that the Simulation 3D Scene Configuration block executes before the Simulation 3D Message Get block. That way, the Unreal Engine 3D visualization environment prepares the data before the Simulation 3D Message Get block receives it. To check the block execution order, rightclick the blocks and select Properties. On the General tab, confirm these Priority settings:

- Simulation 3D Scene Configuration - 0
- Simulation 3D Message Get - 1

For more information about execution order, see "Control and Display Execution Order".

Configure Scenes to Send Data

To use the block, you must configure scenes in the Unreal Engine environment to send data to the Simulink model:

1 Install the "Customize 3D Scenes for Vehicle Dynamics Simulations".
2 In the Unreal Editor, follow these general workflows to send data to Simulink. For detailed information, see "Get Started Communicating with the Unreal Engine Visualization Environment".

Unreal Engine User	Workflow
Blueprint	a Instantiate the Sim3DSet actor that corresponds to the data type you want to send to the Simulink model. This example shows the Unreal Editor Sim3DSet data types. b Specify an actor tag name that matches the Simulation 3D Message Get block Signal name parameter. c Navigate to the Level Blueprint. d Find the blueprint method for the Sim3DSet actor class based on the data type and size specified by the Simulation 3D Message Get block Data type and Message size parameters. For example, in Unreal Editor, this diagram shows that Write Array Boolean is the method for the Sim3DSetBoolean actor class that sends Boolean data type of array size 30 . Compile and save the scene.
	Note By default, the Double Lane Change scene has a Sim3DSetBoolean actor with tag name NumOfConesHit.

Unreal Engine User	Workflow
C++ class	a Create a new actor class for the mesh or asset that you want the Simulink model to interact with. Derive it from ASim3dActor. b In the new actor class: - Declare a pointer to the signal name as a class field. - Get the class tag. - Create a signal writer and assign the pointer in the method Sim3dSetup. - In the method Sim3dStep, invoke the WriteSimulation3DMessage function to write the data to the Simulink model. - Delete the signal writer in the method Sim3dRelease of the actor.

For more information about the Unreal Editor, see the Unreal Engine 4 Documentation.

Ports

Output

ReadMsg - Data retrieved from scene
scalar|array
Data retrieved from the 3D visualization environment scene data. In the Unreal Engine environment, you can use the Sim3DSet class to configure scene actors to send data to the Simulink model.

For example, in the Unreal Editor, the Double Lane Change scene has a Sim3DSetBoolean actor with tag name NumOfConesHit. Use it to retrieve the number of cones the vehicle hits during a double-lane change maneuver.

This table provides the Double Lane Change scene cone name that corresponds to the ReadMsg array element.

Simulation 3D Message Get Block ReadMsg Value	Unreal Editor Cone Name	Simulation 3D Message Get Block Array Element	Unreal Editor Cone Name
ReadMsg(1,1)	SM_Cone5	ReadMsg (2,1)	SM_Cone10
ReadMsg(1,2)	SM_Cone4	ReadMsg(2,2)	SM_Cone09
ReadMsg(1,3)	SM_Cone3	ReadMsg(2,3)	SM_Cone08
ReadMsg (1,4)	SM_Cone2	ReadMsg $(2,4)$	SM_Cone07
ReadMsg(1,5)	SM_Cone01	ReadMsg (2,5)	SM_Cone06
ReadMsg(1,6)	SM_Cone15	ReadMsg (2,6)	SM_Cone20
ReadMsg (1,7)	SM_Cone14	ReadMsg $(2,7)$	SM_Cone19
ReadMsg(1,8)	SM_Cone13	ReadMsg $(2,8)$	SM_Cone18

Simulation 3D Message Get Block ReadMsg Value	Unreal Editor Cone Name	Simulation 3D Message Get Block Array Element	Unreal Editor Cone Name
ReadMsg $(1,9)$	SM_Cone12	ReadMsg $(2,9)$	SM_Cone17
ReadMsg $(1,10)$	SM_Cone11	ReadMsg $(2,10)$	SM_Cone16
ReadMsg $(1,11)$	SM_Cone25	$\operatorname{ReadMsg(2,11)}$	SM_Cone30
ReadMsg $(1,12)$	SM_Cone24	ReadMsg(2,12)	SM_Cone29
ReadMsg $(1,13)$	SM_Cone23	$\operatorname{ReadMsg(2,13)}$	SM_Cone28
ReadMsg(1,14)	SM_Cone22	$\operatorname{ReadMsg(2,14)}$	SM_Cone27
ReadMsg(1,15)	SM_Cone21	$\operatorname{ReadMsg(2,15)}$	SM_Cone26

Parameters

Signal name, SigName - Message signal name
mySignal (default)
Specifies the signal name in the 3D visualization environment. In the Unreal Engine environment, use the Sim3DSet actor class 'Tags' property located in the 'Details' pane.

For example, you can retrieve data from the double-lane change scene that indicates if cones are hit during a double-lane change maneuver. To retrieve cone hit data from the double-lane change scene, set this parameter to NumOfConesHit. In the double-lane change scene, the Sim3DSet actor class 'Tags' property is set to NumOfConesHit.

Data type, DataType - Message data type
double* | single | int8*| uint8* | int16* | uint16* | int32 | uint32* | boolean
3D visualization environment signal data type. The supported data types depend on the Unreal Engine workflow.

Workflow	Supported Data Types
Blueprint	single
	int32
	Boolean

Workflow	Supported Data Types
${ }^{*}$ C++ class	double
	single
	int8
	uint8
	int16
	uint16
int32	
	uint32
	Boolean

In the Unreal Engine environment, instantiate the Sim3DSet actor class for the data type that you want to send to the Simulink model. For example, you can retrieve data from the double-lane change scene that indicates if cones are hit during a double-lane change maneuver. To retrieve cone hit data from the double-lane change scene, set this parameter to boolean. In the double-lane change scene, the Sim3DSetBoolean actor class is instantiated to send the cone hit or miss boolean data.

Message size, MsgSize - Message dimension
[1 1] (default)|scalar|array
3D visualization environment signal dimension. In the Unreal Engine environment blueprint, set the input to the node of the Sim3DSet actor class to specify the dimensions of data that you want to send to the Simulink model.

For example, you can retrieve data from the double-lane change scene that indicates if cones are hit during a double-lane change maneuver. To retrieve cone hit data from the double-lane change scene, set this parameter to [2 15]. In the double-lane change scene, the input to the blueprint node for the Sim3DSetBoolean actor class is set to 30, the number of cones in the scene.

Sample time - Sample time

0.02 (default) | - 1 | scalar

Sample time, in s. The graphics frame rate is the inverse of the sample time. If you set the sample time to -1, the block uses the sample time specified in the Simulation 3D Scene Configuration block.

Version History

Introduced in R2019b

See Also
Double Lane Change | Simulation 3D Scene Configuration | Simulation 3D Message Set
Topics
"Get Started Communicating with the Unreal Engine Visualization Environment"
"Send and Receive Double-Lane Change Scene Data"

"Customize 3D Scenes for Vehicle Dynamics Simulations"
External Websites
Unreal Engine

Simulation 3D Message Set

Send data to Unreal Engine visualization environment

Libraries:

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Core
Aerospace Blockset / Animation / Simulation 3D
Simulink 3D Animation / Simulation 3D

Description

The Simulation 3D Message Set block sends data to the Unreal Engine 3D visualization environment. In your model, ensure that the Simulation 3D Scene Configuration block is at the same level as the Simulation 3D Message Set block.

Tip Verify that the Simulation 3D Message Set block executes before the Simulation 3D Scene Configuration block. That way, Simulation 3D Message Set prepares the signal data before the Unreal Engine 3D visualization environment receives it. To check the block execution order, right-click the blocks and select Properties. On the General tab, confirm these Priority settings:

- Simulation 3D Scene Configuration - 0
- Simulation 3D Message Set - - 1

For more information about execution order, see "Control and Display Execution Order".

Configure Scenes to Receive Data

To use the block, you must configure scenes in the Unreal Engine environment to receive data from the Simulink model:

1 Install the "Customize 3D Scenes for Vehicle Dynamics Simulations".
2 In the Unreal Editor, follow these general workflows to receive data from Simulink. For detailed information, see "Get Started Communicating with the Unreal Engine Visualization Environment".

Unreal Engine User	Workflow
Blueprint	a Instantiate the Sim3DGet actor that corresponds to the data type you want to receive from the Simulink model. This example shows the Unreal Editor Sim3DGet data types. b Specify an actor tag name that matches the Simulation 3D Message Set block Signal name parameter. c Navigate to the Level Blueprint. d Find the blueprint method for the Sim3DGet actor class based on the data type and size that you want to receive from the Simulink model. For example, in Unreal Editor, this diagram shows that Read Scalar Integer is the method for Sim3DGetInteger actor class to receive int32 data type of size scalar. Compile and save the scene.
	Note By default, the Double Lane Change scene has a Sim3DGetInteger actor with tag name TrafficLight1.

Unreal Engine User	Workflow
C++ class	a Create a new actor class for the mesh or asset that you want the Simulink model to interact with. Derive it from ASim3dActor. b In the new actor class: - Declare a pointer to the signal name as a class field. - Get the class tag. - Create a signal reader and assign the pointer in the method Sim3dSetup. - In the method Sim3dStep, invoke the ReadSimulation3DMessage function to read the data from a Simulink model. - Delete the signal reader in the method Sim3dRelease of the actor.

For more information about the Unreal Editor, see the Unreal Engine 4 Documentation.

Ports

Input

WriteMsg - Data sent to scene
scalar|array
Data sent to the 3D visualization environment scene. In the Unreal Engine environment, you can configure the Sim3DGet class to receive the data from the Simulink model.

For example, in the Unreal Editor, the Double Lane Change scene has a Sim3DGetInteger integer actor with tag name TrafficLight1. The integer actor reads int32 data type from the Simulink model. You can use it to control the traffic signal light color.

This table provides the scene traffic signal light color that corresponds to the WriteMsg value in the Double Lane Change scene.

Simulation 3D Message Set Block WriteMsg Value	TrafficLight1 Color
0	Red
1	Yellow
2	Green

Parameters

Signal name, SigName - Message signal name
mySignal (default)
Specifies the signal name in the 3D visualization environment. In the Unreal Engine environment, use the Sim3Get actor class 'Tags' property located in the 'Details' pane.

For example, you can send data to the double lane change scene that changes the traffic signal light color to red, yellow, or green. To send data to the traffic signal light, set this parameter to TrafficLight1. In the double lane change scene, the 'Tags' property value for Sim3dGetInteger actor class is set to TrafficLight1.

Sample time - Sample time
0.02 (default) |-1 | scalar

Sample time, in s. The graphics frame rate is the inverse of the sample time. If you set the sample time to -1 , the block uses the sample time specified in the Simulation 3D Scene Configuration block.

Version History

Introduced in R2019b

See Also

Simulation 3D Scene Configuration | Simulation 3D Message Get
Topics
"Get Started Communicating with the Unreal Engine Visualization Environment"
"Send and Receive Double-Lane Change Scene Data"
"Customize 3D Scenes for Vehicle Dynamics Simulations"
External Websites
Unreal Engine

Simulation 3D Tractor

Implement tractor in 3D environment

Libraries:

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Vehicle / Components

Description

The Simulation 3D Tractor block implements a tree-axle tractor in the 3D simulation environment.
To use the Simulation 3D Tractor block, ensure that the Simulation 3D Scene Configuration block is in your model. If you set the Sample time parameter of the Simulation 3D Tractor block to -1, the block uses the sample time specified in the Simulation 3D Scene Configuration block.

The block input uses the vehicle Z-down right-handed (RH) Cartesian coordinate system defined in SAE J670 ${ }^{1}$. The coordinate system is inertial and initially aligned with the vehicle geometric center:

- X-axis - Points forward along vehicle longitudinal axis
- Y-axis - Points to the right along vehicle lateral axis
- Z-axis - Points downward

Tip Verify that the Simulation 3D Tractor block executes before the Simulation 3D Scene Configuration block. That way, Simulation 3D Vehicle prepares the signal data before the Unreal Engine 3D visualization environment receives it. To check the block execution order, right-click the blocks and select Properties. On the General tab, confirm these Priority settings:

- Simulation 3D Scene Configuration - 0
- Simulation 3D Tractor - - 1

For more information about execution order, see "Control and Display Execution Order".

Ports

Input

Translation - Vehicle translation
7-by-3 array
Vehicle and wheel translation, in m. The array dimensions are 7-by-3, where:

- Translation(1,1), Translation(1,2), and Translation(1,3) - Vehicle translation along the inertial vehicle Z-down X-, Y-, and Z-axes, respectively.
- Translation(...,1), Translation(...,2), and Translation(...,3) - Wheel translation relative to vehicle, along the vehicle Z-down X-, Y-, and Z-axes, respectively.

The signal contains translation information according to the axle and wheel locations.

$$
\text { Translation }=\left[\begin{array}{ccc}
X_{v} & Y_{v} & Z_{v} \\
X_{F L} & Y_{F L} & Z_{F L} \\
X_{F R} & Y_{F R} & Z_{F R} \\
X_{M L} & Y_{M L} & Z_{M L} \\
X_{M R} & Y_{M R} & Z_{M R} \\
X_{R L} & Y_{R L} & Z_{R L} \\
X_{R R} & Y_{R R} & Z_{R R}
\end{array}\right]
$$

Translation	Array Element	Translation Axis
Vehicle, X_{v}	Translation(1,1)	Inertial vehicle Z-down X-axis
Vehicle, Y_{v}	Translation(1,2)	Inertial vehicle Z-down Y-axis
Vehicle, Z_{v}	Translation(1,3)	Inertial vehicle Z-down Z-axis
Front left wheel, $X_{F L}$	Translation(2,1)	Vehicle Z-down X-axis
Front left wheel, $Y_{F L}$	Translation(2,2)	Vehicle Z-down Y-axis
Front left wheel, $Z_{F L}$	Translation(2,3)	Vehicle Z-down Z-axis
Front right wheel, $X_{F R}$	Translation(3,1)	Vehicle Z-down X-axis
Front right wheel, $Y_{F R}$	Translation(3,2)	Vehicle Z-down Y-axis
Front right wheel, $Z_{F R}$	Translation(3,3)	Vehicle Z-down Z-axis
Middle left wheel, $X_{M L}$	Translation(4,1)	Vehicle Z-down X-axis
Middle left wheel, $Y_{M L}$	Translation(4,2)	Vehicle Z-down Y-axis
Middle left wheel, $Z_{M L}$	Translation(4,3)	Vehicle Z-down Z-axis
Middle right wheel, $X_{M R}$	Translation(5,1)	Vehicle Z-down X-axis
Middle right wheel, $Y_{M R}$	Translation(5,2)	Vehicle Z-down Y-axis
Middle right wheel, $Z_{M R}$	Translation(5,3)	Vehicle Z-down Z-axis
Rear left wheel, $X_{R L}$	Translation(6,1)	Vehicle Z-down X-axis
Rear left wheel, $Y_{R L}$	Translation(6,2)	Vehicle Z-down Y-axis
Rear left wheel, $Z_{R L}$	Translation(6,3)	Vehicle Z-down Z-axis
Rear right wheel, $X_{R R}$	Translation(7,1)	Vehicle Z-down X-axis
Rear right wheel, $Y_{R R}$	Translation(7,2)	Vehicle Z-down Y-axis
Rear right wheel, $Z_{R R}$	Translation(7,3)	Vehicle Z-down Z-axis

Rotation - Vehicle rotation
7-by-3 array
Vehicle and wheel rotation, in rad. The array dimensions are 7-by-3, where:

- Rotation(1, 1), Rotation(1,2), and Rotation(1,3) - Vehicle rotation about the inertial vehicle Z-down X-, Y-, and Z-axes, respectively.
- Rotation(...,1), Rotation(...,2), and Rotation(...,3) - Wheel rotation relative to vehicle, about the vehicle Z-down X-, Y-, and Z-axes, respectively.

The signal contains rotation information according to the axle and wheel locations.

$$
\text { Rotation }=\left[\begin{array}{ccc}
\text { Roll }_{v} & \text { Pitch }_{v} & \text { Yaw }_{v} \\
\text { Roll }_{F L} & \text { Pitch }_{F L} & \text { Yaw }_{F L} \\
\text { Roll }_{F R} & \text { Pitch }_{F R} & \text { Yaw }_{F R} \\
\text { Roll }_{M L} & \text { Pitch }_{M L} & \text { Yaw }_{M L} \\
\text { Roll }_{M R} & \text { itch }_{M R} & \text { Yaw }_{M R} \\
\text { Roll }_{R L} & \text { Pitch }_{R L} & \text { Yaw }_{R L} \\
\text { Roll }_{R R} & \text { Pitch }_{R R} & \text { Yaw }_{R R}
\end{array}\right]
$$

Rotation	Array Element	Rotation Axis
Vehicle, Rollv	Rotation(1,1)	Inertial vehicle Z-down X-axis
Vehicle, Pitch ${ }_{v}$	Rotation(1,2)	Inertial vehicle Z -down Y-axis
Vehicle, Yaw ${ }_{v}$	Rotation(1,3)	Inertial vehicle Z-down Z-axis
Front left wheel, Roll ${ }_{F L}$	Rotation(2,1)	Vehicle Z-down X-axis
Front left wheel, Pitch $_{\text {FL }}$	Rotation(2,2)	Vehicle Z-down Y-axis
Front left wheel, Yaw $_{F L}$	Rotation(2,3)	Vehicle Z-down Z -axis
Front right wheel, Roll $_{F R}$	Rotation(3,1)	Vehicle Z-down X-axis
Front right wheel, Pitch $_{\text {FR }}$	Rotation(3,2)	Vehicle Z-down Y-axis
Front right wheel, Yaw $_{\text {FR }}$	Rotation(3,3)	Vehicle Z-down Z-axis
Middle left wheel, Roll $_{\text {ML }}$	Rotation(4,1)	Vehicle Z-down X-axis
Middle left wheel, Pitch $_{\text {ML }}$	Rotation(4,2)	Vehicle Z-down Y-axis
Middle left wheel, Yaw ${ }_{\text {ML }}$	Rotation(4,3)	Vehicle Z-down Z -axis
Middle right wheel, Roll $_{\text {MR }}$	Rotation(5,1)	Vehicle Z-down X-axis
Middle right wheel, Pitch $_{\text {MR }}$	Rotation(5,2)	Vehicle Z-down Y-axis
Middle right wheel, Yaw ${ }_{\text {MR }}$	Rotation(5,3)	Vehicle Z-down Z-axis
Rear left wheel, Roll ${ }_{\text {RL }}$	Rotation(6,1)	Vehicle Z-down X-axis
Rear left wheel, Pitch $_{\text {RL }}$	Rotation(6,2)	Vehicle Z-down Y-axis
Rear left wheel, Yaw RL	Rotation(6,3)	Vehicle Z-down Z -axis
Rear right wheel, Roll $_{R R}$	Rotation(7,1)	Vehicle Z-down X-axis
Rear right wheel, Pitch $_{R R}$	Rotation(7,2)	Vehicle Z-down Y-axis
Rear right wheel, Yaw $_{\text {RR }}$	Rotation(7,3)	Vehicle Z-down Z-axis

Parameters

Vehicle Parameters

Type - Tractor type
Conventional tractor (default) | Cab-over tractor
Type of tractor. For the dimensions, see:

- Cab-Over Tractor

- Conventional Tractor

Color - Vehicle color
Red (default) | Orange | Yellow|Green | Blue | Black | White | Silver
Specify the vehicle color.
Name - Name of vehicle
SimulinkVehicle1 (default) | character vector
Name of the vehicle. By default, when you use the block in your model, the block sets the Name parameter to SimulinkVehicle X. The value of X depends on the number of Simulation 3D Vehicle with Ground Following and Simulation 3D Vehicle blocks that you have in your model.

Initial Values
Initial array values to translate vehicle per part, Translation - Vehicle initial translation zeros(7, 3) (default) | 7-by-3 array

Initial vehicle and wheel translation, in m . The array dimensions are 7-by-3, where:

- Translation(1,1), Translation(1,2), and Translation(1,3) - Initial vehicle translation along the inertial vehicle Z-down coordinate system $X-, Y$-, and Z-axes, respectively.
- Translation (..., 1), Translation(. . , 2), and Translation(...,3) - Initial wheel translation relative to the vehicle, along the vehicle Z-down X-, Y-, and Z-axes, respectively.

The parameter contains translation information according to the axle and wheel locations.

$$
\text { Translation }=\left[\begin{array}{ccc}
X_{v} & Y_{v} & Z_{v} \\
X_{F L} & Y_{F L} & Z_{F L} \\
X_{F R} & Y_{F R} & Z_{F R} \\
X_{M L} & Y_{M L} & Z_{M L} \\
X_{M R} & Y_{M R} & Z_{M R} \\
X_{R L} & Y_{R L} & Z_{R L} \\
X_{R R} & Y_{R R} & Z_{R R}
\end{array}\right]
$$

Translation	Array Element	Translation Axis
Vehicle, X_{v}	Translation(1,1)	Inertial vehicle Z-down X-axis
Vehicle, Y_{v}	Translation(1,2)	Inertial vehicle Z-down Y-axis
Vehicle, Z_{v}	Translation(1,3)	Inertial vehicle Z-down Z-axis
Front left wheel, $X_{F L}$	Translation(2,1)	Vehicle Z-down X-axis
Front left wheel, $Y_{F L}$	Translation(2,2)	Vehicle Z-down Y-axis
Front left wheel, $Z_{F L}$	Translation(2,3)	Vehicle Z-down Z-axis
Front right wheel, $X_{F R}$	Translation(3,1)	Vehicle Z-down X-axis
Front right wheel, $Y_{F R}$	Translation(3,2)	Vehicle Z-down Y-axis
Front right wheel, $Z_{F R}$	Translation(3,3)	Vehicle Z-down Z -axis
Middle left wheel, $X_{M L}$	Translation(4,1)	Vehicle Z-down X-axis

Translation	Array Element	Translation Axis
Middle left wheel, $Y_{M L}$	Translation(4,2)	Vehicle Z-down Y-axis
Middle left wheel, $Z_{M L}$	Translation(4,3)	Vehicle Z-down Z-axis
Middle right wheel, $X_{M R}$	Translation(5,1)	Vehicle Z-down X-axis
Middle right wheel, $Y_{M R}$	Translation(5,2)	Vehicle Z-down Y-axis
Middle right wheel, $Z_{M R}$	Translation(5,3)	Vehicle Z-down Z-axis
Rear left wheel, $X_{R L}$	Translation(6,1)	Vehicle Z-down X-axis
Rear left wheel, $Y_{R L}$	Translation(6,2)	Vehicle Z-down Y-axis
Rear left wheel, $Z_{R L}$	Translation(6,3)	Vehicle Z-down Z-axis
Rear right wheel, $X_{R R}$	Translation(7,1)	Vehicle Z-down X-axis
Rear right wheel, $Y_{R R}$	Translation(7,2)	Vehicle Z-down Y-axis
Rear right wheel, $Z_{R R}$	Translation(7,3)	Vehicle Z-down Z-axis

Initial array values to rotate vehicle per part, Rotation - Vehicle initial rotation zeros(7, 3) (default) | 7-by-3 array

Initial vehicle and wheel rotation, about the vehicle Z-down X-, Y-, and Z-axes, in rad.
The array dimensions are 7-by-3.

- Rotation(1,1), Rotation(1,2), and Rotation(1,3) - Initial vehicle rotation about the inertial vehicle Z-down coordinate system X-, Y-, and Z-axes, respectively.
- Rotation(. . , 1), Rotation (..., 2) , and Rotation (...,3) - Initial wheel rotation relative to the vehicle, about the vehicle Z-down X-, Y-, and Z-axes, respectively.

The parameter contains rotation information according to the axle and wheel locations.

$$
\text { Rotation }=\left[\begin{array}{ccc}
\text { Roll }_{v} & \text { Pitch }_{v} & \text { Yaw }_{v} \\
\text { Roll }_{F L} & \text { Pitch }_{F L} & \text { Yaw }_{F L} \\
\text { Roll }_{F R} & \text { Pitch }_{F R} & \text { Yaw }_{F R} \\
\text { Roll }_{M L} & \text { Pitch }_{M L} & \text { Yaw }_{M L} \\
\text { Roll }_{M R} & \text { itch }_{M R} & \text { Yaw }_{M R} \\
\text { Roll }_{R L} & \text { Pitch }_{R L} & \text { Yaw }_{R L} \\
\text { Roll }_{R R} & \text { Pitch }_{R R} & \text { Yaw }_{R R}
\end{array}\right]
$$

Rotation	Array Element	Rotation Axis
Vehicle, Roll $_{v}$	Rotation $(1,1)$	Inertial vehicle Z-down X-axis
Vehicle, Pitch $_{v}$	Rotation $(1,2)$	Inertial vehicle Z-down Y-axis
Vehicle, Yaw $_{v}$	Rotation $(1,3)$	Inertial vehicle Z-down Z-axis
Front left wheel, Roll $_{F L}$	Rotation $(2,1)$	Vehicle Z-down X-axis
Front left wheel, Pitch $_{F L}$	Rotation $(2,2)$	Vehicle Z-down Y-axis
Front left wheel, Yaw $_{F L}$	Rotation $(2,3)$	Vehicle Z-down Z-axis
Front right wheel, Roll $_{F R}$	Rotation $(3,1)$	Vehicle Z-down X-axis

Rotation	Array Element	Rotation Axis
Front right wheel, Pitch $_{\text {FR }}$	Rotation(3,2)	Vehicle Z-down Y-axis
Front right wheel, Yaw $_{\text {FR }}$	Rotation(3,3)	Vehicle Z-down Z-axis
Middle left wheel, Roll $_{\text {ML }}$	Rotation(4,1)	Vehicle Z-down X-axis
Middle left wheel, Pitch $_{\text {ML }}$	Rotation(4,2)	Vehicle Z-down Y-axis
Middle left wheel, $Y^{\prime} w_{M L}$	Rotation(4,3)	Vehicle Z-down Z-axis
Middle right wheel, Roll $_{\text {MR }}$	Rotation(5,1)	Vehicle Z-down X-axis
Middle right wheel, Pitch $_{\text {MR }}$	Rotation(5,2)	Vehicle Z-down Y-axis
Middle right wheel, Yaw $_{\text {MR }}$	Rotation(5,3)	Vehicle Z-down Z-axis
Rear left wheel, Roll ${ }_{R L}$	Rotation(6,1)	Vehicle Z-down X-axis
Rear left wheel, Pitch $_{\text {RL }}$	Rotation(6,2)	Vehicle Z-down Y-axis
Rear left wheel, Yaw RL	Rotation(6,3)	Vehicle Z-down Z-axis
Rear right wheel, Roll $_{R R}$	Rotation(7,1)	Vehicle Z-down X-axis
Rear right wheel, Pitch $_{\text {RR }}$	Rotation(7,2)	Vehicle Z-down Y-axis
Rear right wheel, Yaw ${ }_{\text {RR }}$	Rotation(7,3)	Vehicle Z-down Z-axis

Sample time - Sample time

- 1 (default) | scalar

Sample time, T_{s}. The graphics frame rate is the inverse of the sample time.

Version History

Introduced in R2020b

References

[1] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
[2] Technical Committee. Road vehicles - Vehicle dynamics and road-holding ability - Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

See Also

Vehicle Body 3DOF Three Axles | Simulation 3D Trailer | Vehicle Body 6DOF Three Axles | Vehicle Body 3DOF | Vehicle Body 6DOF

Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

Simulation 3D Physics Vehicle

Implement controllable 6DOF vehicle 3D environment

Libraries:

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Vehicle / Components

Description

The Simulation 3D Physics Vehicle block implements a controllable 10DOF vehicle in the 3D simulation environment, with a vertical DOF for each vehicle and 6DOF for the chassis.

To use the Simulation 3D Physics Vehicle block, ensure that the Simulation 3D Scene Configuration block is in your model. If you set the Sample time parameter of the Simulation 3D Physics Vehicle block to -1, the block uses the sample time specified in the Simulation 3D Scene Configuration block.

The block input uses the vehicle Z-down right-handed (RH) Cartesian coordinate system defined in SAE J670 ${ }^{1}$. The coordinate system is inertial and initially aligned with the vehicle geometric center:

- X-axis - Along vehicle longitudinal axis, points forward
- Y-axis - Along vehicle lateral axis, points to the right
- Z-axis - Points downward

Tip Verify that the Simulation 3D Scene Configuration block executes before the Simulation 3D Physics Vehicle block. That way, the Unreal Engine 3D visualization environment prepares the data before the Simulation 3D Physics Vehicle block receives it. To check the block execution order, rightclick the blocks and select Properties. On the General tab, confirm these Priority settings:

- Simulation 3D Scene Configuration - 0
- Simulation 3D Physics Vehicle - - 1

For more information about execution order, see "Control and Display Execution Order".

Ports

Input
SteerCmd - Normalized steer angle
scalar
Normalized steer angle, specified as a scalar. SteerCmd corresponds to the minimum and maximum range of the steering angle as determined by theFront wheel max steer angle and Rear wheel max steer angle parameters, respectively

AccelCmd - Normalized vehicle acceleration
scalar

Normalized acceleration torque request to the vehicle powertrain, specified as a scalar. The exact response will be characterized by the engine, transmission and other vehicle parameters.

DecelCmd - Normalized vehicle deceleration

scalar
Normalized deceleration torque request to the vehicle braking system, specified as a scalar. The exact braking response will be characterized by the engine, transmission and other vehicle parameters.

GearCmd - Gear input
1|-1|0
Gear input, specified as either $1,-1$, or 0 , with:

- 1 - Forward shift gear.
- - 1 - Reverse gear.
- 0 - Neutral gear.

If manual shift mode is selected, then the vehicle will shift according to what the signal is, but the values listed will still apply. Any input set that doesn't correspond to a valid gear will be ignored.

Output

Info - Bus signal
bus
Bus signal containing these block values.

Signal				Description	Value	Units
InertFrm	Cg	Disp	X	Vehicle CG displacement along the earth-fixed X axis	Computed	m
			Y	Vehicle CG displacement along the earth-fixed Y axis	Computed	m
			Z	Vehicle CG displacement along the earth-fixed Z axis	0	m
		Vel	Xdot	Vehicle CG velocity along the earth-fixed X-axis	Computed	m/s
			Ydot	Vehicle CG velocity along the earth-fixed Y-axis	Computed	m/s
			Zdot	Vehicle CG velocity along the earth-fixed Z-axis	0	m/s
		Ang	phi	Rotation of the vehiclefixed frame about the earth-fixed X-axis (roll)	0	rad

Signal				Description	Value	Units	
			theta	Rotation of the vehiclefixed frame about the earth-fixed Y-axis (pitch)	0	rad	
		psi	Rotation of the vehiclefixed frame about the earth-fixed Z-axis (yaw)	Computed	rad		
BdyFrm	Cg		Vel	xdot	Vehicle CG velocity along the vehicle-fixed x-axis	Computed	m/s
		ydot		Vehicle CG velocity along the vehicle-fixed y-axis	Computed	m/s	
		zdot		Vehicle CG velocity along the vehicle-fixed z-axis	0	m/s	
		Ang	Beta	Body slip angle, β $\beta=\frac{V_{y}}{V_{x}}$	Computed	rad	
		AngVel	p	Vehicle angular velocity about the vehicle-fixed x axis (roll rate)	0	rad/s	
			q	Vehicle angular velocity about the vehicle-fixed y axis (pitch rate)	0	rad/s	
			r	Vehicle angular velocity about the vehicle-fixed z axis (yaw rate)	Computed	rad/s	
		Acc	ax	Vehicle CG acceleration along the vehicle-fixed x axis	Computed	gn	
			ay	Vehicle CG acceleration along the vehicle-fixed y axis	Computed	gn	
			az	Vehicle CG acceleration along the vehicle-fixed z axis	0	gn	
			xddot	Vehicle CG acceleration along the vehicle-fixed x axis	Computed	$\mathrm{m} / \mathrm{s}^{\wedge} 2$	
			yddot	Vehicle CG acceleration along the vehicle-fixed y axis	Computed	$\mathrm{m} / \mathrm{s}^{\wedge} 2$	
			zddot	Vehicle CG acceleration along the vehicle-fixed z axis	0	$\mathrm{m} / \mathrm{s}^{\wedge} 2$	

Signal						AngAcc	pdot

Signal	Description	Variable	Units	
	TransGear	Engaged gear	N	N/A

The Info output parameter is optional.
xdot - Vehicle longitudinal velocity
scalar
Vehicle CG velocity along the vehicle-fixed x-axis, in m / s.
ydot - Vehicle lateral velocity
scalar
Vehicle CG velocity along the vehicle-fixed y-axis, in m / s.
psi - Yaw
scalar
Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw), in rad.
\mathbf{r} - Yaw rate
scalar
Vehicle angular velocity, r , about the vehicle-fixed z-axis (yaw rate), in rad/s.

Parameters

Chassis

Type - Type
Muscle car (default)|Sedan|Sport utility vehicle|Small pickup truck|Hatchback| Box truck|Custom

Specify the vehicle type. This table provides links to the vehicle dimensions.

Vehicle type Setting	Vehicle Dimensions
Muscle car	Muscle Car
Sedan	Sedan
Sport utility vehicle	Sport Utility Vehicle
Small pickup truck	Small Pickup Truck
Hatchback	Hatchback
Box truck	Box Truck

Dependencies

Selecting Custom enables parameters that allow you to import a custom mesh for your vehicle.
Color - Color of vehicle
Red (default) | Orange | Yellow | Green | Blue | Black | White | Silver
Select the color of the vehicle.

Name - Name of vehicle

SimulinkVehicle1 (default)| character vector

Name of vehicle. By default, when you use the block in your model, the block sets the Name parameter to SimulinkVehicle X. The value of X depends on the number of Simulation 3D Physics Vehicle and Simulation 3D Vehicle blocks that you have in your model.

Initial position - Vehicle initial position
[$0,0,0]$ (default) | 1-by-3 array
Initial vehicle position specified by a 1-by-3 array, in m. Array elements are values along the
Coordinate system parameter X-, Y-, and Z - axes, respectively.
Initial rotation - Vehicle initial rotation
[0, 0, 0] (default) | 1-by-3 array
Initial vehicle rotation specified by a 1-by-3 array, in rad. Array elements are values about the Coordinate system parameter X-, Y-, and Z - axes, respectively.

Mass - Vehicle mass
1500 (default) | scalar
Vehicle mass, in kg . This value does not include the wheel masses.
Drag Coefficient - Vehicle drag coefficient
0.3 (default) | scalar

Vehicle drag coefficient, dimensionless.
Track width - Distance between wheels
2 (default) | scalar
The vehicle track width refers to the distance between the wheels, or the axle length, specified in meters.

Dependencies

To enable this parameter, set Type to Custom.
Chassis height - Height of chassis
1.5 (default) | scalar

Height of chassis used to calculate drag force, specified in meters.
Center of mass offset - Offset in center of mass
[0, 0, 0] (default) | three element vector
Offset in center of mass, specified as a three element vector, in meters.
Inertia tensor scaling vector - Scaling of inertia tensor
[1, 1, 1] (default) | three element vector
Scaling of inertia tensor, specified as a three element dimensionless vector.
Path to custom mesh - Path to custom mesh
character vector

Path to custom mesh file.

Dependencies

To enable this parameter, set Type to Custom.
Wheel base in custom mesh - Wheel base in custom mesh
3 (default) | scalar
Wheel base, in meters.

Dependencies

To enable this parameter, set Type to Custom.
Front Wheel radius - Front Wheel radius
0.30 (default) | scalar

Front wheel radius, in meters.

Dependencies

To enable this parameter, set Type to Custom.
Rear Wheel radius - Rear Wheel radius
0.30 (default) | scalar

Rear wheel radius, in meters.

Dependencies

To enable this parameter, set Type to Custom.

Powertrain and Driveline

Powertrain

Motor torque indices - Motor torque indices
[75, 300, 400, 0] (default) | vector
Motor torque indices, in $N \cdot m$. You can use these pre-transmission values to represent either an electric motor or a conventional engine.
Data Types: double
Motor speed breakpoints - Motor speed breakpoints
[0, 1000, 5500, 8000] (default)|vector
Motor speed breakpoints, in rpm.
Data Types: double
Max powertrain speed - Max powertrain speed
10000 (default) | scalar
Max powertrain speed, in rpm. If you select an automatic transmission option, this value also corresponds to the normalized shift points used in the up and downshift logic.

Data Types: double

Powertrain rotational inertia - Powertrain rotational inertia
1 (default) | scalar
Powertrain rotational inertia, in $\mathrm{kg} \cdot \mathrm{m}^{2}$.
Data Types: double
Powertrain damping at full max torque request - Powertrain damping at full max torque request 0.15 (default)| scalar

Powertrain damping at full max torque request, in $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$.
Data Types: double
Powertrain damping at zero torque request, in gear - Powertrain damping at zero torque request, in gear
2 (default) | scalar
Powertrain damping at zero torque request, in gear, in $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$.
Data Types: double
Powertrain damping at zero torque request, in neutral - Powertrain damping at zero torque request, in neutral
0.35 (default)| scalar

Powertrain damping at zero torque request, in neutral, in $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$.
Data Types: double

Driveline

Differential type - Differential
Limited Slip (default)|Open
For both Limited Slip and Open differentials, the block implements a differential as a planetary bevel gear train. The block matches the driveshaft bevel gear to the crown (ring) bevel gear.

If you select Limited Slip, the block prevents one of the wheels from slipping by splitting the torque applied to the left and right axles. With different torque applied to the axles, the wheels can move at different angular velocities, preventing slip.

Drivetrain type - Drivetrain
Rear Wheel Drive (default)|Front Wheel Drive|All Wheel Drive
Implement rear wheel, front wheel, or all wheel drive.
Transmission type - Transmission
Automatic (default)|Manual
Implement an automatic or manual transmission.

Note A response is required for the GearCmd input even if Transmission type is set to Automatic.

Clutch slip torque - Clutch slip torque
10 (default) | scalar
Clutch slip torque, specified as a scalar in $\mathrm{N} \cdot \mathrm{m}$.
Data Types: double
Shift time - Time taken to complete a shift
0.5 (default) | scalar

Time taken to complete a shift, specified as a scalar in s.
Data Types: double
Minimum shift latency - Minimum time transmission will stay in newly selected gear
2.0 (default) | scalar

Minimum time the transmission will stay in a newly selected gear to mitigate shift hunting, specified as a scalar in s.

Data Types: double

Shift up indices - Normalized engine speeds at which a shift up for forward gears begins
[$0.15,0.65,0.65,0.65,0.65,0.65,0.65,0.65$] (default)|vector
Normalized engine speeds with respect to the Max powertrain speed parameter, at which a shift up for forward gears will be initiated, specified as a scalar in s.

Data Types: double

Shift down indices - Normalized engine speeds at which a shift down for forward gears begins
[$0.15,0.5,0.5,0.5,0.5,0.5,0.5,0.5$] (default) | vector
Normalized engine speeds with respect to the Max powertrain speed parameter, at which a shift down for forward gears will be initiated, specified as a scalar in s.
Data Types: double
Gear ratio vector - Gear ratios
[$-3.5,1,4.75,3.75,3.25,2.75,2.25,1.5,1,0.75$] (default)|vector
Gear ratios, dimensionless.

Note At least one negative ratio is required for reverse gear. A neutral ratio is also required such that the length of the array should correspond to the number of forward gears plus two one for reverse and one for neutral.

Data Types: double
Gear number vector - Gear ratios
[-1, 0, 1, 2, 3, 4, 5, 6, 7, 8] (default)|vector
Gear number vector, dimensionless.
Data Types: double

Front to rear torque split ratio - Front to rear torque split ratio

0.5 (default) | scalar

Front to rear torque split ratio, dimensionless.
1 indicates 100\% torque to the front, whereas 0 indicates 100% to the rear.
Final drive ratio - Final drive ratio
4.0 (default) | scalar

Final drive ratio, dimensionless. This is the post transmission ratio, typically found in a differential or final drive gearbox.
Data Types: double

Steering and Brakes

Steering

Front wheel max steer angle - Front wheel max steer angle
pi/4 (default) | scalar
Front wheel max steer angle, in radians. This is the absolute angle which the front wheels will turn with a-1 or 1 steer command input signal

Data Types: double
Rear wheel max steer angle - Rear wheel max steer angle
0 (default) | scalar
Rear wheel max steer angle, in radians. This is the absolute angle which the rear wheels will turn with a - 1 or 1 steer command input signal

Data Types: double
Percent Ackerman, PctAck - Percent Ackerman constant
1.0 (default) | scalar

Constant value of percent Ackerman, in percent. A value of 100 indicates an ideal Ackermann inside or outside steering adjustment, while 0 indicates a pure parallel steer adjustment.
Data Types: double
Maximum steering ratio breakpoints - Maximum steering ratio
[1, 0.8, 0.7] (default)|vector
Maximum steering ratio breakpoints, dimensionless. This is the gain by which the steering command is affected by the vehicle speed brake points.
Data Types: double
Steering ratio speed breakpoints - Steering ratio speed breakpoints
[0, 60, 120]./3.6 (default)|vector
Steering ratio speed breakpoints, in m / s. This is the vehicle forward speed break points used by the steer ratio gains.
Data Types: double

Brakes

Maximum front wheel torque - Maximum front wheel torque
1500 (default) | scalar
Maximum front wheel torque, in $\mathrm{N} \cdot \mathrm{m}$. This is the maximum braking torque applied to the front wheels corresponding to the normalized DecelCmd input.
Data Types: double
Maximum rear wheel torque - Maximum rear wheel torque 1500 (default) | scalar

Maximum rear wheel torque, in $\mathrm{N} \cdot \mathrm{m}$. This is the maximum braking torque applied to the rear wheels corresponding to the normalized DecelCmd input.

Data Types: double
Front wheels affected by handbrake - Selection
off (default) | on
Front wheels affected by handbrake.
Data Types: Boolean
Rear wheels affected by handbrake - Selection
off (default) | on
Rear wheels affected by handbrake.
Data Types: Boolean
Enable handbrake input - Enable handbrake input
off (default) | on
Enable handbrake input.
Data Types: Boolean

Suspension, Wheels and Tires

Suspension

Front suspension force offset - Front suspension force offset
0 (default) | scalar
Front suspension force offset, specified as a scalar in meters.
Maximum front suspension compression - Maximum front suspension compression 0.01 (default) | scalar

Maximum front suspension compression or jounce, specified as a scalar in meters. Jounce is the upward movement or compression of suspension components.

Maximum front suspension extension - Maximum front suspension extension 0.01 (default) | scalar

Maximum front suspension extension or rebound, specified as a scalar in meters. Rebound is the downward movement or extension of suspension components.

Front suspension natural frequency - Natural frequency of front suspension 7 (default) | scalar

Natural frequency of front suspension, in Hz. Suspension frequencies are the rate that a spring oscillates after applying a load (or hitting a bump).

Front suspension damping ratio - Damping ratio of front suspension
1 (default) | scalar
Damping ratio of front suspension, dimensionless. Damping ratio is the coefficient of the damper at its peak level, where the vehicle will be in a completely stable state.

Rear suspension force offset - Rear suspension force offset
0 (default) | scalar
Rear suspension force offset, specified as a scalar in meters.
Maximum rear suspension compression - Maximum rear suspension compression 0.01 (default) | scalar

Maximum rear suspension compression or jounce, specified as a scalar in meters. Jounce is the upward movement or compression of suspension components.

Maximum rear suspension extension - Maximum rear suspension extension 0.01 (default) | scalar

Maximum rear suspension extension or rebound, specified as a scalar in meters. Rebound is the downward movement or extension of suspension components.

Rear suspension natural frequency - Natural frequency of rear suspension
7 (default) | scalar
Natural frequency of rear suspension, in Hz. Suspension frequencies are the rate that a spring oscillates after applying a load (or hitting a bump).

Rear suspension damping ratio - Damping ratio of rear suspension
1 (default) | scalar
Damping ratio of rear suspension, dimensionless. Damping ratio is the coefficient of the damper at its peak level, where the vehicle will be in a completely stable state.

Wheels
Front wheel mass - Front wheel mass
10 (default) | scalar
Front wheel mass, in kg.
Data Types: double
Front wheel damping - Front wheel damping
0.25 (default)| scalar

Front wheel damping, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{s}$.
Data Types: double
Rear wheel mass - Rear wheel mass
10 (default) | scalar
Rear wheel mass, in kg.
Data Types: double
Rear wheel damping - Rear wheel damping
0.25 (default) | scalar

Rear wheel damping, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{s}$.
Data Types: double
Tires
Front tire max lateral stiffness factor - Front tire max lateral stiffness factor
2.0 (default) | scalar

Front tire max lateral stiffness factor, dimensionless.
Data Types: double
Front tire lateral stiffness - Front tire lateral stiffness
17 (default) | scalar
Front tire lateral stiffness, dimensionless.
Data Types: double
Front tire longitudinal stiffness - Front tire longitudinal stiffness
10 (default) | scalar
Front tire longitudinal stiffness, dimensionless.
Data Types: double
Rear tire max lateral stiffness factor - Front tire max lateral stiffness factor 2.0 (default) | scalar

Front tire max lateral stiffness factor, dimensionless.
Data Types: double
Rear tire lateral stiffness - Front tire lateral stiffness
17 (default) | scalar
Rear tire lateral stiffness, dimensionless.
Data Types: double
Rear tire longitudinal stiffness - Front tire longitudinal stiffness
10 (default) | scalar
Front tire longitudinal stiffness, dimensionless.

Data Types: double

Friction scaling factor - Friction scaling
1.0 (default) | scalar

Nominal friction scale, dimensionless.
Data Types: double

Light Controls

Enable light controls, VehLightsControl - Control vehicle lights off (default) | on

Select whether to control the vehicle headlights. Use the enabled parameters to set the light parameters, including headlight intensity.

Dependencies

Selecting this parameter:

- Creates the input port Light controls
- Enables these light parameters.

Lights	Light Parameters
Headlights	- Headlight color - High beam intensity - Low beam intensity - High beam cone half angle - Low beam cone half angle - Left headlight beam orientation - Right headlight beam orientation
Brake lights	Brake light intensity
Reverse lights	Reverse light intensity
Turn signal lights	- Turn signal light intensity - Period - Pulse width

Headlights

Headlight color [R,G,B], HeadlightColor - Headlight color
[1,1,1] (default) | 1-by-3 vector of RGB triplet values
Headlight color, specified as a normalized 1-by-3 vector of RGB triplet values.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: int8|uint8

High beam intensity, HighBeamIntensity - High beam intensity
100000 (default) | positive scalar
High beam intensity, in cd.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double
Low beam intensity, LowBeamIntensity - Low beam intensity
60000 (default) | positive scalar
Low beam intensity, in cd.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double

High beam cone half angle, HighBeamConeAngle - High beam cone half angle
1.22 (default) | positive scalar less than pi/2

High beam cone half angle, in rad.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double

Low beam cone half angle, LowBeamConeAngle - Low beam cone half angle
1.22 (default) | positive scalar less than pi/2

Low beam cone half angle, in rad.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double
Left headlight beam orientation [Pitch, Yaw], LeftHeadlightOrientation - Left headlight beam orientation
[0,0] (default) | 1-by-2 vector greater with values between -pi and pi
Pitch and yaw orientation of the left headlight beam orientation in the Z-down coordinate system, specified as a 1 -by- 2 vector, in rad. The first element of the vector, [1,1], is the pitch angle. The second element of the vector, [1,2] is the yaw angle.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double

Right headlight beam orientation [Pitch, Yaw], RightHeadlightOrientation - Right headlight beam orientation
[0,0] (default) | 1-by-2 vector greater with values between -pi and pi
Pitch and yaw orientation of the right headlight beam orientation in the Z-down coordinate system, specified as a 1 -by- 2 vector, in rad. The first element of the vector, [1,1], is the pitch angle. The second element of the vector, [1,2] is the yaw angle.

Dependencies

To enable this parameter, select Enable light controls.

Brake Lights

Brake light intensity, BrakelightIntensity - Intensity
500 (default) | positive scalar
Brake light intensity, in $\mathrm{cd} / \mathrm{m}^{\wedge} 2$.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double

Reverse Lights

Reverse light intensity, ReverselightIntensity - Intensity
500 (default) | positive scalar
Reverse light intensity, in $\mathrm{cd} / \mathrm{m}^{\wedge} 2$.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double

Turn Signal Lights

Turn signal light intensity, SignallightIntensity - Intensity
500 (default) | positive scalar
Turn signal light intensity, in $\mathrm{cd} / \mathrm{m}^{\wedge} 2$.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double

Period, SignallightPeriod - Turn signal light period
1 (default) | positive scalar
Turn signal light period, in s.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double

Pulse width, SignalPulseWidth - Pulse width
50 (default) | positive scalar less than 100
Turn signal light pulse width, as a percent of the period.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double
Sample Time
Sample time - Sample time

- 1 (default) | scalar

Sample time, T_{s}. The graphics frame rate is the inverse of the sample time.

Ground Truth

Output location and orientation - Select to return location and orientation off (default) | on

Select to return location and orientation.
Data Types: Boolean
Output nominal vehicle state feedback - Select to return nominal vehicle state feedback off (default) | on

Select to return nominal vehicle state feedback
Data Types: Boolean

Version History

Introduced in R2022b

References

[1] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
[2] Technical Committee. Road vehicles - Vehicle dynamics and road-holding ability - Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

See Also

Simulation 3D Scene Configuration

Topics

"Scene Interrogation in 3D Environment"

External Websites

Unreal Engine

UWheeledVehicleMovementComponent

Simulation 3D Trailer

Implement trailer in 3D environment

Libraries:

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Vehicle / Components

Description

The Simulation 3D Trailer block implements a trailer with one, two or three axles in the 3D simulation environment.

To use the Simulation 3D Trailer block, ensure that the Simulation 3D Scene Configuration block is in your model. If you set the Sample time parameter of the Simulation 3D Trailer block to -1, the block uses the sample time specified in the Simulation 3D Scene Configuration block.

The block input uses the vehicle Z-down right-handed (RH) Cartesian coordinate system defined in SAE J670 ${ }^{1}$. The coordinate system is inertial and initially aligned with the vehicle geometric center:

- X-axis - Points forward along vehicle longitudinal axis
- Y-axis - Points to the right along vehicle lateral axis
- Z-axis - Points downward

Tip Verify that the Simulation 3D Trailer block executes before the Simulation 3D Scene
Configuration block. That way, Simulation 3D Vehicle prepares the signal data before the Unreal Engine 3D visualization environment receives it. To check the block execution order, right-click the blocks and select Properties. On the General tab, confirm these Priority settings:

- Simulation 3D Scene Configuration - 0
- Simulation 3D Trailer - - 1

For more information about execution order, see "Control and Display Execution Order".

Ports

Input

Translation - Vehicle translation
5-by-3 array (default) | 7-by-3 array | 3-by-3 array
Vehicle and wheel translation, in m . The array dimensions are 3-by-3 for a one-axle trailer, 5-by-3 for a two-axle trailer, and 7-by-3 for a three-axle trailer, where:

- Translation(1,1), Translation(1,2), and Translation(1,3) - Vehicle translation along the inertial vehicle Z-down X-, Y-, and Z-axes, respectively.
- Translation(...,1), Translation(...,2), and Translation(...,3) - Wheel translation relative to vehicle, along the vehicle Z-down X-, Y-, and Z-axes, respectively.

The signal contains translation information according to the axle and wheel locations.
For a one-axle trailer:

$$
\text { Translation }=\left[\begin{array}{lll}
X_{v} & Y_{v} & Z_{v} \\
X_{L} & Y_{L} & Z_{L} \\
X_{R} & Y_{R} & Z_{R}
\end{array}\right]
$$

Translation	Array Element	Translation Axis
Vehicle, X_{v}	Translation(1,1)	Inertial vehicle Z-down X-axis
Vehicle, Y_{v}	Translation(1,2)	Inertial vehicle Z-down Y-axis
Vehicle, Z_{v}	Translation(1,3)	Inertial vehicle Z-down Z-axis
Left wheel, X_{L}	Translation $(2,1)$	Vehicle Z-down X-axis
Left wheel, Y_{L}	Translation $(2,2)$	Vehicle Z-down Y-axis
Left wheel, Z_{L}	Translation(2,3)	Vehicle Z-down Z-axis
Right wheel, X_{R}	Translation $(3,1)$	Vehicle Z-down X-axis
Right wheel, Y_{R}	Translation(3,2)	Vehicle Z-down Y-axis
Right wheel, Z_{R}	Translation(3,3)	Vehicle Z-down Z-axis

For a two-axle trailer:
Translation $=\left[\begin{array}{ccc}X_{v} & Y_{v} & Z_{v} \\ X_{F L} & Y_{F L} & Z_{F L} \\ X_{F R} & Y_{F R} & Z_{F R} \\ X_{R L} & Y_{R L} & Z_{R L} \\ X_{R R} & Y_{R R} & Z_{R R}\end{array}\right]$

Translation	Array Element	Translation Axis
Vehicle, X_{v}	Translation(1,1)	Inertial vehicle Z-down X-axis
Vehicle, Y_{v}	Translation(1,2)	Inertial vehicle Z-down Y-axis
Vehicle, Z_{v}	Translation(1,3)	Inertial vehicle Z-down Z-axis
Front left wheel, $X_{F L}$	Translation(2,1)	Vehicle Z-down X-axis
Front left wheel, $Y_{F L}$	Translation(2,2)	Vehicle Z-down Y-axis
Front left wheel, $Z_{F L}$	Translation(2,3)	Vehicle Z-down Z-axis
Front right wheel, $X_{F R}$	Translation (3,1)	Vehicle Z-down X-axis
Front right wheel, $Y_{F R}$	Translation(3,2)	Vehicle Z-down Y-axis
Front right wheel, $Z_{F R}$	Translation(3,3)	Vehicle Z-down Z-axis
Rear left wheel, $X_{R L}$	Translation(4,1)	Vehicle Z-down X-axis
Rear left wheel, $Y_{R L}$	Translation(4,2)	Vehicle Z-down Y-axis
Rear left wheel, $Z_{R L}$	Translation(4,3)	Vehicle Z-down Z-axis
Rear right wheel, $X_{R R}$	Translation(5,1)	Vehicle Z-down X-axis

Translation	Array Element	Translation Axis
Rear right wheel, $Y_{R R}$	Translation (5,2)	Vehicle Z-down Y-axis
Rear right wheel, $Z_{R R}$	Translation(5,3)	Vehicle Z-down Z-axis

For a three-axle trailer:

$$
\text { Translation }=\left[\begin{array}{ccc}
X_{v} & Y_{v} & Z_{v} \\
X_{F L} & Y_{F L} & Z_{F L} \\
X_{F R} & Y_{F R} & Z_{F R} \\
X_{M L} & Y_{M L} & Z_{M L} \\
X_{M R} & Y_{M R} & Z_{M R} \\
X_{R L} & Y_{R L} & Z_{R L} \\
X_{R R} & Y_{R R} & Z_{R R}
\end{array}\right]
$$

Translation	Array Element	Translation Axis
Vehicle, X_{v}	Translation(1,1)	Inertial vehicle Z-down X-axis
Vehicle, Y_{v}	Translation(1,2)	Inertial vehicle Z-down Y-axis
Vehicle, Z_{v}	Translation(1,3)	Inertial vehicle Z-down Z-axis
Front left wheel, $X_{F L}$	Translation(2,1)	Vehicle Z-down X-axis
Front left wheel, $Y_{F L}$	Translation(2,2)	Vehicle Z-down Y-axis
Front left wheel, $Z_{F L}$	Translation(2,3)	Vehicle Z-down Z-axis
Front right wheel, $X_{F R}$	Translation(3,1)	Vehicle Z-down X-axis
Front right wheel, $Y_{F R}$	Translation(3,2)	Vehicle Z-down Y-axis
Front right wheel, $Z_{F R}$	Translation(3,3)	Vehicle Z-down Z-axis
Middle left wheel, $X_{M L}$ three-axle trailer)	Translation(4,1)	Vehicle Z-down X-axis
Middle left wheel, $Y_{M L}$	Translation(4,2)	Vehicle Z-down Y-axis
Middle left wheel, $Z_{M L}$	Translation(4,3)	Vehicle Z-down Z-axis
Middle right wheel, $X_{M R}$	Translation(5,1)	Vehicle Z-down X-axis
Middle right wheel, $Y_{M R}$	Translation(5,2)	Vehicle Z-down Y-axis
Middle right wheel, $Z_{M R}$	Translation(5,3)	Vehicle Z-down Z-axis
Rear left wheel, $X_{R L}$	Translation(6,1)	Vehicle Z-down X-axis
Rear left wheel, $Y_{R L}$	Translation(6,2)	Vehicle Z-down Y-axis
Rear left wheel, $Z_{R L}$	Translation(6,3)	Vehicle Z-down Z-axis
Rear right wheel, $X_{R R}$	Translation(7,1)	Vehicle Z-down X-axis
Rear right wheel, $Y_{R R}$	Translation(7,2)	Vehicle Z-down Y-axis
Rear right wheel, $Z_{R R}$	Translation(7,3)	Vehicle Z-down Z-axis

Rotation - Vehicle rotation
5-by-3 array (default) | 7-by-3 array | 3-by-3 array

Vehicle and wheel rotation, in rad. The array dimensions are 3-by-3 for a one-axle trailer, 5-by-3 for a two-axle trailer, and 7-by-3 for a three-axle trailer, where:

- Rotation(1,1), Rotation(1,2), and Rotation(1,3) - Vehicle rotation about the inertial vehicle Z-down X-, Y-, and Z-axes, respectively.
- Rotation(...,1), Rotation(...,2), and Rotation(...,3) - Wheel rotation relative to vehicle, about the vehicle Z-down X-, Y-, and Z-axes, respectively.

The signal contains rotation information according to the axle and wheel locations.
For a one-axle trailer:

$$
\text { Rotation }=\left[\begin{array}{lll}
\text { Roll }_{V} & \text { itch }_{v} & \text { Yaw }_{v} \\
\text { Roll }_{L} & \text { Pitch }_{L} & \text { Yaw }_{L} \\
\text { Roll }_{R} & \text { Pitch }_{R} & \text { Yaw }_{R}
\end{array}\right]
$$

Rotation	Array Element	Rotation Axis
Vehicle, Roll $_{v}$	Rotation $(1,1)$	Inertial vehicle Z-down X-axis
Vehicle, Pitch $_{v}$	Rotation(1,2)	Inertial vehicle Z-down Y-axis
Vehicle, Yaw $_{v}$	Rotation(1,3)	Inertial vehicle Z-down Z-axis
Left wheel, Roll $_{L}$	Rotation $(2,1)$	Vehicle Z-down X-axis
Left wheel, Pitch $_{L}$	Rotation $(2,2)$	Vehicle Z-down Y-axis
Left wheel, Yaw $_{L}$	Rotation(2,3)	Vehicle Z-down Z-axis
Right wheel, Roll $_{R}$	Rotation(3,1)	Vehicle Z-down X-axis
Right wheel, Pitch $_{R}$	Rotation(3,2)	Vehicle Z-down Y-axis
Right wheel, Yaw $_{R}$	Rotation(3,3)	Vehicle Z-down Z-axis

For a two-axle trailer:

$$
\text { Rotation }=\left[\begin{array}{ccc}
\text { Roll }_{v} & \text { Pitch }_{v} & \text { Yaw }_{v} \\
\text { Roll }_{F L} & \text { Pitch }_{F L} & \text { Yaw }_{F L} \\
\text { Roll }_{F R} & \text { Pitch }_{F R} & \text { Yaw }_{F R} \\
\text { Roll }_{R L} & \text { Pitch }_{R L} & \text { Yaw }_{R L} \\
\text { Roll }_{R R} & \text { Pitch }_{R R} & \text { Yaw }_{R R}
\end{array}\right]
$$

Rotation	Array Element	Rotation Axis
Vehicle, Roll $_{v}$	Rotation $(1,1)$	Inertial vehicle Z-down X-axis
Vehicle, Pitch $_{v}$	Rotation $(1,2)$	Inertial vehicle Z-down Y-axis
Vehicle, Yaw $_{v}$	Rotation $(1,3)$	Inertial vehicle Z-down Z-axis
Front left wheel, Roll $_{F L}$	Rotation $(2,1)$	Vehicle Z-down X-axis
Front left wheel, Pitch $_{F L}$	Rotation $(2,2)$	Vehicle Z-down Y-axis
Front left wheel, Yaw $_{F L}$	Rotation $(2,3)$	Vehicle Z-down Z-axis
Front right wheel, Roll $_{F R}$	Rotation $(3,1)$	Vehicle Z-down X-axis

Rotation	Array Element	Rotation Axis
Front right wheel, Pitch $_{\text {FR }}$	Rotation(3,2)	Vehicle Z-down Y-axis
Front right wheel, Yaw $_{\text {FR }}$	Rotation(3,3)	Vehicle Z-down Z -axis
Rear left wheel, Roll $_{\text {RL }}$	Rotation(4,1)	Vehicle Z-down X-axis
Rear left wheel, Pitch $_{\text {RL }}$	Rotation(4,2)	Vehicle Z-down Y-axis
Rear left wheel, Yaw ${ }_{\text {RL }}$	Rotation(4,3)	Vehicle Z-down Z-axis
Rear right wheel, Roll $_{R R}$	Rotation(5,1)	Vehicle Z-down X-axis
Rear right wheel, Pitch $_{\text {RR }}$	Rotation(5,2)	Vehicle Z-down Y-axis
Rear right wheel, Yaw $_{\text {RR }}$	Rotation(5,3)	Vehicle Z-down Z-axis

For a three-axle trailer:

$$
\text { Rotation }=\left[\begin{array}{ccc}
\text { Roll }_{v} & \text { Pitch }_{v} & \text { Yaw }_{v} \\
\text { Roll }_{F L} & \text { Pitch }_{F L} & \text { Yaw }_{F L} \\
\text { Roll }_{F R} & \text { Pitch }_{F R} & \text { Yaw }_{F R} \\
\text { Roll }_{M L} & \text { Pitch }_{M L} & \text { Yaw }_{M L} \\
\text { Roll }_{M R} & \text { Pitch }_{M R} & \text { Yaw }_{M R} \\
\text { Roll }_{R L} & \text { Pitch }_{R L} & \text { Yaw }_{R L} \\
\text { Roll }_{R R} & \text { Pitch }_{R R} & \text { Yaw }_{R R}
\end{array}\right]
$$

Rotation	Array Element	Rotation Axis
Vehicle, Rollv	Rotation(1,1)	Inertial vehicle Z -down X-axis
Vehicle, Pitch ${ }_{v}$	Rotation(1,2)	Inertial vehicle Z -down Y-axis
Vehicle, Yaw ${ }_{v}$	Rotation(1,3)	Inertial vehicle Z -down Z -axis
Front left wheel, Roll $_{F L}$	Rotation(2,1)	Vehicle Z-down X-axis
Front left wheel, Pitch $_{F L}$	Rotation(2,2)	Vehicle Z-down Y-axis
Front left wheel, Yaw $_{\text {FL }}$	Rotation(2,3)	Vehicle Z-down Z-axis
Front right wheel, Roll $_{\text {FR }}$	Rotation (3,1)	Vehicle Z-down X-axis
Front right wheel, Pitch $_{\text {FR }}$	Rotation(3,2)	Vehicle Z-down Y-axis
Front right wheel, Yaw $_{\text {FR }}$	Rotation(3,3)	Vehicle Z-down Z -axis
Middle left wheel, Roll $_{\text {ML }}$	Rotation(4,1)	Vehicle Z-down X-axis
Middle left wheel, Pitch $_{\text {ML }}$	Rotation(4,2)	Vehicle Z-down Y-axis
Middle left wheel, Yaw $_{\text {ML }}$	Rotation(4,3)	Vehicle Z-down Z-axis
Middle right wheel, Roll $_{\text {MR }}$	Rotation (5,1)	Vehicle Z-down X-axis
Middle right wheel, Pitch $_{\text {MR }}$	Rotation (5,2)	Vehicle Z-down Y-axis
Middle right wheel, Yaw ${ }_{\text {MR }}$	Rotation(5,3)	Vehicle Z-down Z-axis
Rear left wheel, Roll $_{R L}$	Rotation(6,1)	Vehicle Z-down X-axis
Rear left wheel, Pitch $_{\text {RL }}$	Rotation(6,2)	Vehicle Z-down Y-axis
Rear left wheel, Yaw ${ }_{\text {RL }}$	Rotation(6,3)	Vehicle Z-down Z-axis

Rotation	Array Element	Rotation Axis
Rear right wheel, Roll $_{R R}$	Rotation $(7,1)$	Vehicle Z-down X-axis
Rear right wheel, Pitch $_{R R}$	Rotation $(7,2)$	Vehicle Z-down Y-axis
Rear right wheel, Yaw $_{R R}$	Rotation $(7,3)$	Vehicle Z-down Z-axis

Parameters

Vehicle Parameters

Type - Trailer type
Two-axle trailer (default)|Three-axle trailer|One-axle trailer
Trailer type. For the trailer dimensions, see:

- One-Axle Trailer
- Two-Axle Trailer
- Three-Axle Trailer

Name - Name of vehicle
SimulinkVehicle1 (default) | character vector
Name of vehicle. By default, when you use the block in your model, the block sets the Name parameter to SimulinkVehicle X. The value of X depends on the number of Simulation 3D Vehicle with Ground Following and Simulation 3D Vehicle blocks that you have in your model.

Initial Values

Initial array values to translate vehicle per part, Translation - Vehicle initial translation zeros(5, 3) (default) | zeros(7, 3) | zeros(3, 3)

Initial vehicle and wheel translation, in m. The array dimensions are 3-by-3 for a one-axle trailer, 5-by-3 for a two-axle trailer and 7-by-3 for a three-axle trailer, where:

- Translation(1,1), Translation(1,2), and Translation(1,3) - Initial vehicle translation along the inertial vehicle Z-down coordinate system $X-, Y$-, and Z-axes, respectively.
- Translation(...,1), Translation(...,2), and Translation(...,3) - Initial wheel translation relative to vehicle, along the vehicle Z-down X-, Y-, and Z-axes, respectively.

The signal contains translation information according to the axle and wheel locations.
For a one-axle trailer:

$$
\text { Translation }=\left[\begin{array}{lll}
X_{v} & Y_{v} & Z_{v} \\
X_{L} & Y_{L} & Z_{L} \\
X_{R} & Y_{R} & Z_{R}
\end{array}\right]
$$

Translation	Array Element	Translation Axis
Vehicle, X_{v}	Translation(1,1)	Inertial vehicle Z-down X-axis
Vehicle, Y_{v}	Translation(1,2)	Inertial vehicle Z-down Y-axis

Translation	Array Element	Translation Axis
Vehicle, Z_{v}	Translation $(1,3)$	Inertial vehicle Z-down Z-axis
Left wheel, X_{L}	Translation $(2,1)$	Vehicle Z-down X-axis
Left wheel, Y_{L}	Translation $(2,2)$	Vehicle Z-down Y-axis
Left wheel, Z_{L}	Translation $(2,3)$	Vehicle Z-down Z-axis
Right wheel, X_{R}	Translation $(3,1)$	Vehicle Z-down X-axis
Right wheel, Y_{R}	Translation(3, 2)	Vehicle Z-down Y-axis
Right wheel, Z_{R}	Translation(3,3)	Vehicle Z-down Z-axis

For a two-axle trailer:

$$
\text { Translation }=\left[\begin{array}{ccc}
X_{v} & Y_{v} & Z_{v} \\
X_{F L} & Y_{F L} & Z_{F L} \\
X_{F R} & Y_{F R} & Z_{F R} \\
X_{R L} & Y_{R L} & Z_{R L} \\
X_{R R} & Y_{R R} & Z_{R R}
\end{array}\right]
$$

Translation	Array Element	Translation Axis
Vehicle, X_{v}	Translation(1,1)	Inertial vehicle Z-down X-axis
Vehicle, Y_{v}	Translation(1,2)	Inertial vehicle Z-down Y-axis
Vehicle, Z_{v}	Translation(1,3)	Inertial vehicle Z-down Z-axis
Front left wheel, $X_{F L}$	Translation(2,1)	Vehicle Z-down X-axis
Front left wheel, $Y_{\text {FL }}$	Translation(2,2)	Vehicle Z-down Y-axis
Front left wheel, $Z_{F L}$	Translation(2,3)	Vehicle Z-down Z-axis
Front right wheel, $X_{F R}$	Translation(3,1)	Vehicle Z-down X-axis
Front right wheel, $Y_{F R}$	Translation(3,2)	Vehicle Z-down Y-axis
Front right wheel, $Z_{F R}$	Translation(3,3)	Vehicle Z-down Z-axis
Rear left wheel, $X_{R L}$	Translation(4,1)	Vehicle Z-down X-axis
Rear left wheel, $Y_{R L}$	Translation(4,2)	Vehicle Z-down Y-axis
Rear left wheel, $Z_{R L}$	Translation(4,3)	Vehicle Z-down Z-axis
Rear right wheel, $X_{R R}$	Translation(5,1)	Vehicle Z-down X-axis
Rear right wheel, $Y_{R R}$	Translation(5,2)	Vehicle Z-down Y-axis
Rear right wheel, $Z_{R R}$	Translation(5,3)	Vehicle Z-down Z-axis

For a three-axle trailer:

$$
\text { Translation }=\left[\begin{array}{ccc}
X_{v} & Y_{v} & Z_{v} \\
X_{F L} & Y_{F L} & Z_{F L} \\
X_{F R} & Y_{F R} & Z_{F R} \\
X_{M L} & Y_{M L} & Z_{M L} \\
X_{M R} & Y_{M R} & Z_{M R} \\
X_{R L} & Y_{R L} & Z_{R L} \\
X_{R R} & Y_{R R} & Z_{R R}
\end{array}\right]
$$

Translation	Array Element	Translation Axis
Vehicle, X_{v}	Translation(1,1)	Inertial vehicle Z-down X-axis
Vehicle, Y_{v}	Translation(1,2)	Inertial vehicle Z-down Y-axis
Vehicle, Z_{v}	Translation(1,3)	Inertial vehicle Z-down Z-axis
Front left wheel, $X_{F L}$	Translation(2,1)	Vehicle Z-down X-axis
Front left wheel, $Y_{F L}$	Translation(2,2)	Vehicle Z-down Y-axis
Front left wheel, $Z_{F L}$	Translation(2,3)	Vehicle Z-down Z-axis
Front right wheel, $X_{F R}$	Translation(3,1)	Vehicle Z-down X-axis
Front right wheel, $Y_{F R}$	Translation (3,2)	Vehicle Z-down Y-axis
Front right wheel, $Z_{F R}$	Translation(3,3)	Vehicle Z-down Z-axis
Middle left wheel, $X_{M L}$ (for three-axle trailer)	Translation(4,1)	Vehicle Z-down X-axis
Middle left wheel, $Y_{M L}$	Translation(4,2)	Vehicle Z-down Y-axis
Middle left wheel, $Z_{M L}$	Translation (4,3)	Vehicle Z-down Z-axis
Middle right wheel, $X_{M R}$	Translation(5,1)	Vehicle Z-down X-axis
Middle right wheel, $Y_{M R}$	Translation(5,2)	Vehicle Z-down Y-axis
Middle right wheel, $Z_{M R}$	Translation(5,3)	Vehicle Z-down Z-axis
Rear left wheel, $X_{R L}$	Translation(6,1)	Vehicle Z-down X-axis
Rear left wheel, $Y_{R L}$	Translation(6,2)	Vehicle Z-down Y-axis
Rear left wheel, $Z_{\text {RL }}$	Translation(6,3)	Vehicle Z-down Z-axis
Rear right wheel, $X_{R R}$	Translation(7,1)	Vehicle Z-down X-axis
Rear right wheel, $Y_{R R}$	Translation(7,2)	Vehicle Z-down Y-axis
Rear right wheel, $Z_{R R}$	Translation(7,3)	Vehicle Z-down Z-axis

Initial array values to rotate vehicle per part, Rotation - Vehicle initial rotation zeros(5, 3) (default) | zeros(7, 3) | zeros(3, 3)

Initial vehicle and wheel rotation, about the vehicle Z-down X-, Y-, and Z-axes, in rad.
The array dimensions are 5-by-3 for a two-axle trailer and 7-by-3 for a three-axle trailer, where:

- Rotation(1,1), Rotation(1,2), and Rotation(1,3) - Initial vehicle rotation about the inertial vehicle Z-down coordinate system X-, Y-, and Z-axes, respectively.
- Rotation(...,1), Rotation(...,2), and Rotation(...,3) - Initial wheel rotation relative to the vehicle, about the vehicle Z-down X-, Y-, and Z-axes, respectively.

The signal contains translation information according to the axle and wheel locations.
For a one-axle trailer:

$$
\text { Rotation }=\left[\begin{array}{lll}
\text { Roll }_{v} & \text { Pitch }_{v} & \text { Yaw }_{v} \\
\text { Roll }_{L} & \text { Pitch }_{L} & \text { Yaw }_{L} \\
\text { Roll }_{R} & \text { itch }_{R} & \text { Yaw }_{R}
\end{array}\right]
$$

Rotation	Array Element	Rotation Axis
Vehicle, Roll $_{v}$	Rotation $(1,1)$	Inertial vehicle Z-down X-axis
Vehicle, Pitch $_{v}$	Rotation(1,2)	Inertial vehicle Z-down Y-axis
Vehicle, Yaw $_{v}$	Rotation(1,3)	Inertial vehicle Z-down Z-axis
Left wheel, Roll $_{L}$	Rotation $(2,1)$	Vehicle Z-down X-axis
Left wheel, Pitch $_{L}$	Rotation $(2,2)$	Vehicle Z-down Y-axis
Left wheel, Yaw $_{L}$	Rotation $(2,3)$	Vehicle Z-down Z-axis
Right wheel, Roll $_{R}$	Rotation(3,1)	Vehicle Z-down X-axis
Right wheel, Pitch $_{R}$	Rotation(3,2)	Vehicle Z-down Y-axis
Right wheel, Yaw $_{R}$	Rotation(3,3)	Vehicle Z-down Z-axis

For a two-axle trailer:

$$
\text { Rotation }=\left[\begin{array}{ccc}
\text { Roll }_{v} & \text { Pitch }_{v} & \text { Yaw }_{v} \\
\text { Roll }_{F L} & \text { Pitch }_{F L} & \text { Yaw }_{F L} \\
\text { Roll }_{F R} & \text { Pitch }_{F R} & \text { Yaw }_{F R} \\
\text { Roll }_{R L} & \text { Pitch }_{R L} & \text { Yaw }_{R L} \\
\text { Roll }_{R R} & \text { Pitch }_{R R} & \text { Yaw }_{R R}
\end{array}\right]
$$

Rotation	Array Element	Rotation Axis
Vehicle, Roll ${ }_{v}$	Rotation(1,1)	Inertial vehicle Z-down X-axis
Vehicle, Pitch ${ }_{v}$	Rotation(1,2)	Inertial vehicle Z-down Y-axis
Vehicle, Yaw ${ }_{v}$	Rotation(1,3)	Inertial vehicle Z-down Z-axis
Front left wheel, Roll $_{F L}$	Rotation(2,1)	Vehicle Z-down X-axis
Front left wheel, Pitch $_{F L}$	Rotation(2,2)	Vehicle Z-down Y-axis
Front left wheel, Yaw FL $^{\text {d }}$	Rotation(2,3)	Vehicle Z-down Z -axis
Front right wheel, Roll $_{F R}$	Rotation(3,1)	Vehicle Z-down X-axis
Front right wheel, Pitch $_{\text {FR }}$	Rotation(3,2)	Vehicle Z-down Y-axis
Front right wheel, Yaw $_{\text {FR }}$	Rotation(3,3)	Vehicle Z-down Z -axis
Rear left wheel, Roll $_{R L}$	Rotation(4,1)	Vehicle Z-down X-axis
Rear left wheel, Pitch $_{\text {RL }}$	Rotation(4,2)	Vehicle Z-down Y-axis

Rotation	Array Element	Rotation Axis
Rear left wheel, Yaw $_{R L}$	Rotation $(4,3)$	Vehicle Z-down Z-axis
Rear right wheel, Roll $_{R R}$	Rotation $(5,1)$	Vehicle Z-down X-axis
Rear right wheel, Pitch $_{R R}$	Rotation (5,2)	Vehicle Z-down Y-axis
Rear right wheel, Yaw $_{R R}$	Rotation (5, 3)	Vehicle Z-down Z-axis

For a three-axle trailer:

$$
\text { Rotation }=\left[\begin{array}{ccc}
\text { Roll }_{v} & \text { Pitch }_{v} & \text { Yaw }_{v} \\
\text { Roll }_{F L} & \text { Pitch }_{F L} & \text { Yaw }_{F L} \\
\text { Roll }_{F R} & \text { Pitch }_{F R} & \text { Yaw }_{F R} \\
\text { Roll }_{M L} & \text { Pitch }_{M L} & \text { Yaw }_{M L} \\
\text { Roll }_{M R} & \text { Pitch }_{M R} & \text { Yaw }_{M R} \\
\text { Roll }_{R L} & \text { Pitch }_{R L} & \text { Yaw }_{R L} \\
\text { Roll }_{R R} & \text { Pitch }_{R R} & \text { Yaww }_{R R}
\end{array}\right]
$$

Rotation	Array Element	Rotation Axis
Vehicle, Roll ${ }_{v}$	Rotation(1,1)	Inertial vehicle Z-down X-axis
Vehicle, Pitch ${ }_{v}$	Rotation(1,2)	Inertial vehicle Z-down Y-axis
Vehicle, Yaw ${ }_{v}$	Rotation(1,3)	Inertial vehicle Z-down Z-axis
Front left wheel, Roll $_{F L}$	Rotation(2,1)	Vehicle Z-down X-axis
Front left wheel, Pitch $_{\text {FL }}$	Rotation(2,2)	Vehicle Z-down Y-axis
Front left wheel, Yaw ${ }_{\text {FL }}$	Rotation(2,3)	Vehicle Z-down Z-axis
Front right wheel, Roll $_{F R}$	Rotation (3,1)	Vehicle Z-down X-axis
Front right wheel, Pitch ${ }_{F R}$	Rotation(3,2)	Vehicle Z-down Y-axis
Front right wheel, Yaw $_{\text {FR }}$	Rotation(3,3)	Vehicle Z-down Z-axis
Middle left wheel, Roll $_{\text {ML }}$	Rotation(4,1)	Vehicle Z-down X-axis
Middle left wheel, Pitch $_{\text {ML }}$	Rotation (4, 2)	Vehicle Z-down Y-axis
Middle left wheel, Yaw $_{\text {ML }}$	Rotation(4,3)	Vehicle Z-down Z-axis
Middle right wheel, Roll $_{\text {MR }}$	Rotation(5,1)	Vehicle Z-down X-axis
Middle right wheel, Pitch ${ }_{M R}$	Rotation(5,2)	Vehicle Z-down Y-axis
Middle right wheel, Yaw $_{\text {MR }}$	Rotation(5,3)	Vehicle Z-down Z-axis
Rear left wheel, Roll $_{R L}$	Rotation(6,1)	Vehicle Z-down X-axis
Rear left wheel, Pitch $_{\text {RL }}$	Rotation (6,2)	Vehicle Z-down Y-axis
Rear left wheel, $Y^{\prime} w_{\text {RL }}$	Rotation(6,3)	Vehicle Z-down Z-axis
Rear right wheel, Roll $_{R R}$	Rotation(7,1)	Vehicle Z-down X-axis
Rear right wheel, Pitch ${ }_{R R}$	Rotation(7,2)	Vehicle Z-down Y-axis
Rear right wheel, Yaw $_{R R}$	Rotation(7,3)	Vehicle Z-down Z-axis

Sample time - Sample time

- 1 (default) | scalar

Sample time, T_{s}. The graphics frame rate is the inverse of the sample time.

Version History

Introduced in R2020b

References

[1] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
[2] Technical Committee. Road vehicles - Vehicle dynamics and road-holding ability - Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

See Also

Vehicle Body 3DOF Three Axles | Simulation 3D Tractor | Trailer Body 3DOF | Trailer Body 6DOF

Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

Simulation 3D Motorcycle

Implement motorcycle in 3D environment

Libraries:

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Vehicle / Components

Description

The Simulation 3D Motorcycle block implements a motorcycle with two wheels in the 3D simulation environment.

To use this block, ensure that the Simulation 3D Scene Configuration block is in your model. If you set the Sample time parameter of this block to -1, the block uses the sample time specified in the Simulation 3D Scene Configuration block.

The block input uses the vehicle Z-down right-handed (RH) Cartesian coordinate system defined in SAE J670 ${ }^{1}$. The coordinate system is inertial and initially aligned with the vehicle geometric center:

- X-axis - Along vehicle longitudinal axis, points forward
- Y-axis - Along vehicle lateral axis, points to the right
- Z-axis - Points downward

Tip Verify that the Simulation 3D Motorcycle block executes before the Simulation 3D Scene Configuration block. That way, Simulation 3D Motorcycle prepares the signal data before the Unreal Engine 3D visualization environment receives it. To check the block execution order, right-click each block and select Properties. On the General tab, confirm these Priority settings:

- Simulation 3D Scene Configuration - 0
- Simulation 3D Motorcycle - - 1

For more information about execution order, see "Control and Display Execution Order".

Ports

Input
Translation - Motorcycle translation
5-by-3 array
Motorcycle and component translation, in m. Array dimensions are 5-by-3.

- Translation(1,1), Translation(1,2), and Translation(1,3) - Motorcycle translation along the inertial vehicle Z-down X-, Y-, and Z - axes, respectively.
- Translation(...,1), Translation(...,2), and Translation(..., 3) - Motorcycle component translation relative to vehicle, along the vehicle Z-down X-, Y-, and Z - axes, respectively.

The signal contains translation information according to the locations.

$$
\text { Translation }=\left[\begin{array}{ccc}
X_{v} & Y_{v} & Z_{v} \\
X_{H} & Y_{H} & Z_{H} \\
X_{S A} & Y_{S A} & Z_{S A} \\
X_{F} & Y_{F} & Z_{F} \\
X_{R} & Y_{R} & Z_{R}
\end{array}\right]
$$

Translation	Array Element	Translation Axis
Motorcycle, X_{v}	Translation(1,1)	Inertial vehicle Z-down X-axis
Motorcycle, Y_{v}	Translation(1,2)	Inertial vehicle Z-down Y-axis
Motorcycle, Z_{v}	Translation(1,3)	Inertial vehicle Z-down Z-axis
Handlebars, X_{H}	Translation(2,1)	Vehicle Z-down X-axis
Handlebars, Y_{H}	Translation(2,2)	Vehicle Z-down Y-axis
Handlebars, Z_{H}	Translation(2,3)	Vehicle Z-down Z-axis
Swing arm, $X_{S A}$	Translation(3,1)	Vehicle Z-down X-axis
Swing arm, $Y_{S A}$	Translation(3,2)	Vehicle Z-down Y-axis
Swing arm, $Z_{S A}$	Translation(3,3)	Vehicle Z-down Z-axis
Front wheel, X_{F}	Translation(4,1)	Vehicle Z-down X-axis
Front wheel, Y_{F}	Translation(4,2)	Vehicle Z-down Y-axis
Front wheel, Z_{F}	Translation(4,3)	Vehicle Z-down Z-axis
Rear wheel, X_{R}	Translation(5,1)	Vehicle Z-down X-axis
Rear wheel, Y_{R}	Translation(5,2)	Vehicle Z-down Y-axis
Rear wheel, Z_{R}	Translation(5,3)	Vehicle Z-down Z-axis

Rotation - Motorcycle rotation
5-by-3 array
Vehicle and component rotation, in rad. Array dimensions are 5-by-3.

- Rotation(1,1), Rotation(1,2), and Rotation(1,3) - Motorcycle rotation about the inertial vehicle Z-down $X-, Y$-, and Z - axes, respectively.
- Rotation(...,1), Rotation(...,2), and Rotation(...,3) - Motorcycle component rotation relative to vehicle, about the vehicle Z-down X-, Y-, and Z- axes, respectively.

The signal contains rotation information according to the locations.

$$
\text { Rotation }=\left[\begin{array}{ccc}
\text { Roll }_{\nu} & \text { Pitch }_{V} & \text { Yaw }_{\nu} \\
\text { Roll }_{H} & \text { Pitch }_{H} & \text { Yaw }_{H} \\
\text { Roll }_{S A} & \text { Pitch }_{S A} & \text { Yaw }_{S A} \\
\text { Roll }_{F} & \text { Pitch }_{F} & \text { Yaw }_{F} \\
\text { Roll }_{R} & \text { Pitch }_{R} & \text { Yaw }_{R}
\end{array}\right]
$$

Rotation	Array Element	Rotation Axis
Vehicle, Roll ${ }_{v}$	Rotation(1,1)	Inertial vehicle Z-down X-axis
Vehicle, Pitch ${ }_{\text {v }}$	Rotation(1,2)	Inertial vehicle Z-down Y-axis
Vehicle, Yaw ${ }_{v}$	Rotation(1,3)	Inertial vehicle Z-down Z-axis
Handlebar, Roll $_{H}$	Rotation(2,1)	Vehicle Z-down X-axis
Handlebar, Pitch $_{H}$	Rotation(2,2)	Vehicle Z-down Y-axis
Handlebar, Yaw $_{H}$	Rotation(2,3)	Vehicle Z-down Z-axis
Swing arm, Roll $_{\text {SA }}$	Rotation(3,1)	Vehicle Z-down X-axis
Swing arm, Pitch ${ }_{\text {SA }}$	Rotation(3,2)	Vehicle Z-down Y-axis
Swing arm, Yaw ${ }_{\text {SA }}$	Rotation(3,3)	Vehicle Z-down Z-axis
Front wheel, Roll $_{F}$	Rotation(4,1)	Vehicle Z-down X-axis
Front wheel, Pitch $_{F}$	Rotation(4,2)	Vehicle Z-down Y-axis
Front wheel, Yaw $_{F}$	Rotation(4,3)	Vehicle Z-down Z-axis
Rear wheel, Roll $_{R}$	Rotation(5,1)	Vehicle Z-down X-axis
Rear wheel, Pitch $_{R}$	Rotation(5,2)	Vehicle Z-down Y-axis
Rear wheel, Yaw $_{R}$	Rotation(5,3)	Vehicle Z-down Z -axis

Light controls - Vehicle lights on or off
1 -by- 5 vector
Light controls input signal, specified as a 1-by-5 Boolean vector. Each element of the vector turns a specific vehicle light on or off, as indicated in this table. A value of 1 turns the light on; a value of 0 turns the light off

Vector Element	Vehicle Light
$(1,1)$	Headlight high beam
$(1,2)$	Headlight low beam
$(1,3)$	Brake
$(1,4)$	Left signal
$(1,5)$	Right signal

Dependencies

To create this port, on the Light Controls tab, select Enable light controls.
Data Types: Boolean

Parameters

Vehicle Parameters

Type - Type
Sports bike (default)|Motor bike|Scooter
Use the Type parameter to specify the motorcycle type. This table provides links to the motorcycle dimensions.

Vehicle Type Setting	Vehicle Dimensions
Sports bike	Sports Bike
Motor bike	Motor Bike
Scooter	Scooter

Color - Color of vehicle
Red (default) | Orange | Yellow|Green | Blue | Black | White | Silver
Select the color of the vehicle.
Name - Name of motorcycle
SimulinkVehicle1 (default)| character vector
Name of motorcycle. By default, when you use the block in your model, the block sets the Name parameter to SimulinkVehicle X. The value of X depends on the number of 3D simulation blocks that you have in your model.

Sample time - Sample time

- 1 (default) | scalar

Sample time, T_{s}. The graphics frame rate is the inverse of the sample time.

Light Controls

Enable light controls, VehLightsControl - Control vehicle lights
off (default) | on
Select whether to control the vehicle headlights. Use the enabled parameters to set the light parameters, including headlight intensity.

Dependencies

Selecting this parameter:

- Creates the input port Light controls
- Enables these light parameters.

Lights	Light Parameters
Headlights	-
	-
	- High beadlight color intensity
	- Low beam intensity
	- High beam cone half angle
	- Low beam cone half angle
	- Left headlight beam orientation
	Brake light intensity
Brake lights	

Lights	Light Parameters
Turn signal lights	\bullet
	\bullet
	\bullet
	Purn signal light intensity
	Pulse width

Headlights

Headlight color [R,G,B], HeadlightColor - Headlight color
[1, 1, 1] (default) | 1-by-3 vector of RGB triplet values
Headlight color, specified as a normalized 1-by-3 vector of RGB triplet values.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: int8|uint8
High beam intensity, HighBeamIntensity - High beam intensity
100000 (default) | positive scalar
High beam intensity, in cd.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double
Low beam intensity, LowBeamIntensity - Low beam intensity
60000 (default) | positive scalar
Low beam intensity, in cd.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double
High beam cone half angle, HighBeamConeAngle - High beam cone half angle
1.22 (default) | positive scalar less than pi/2

High beam cone half angle, in rad.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double
Low beam cone half angle, LowBeamConeAngle - Low beam cone half angle
1.22 (default) | positive scalar less than pi/2

Low beam cone half angle, in rad.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double
Left headlight beam orientation [Pitch, Yaw], LeftHeadlightOrientation - Left headlight beam orientation
[0,0] (default) | 1-by-2 vector greater with values between -pi and pi
Pitch and yaw orientation of the left headlight beam orientation in the Z-down coordinate system, specified as a 1 -by- 2 vector, in rad. The first element of the vector, [1,1], is the pitch angle. The second element of the vector, [1,2] is the yaw angle.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double

Right headlight beam orientation [Pitch, Yaw], RightHeadlightOrientation - Right headlight beam orientation
$[0,0]$ (default) | 1-by-2 vector greater with values between -pi and pi
Pitch and yaw orientation of the right headlight beam orientation in the Z-down coordinate system, specified as a 1 -by- 2 vector, in rad. The first element of the vector, [1,1], is the pitch angle. The second element of the vector, [1,2] is the yaw angle.

Dependencies

To enable this parameter, select Enable light controls.

Brake Lights

Brake light intensity, BrakelightIntensity - Intensity
500 (default) | positive scalar
Brake light intensity, in $\mathrm{cd} / \mathrm{m}^{\wedge} 2$.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double

Turn Signal Lights

Turn signal light intensity, SignallightIntensity - Intensity
500 (default) | positive scalar
Turn signal light intensity, in $\mathrm{cd} / \mathrm{m}^{\wedge} 2$.

Dependencies

To enable this parameter, select Enable light controls.

Data Types: double

Period, SignallightPeriod - Turn signal light period 1 (default) | positive scalar

Turn signal light period, in s.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double
Pulse width, SignalPulseWidth - Pulse width
50 (default) | positive scalar less than 100
Turn signal light pulse width, as a percent of the period.

Dependencies

To enable this parameter, select Enable light controls.
Data Types: double

Initial Values

Initial array values to translate vehicle per part, Translation - Motorcycle initial translation zeros(3, 3) (default) | 3-by-3 array

Initial motorcycle and component translation, in m. Array dimensions are 5-by-3.

- Translation(1,1), Translation(1,2), and Translation(1,3) - Initial vehicle translation along the inertial vehicle Z-down coordinate system $X-, Y$-, and Z - axes, respectively.
- Translation(...,1), Translation(...,2), and Translation(...,3) - Initial motorcycle component translation relative to vehicle, along the vehicle Z-down X-, Y-, and Z - axes, respectively.

The parameter contains translation information according to the locations.

$$
\text { Translation }=\left[\begin{array}{ccc}
X_{v} & Y_{v} & Z_{V} \\
X_{H} & Y_{H} & Z_{H} \\
X_{S A} & Y_{S A} & Z_{S A} \\
X_{F} & Y_{F} & Z_{F} \\
X_{R} & Y_{R} & Z_{R}
\end{array}\right]
$$

Translation	Array Element	Translation Axis
Motorcycle, X_{v}	Translation $(1,1)$	Inertial vehicle Z-down X-axis
Motorcycle, Y_{v}	Translation(1, 2)	Inertial vehicle Z-down Y-axis
Motorcycle, Z_{v}	Translation $(1,3)$	Inertial vehicle Z-down Z-axis
Handlebars, X_{H}	Translation $(2,1)$	Vehicle Z-down X-axis
Handlebars, Y_{H}	Translation $(2,2)$	Vehicle Z-down Y-axis
Handlebars, Z_{H}	Translation $(2,3)$	Vehicle Z-down Z-axis
Swing arm, $X_{S A}$	Translation $(3,1)$	Vehicle Z-down X-axis
Swing arm, $Y_{S A}$	Translation 3,2$)$	Vehicle Z-down Y-axis
Swing arm, $Z_{S A}$	Translation 3,3$)$	Vehicle Z-down Z-axis
Front wheel, X_{F}	Translation 4,1$)$	Vehicle Z-down X-axis

Translation	Array Element	Translation Axis
Front wheel, Y_{F}	Translation(4,2)	Vehicle Z-down Y-axis
Front wheel, Z_{F}	Translation(4,3)	Vehicle Z-down Z-axis
Rear wheel, X_{R}	Translation(5,1)	Vehicle Z-down X-axis
Rear wheel, Y_{R}	Translation(5,2)	Vehicle Z-down Y-axis
Rear wheel, Z_{R}	Translation(5,3)	Vehicle Z-down Z-axis

Initial array values to rotate vehicle per part, Rotation - Motorcycle initial rotation zeros(5, 3) (default) | 5-by-3 array

Initial motorcycle and component rotation, about the vehicle Z-down X-, Y-, and Z - axes.
Array dimensions are 5-by-3.

- Rotation(1, 1), Rotation(1,2), and Rotation(1,3) - Initial motorcycle rotation about the inertial vehicle Z-down coordinate system X-, Y-, and Z - axes, respectively.
- Rotation(...,1), Rotation(...,2), and Rotation(...,3) - Initial motorcycle component rotation relative to vehicle, about the vehicle Z-down X-, Y-, and Z - axes, respectively.

The parameter contains rotation information according to the location.

$$
\text { Rotation }=\left[\begin{array}{ccc}
\text { Roll }_{v} & \text { Pitch }_{v} & \text { Yaw }_{v} \\
\text { Roll }_{F L} & \text { Pitch }_{F L} & \text { Yaw }_{F L} \\
\text { Roll }_{F R} & \text { Pitch }_{F R} & \text { Yaw }_{F R} \\
\text { Roll }_{R L} & \text { Pitch }_{R L} & \text { Yaw }_{R L} \\
\text { Roll }_{R R} & \text { Pitch }_{R R} & \text { Yaw }_{R R}
\end{array}\right]
$$

Rotation	Array Element	Rotation Axis
Vehicle, Rollv	Rotation(1,1)	Inertial vehicle Z-down X-axis
Vehicle, Pitch ${ }_{v}$	Rotation(1,2)	Inertial vehicle Z-down Y-axis
Vehicle, Yaw ${ }_{v}$	Rotation(1,3)	Inertial vehicle Z-down Z-axis
Handlebar, Roll $_{H}$	Rotation(2,1)	Vehicle Z-down X-axis
Handlebar, Pitch $_{H}$	Rotation(2,2)	Vehicle Z-down Y-axis
Handlebar, Yaw $_{H}$	Rotation(2,3)	Vehicle Z-down Z -axis
Swing arm, Roll ${ }_{\text {SA }}$	Rotation(3,1)	Vehicle Z-down X-axis
Swing arm, Pitch $_{\text {SA }}$	Rotation(3,2)	Vehicle Z-down Y-axis
Swing arm, Yaw $_{\text {SA }}$	Rotation(3,3)	Vehicle Z-down Z -axis
Front wheel, Roll $_{F}$	Rotation(4,1)	Vehicle Z-down X-axis
Front wheel, Pitch $_{F}$	Rotation(4,2)	Vehicle Z-down Y-axis
Front wheel, Yaw $_{F}$	Rotation(4,3)	Vehicle Z-down Z -axis
Rear wheel, Roll $_{R}$	Rotation(5,1)	Vehicle Z-down X-axis
Rear wheel, Pitch $_{R}$	Rotation(5,2)	Vehicle Z-down Y-axis
Rear wheel, Yaw $_{R}$	Rotation(5,3)	Vehicle Z-down Z-axis

Version History

Introduced in R2021b

References

[1] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology J670. Warrendale, PA: SAE International, 2008.

See Also

Motorcycle Body Longitudinal In-Plane | Motorcycle Chain | Simulation 3D Scene Configuration

Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Prepare Custom Vehicle Mesh for the Unreal Editor"
"Unreal Engine Simulation Environment Requirements and Limitations"

Simulation 3D Dolly

Implement dolly in 3D environment

Libraries:

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Vehicle / Components

Description

The Simulation 3D Dolly block implements a dolly in the 3D simulation environment.
To use this block, ensure that the Simulation 3D Scene Configuration block is in your model. If you set the Sample time parameter of this block to -1, the block uses the sample time specified in the Simulation 3D Scene Configuration block.

The block input uses the vehicle Z-down right-handed (RH) Cartesian coordinate system defined in SAE J670 ${ }^{1}$. The coordinate system is inertial and initially aligned with the vehicle geometric center:

- X-axis - Along vehicle longitudinal axis, points forward
- Y-axis - Along vehicle lateral axis, points to the right
- Z-axis - Points downward

Tip Verify that the Simulation 3D Dolly block executes before the Simulation 3D Scene Configuration block. That way, Simulation 3D Dolly prepares the signal data before the Unreal Engine 3D visualization environment receives it. To check the block execution order, right-click each block and select Properties. On the General tab, confirm these Priority settings:

- Simulation 3D Scene Configuration - 0
- Simulation 3D Dolly - - 1

For more information about execution order, see "Control and Display Execution Order".

Ports

Input
Translation - Dolly translation
5-by-3 array (default) | 8-by-3 array | 11-by-3 array
Dolly, axle, and wheel translation along the vehicle Z-down X-, Y-, and Z - axes, respectively, in m. Array dimensions depend on the Type parameter.

Type Parameter	Array Dimension
One-axle dolly (default)	5-by-3 array
Two-axle dolly	8-by-3 array

Type Parameter	Array Dimension
Three-axle dolly	11-by-3 array

The signal contains translation information according to the dolly, axle, and wheel locations.

Signal Index	Description
$\begin{aligned} & \text { Translation }(1,1) \\ & \text { Translation }(1,2) \\ & \text { Translation }(1,3) \end{aligned}$	Dolly translation, Vehicle, along the vehicle Z-down X-, Y-, and Z - axes
$\begin{aligned} & \text { Translation }(2,1) \\ & \text { Translation }(2,2) \\ & \text { Translation }(2,3) \end{aligned}$	Hitch socket, HitchSocket, translation along the vehicle Z-down X-, Y-, and Z - axes
```Translation(3,1) Translation(3,2) Translation(3,3)```	Axle one, Axle1, translation along the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
$\begin{aligned} & \text { Translation }(4,1) \\ & \text { Translation }(4,2) \\ & \text { Translation }(4,3) \end{aligned}$	Axle one left wheel, Wheel_L1, translation along the vehicle Z-down $X$-, $Y$-, and $\bar{Z}$ - axes
Translation $(5,1)$ Translation $(5,2)$ Translation $(5,3)$	Axle one right wheel, Wheel_R1, translation along the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
$\begin{aligned} & \hline \text { Translation }(6,1) \\ & \text { Translation }(6,2) \\ & \text { Translation }(6,3) \\ & \hline \end{aligned}$	Axle two, Axle2, translation along the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
$\begin{aligned} & \text { Translation }(7,1) \\ & \text { Translation }(7,2) \\ & \text { Translation }(7,3) \end{aligned}$	Axle two left wheel, Wheel L2, translation along the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
$\begin{aligned} & \text { Translation }(8,1) \\ & \text { Translation }(8,2) \\ & \text { Translation }(8,3) \end{aligned}$	Axle two right wheel, Wheel_R2, translation along the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
$\begin{aligned} & \text { Translation }(9,1) \\ & \text { Translation }(9,2) \\ & \text { Translation }(9,3) \end{aligned}$	Axle three, Axle3, translation along the vehicle Z-down $X$-, $Y$-, and $Z$ - axes


Signal Index	Description
Translation $(10,1)$	Axle three left wheel, Wheel_L3, translation along the   vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Translation $(10,2)$	
Translation $(10,3)$	Axle three right wheel, Wheel_R3, translation along the   vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Translation $(11,1)$	
Translation $(11,2)$	
Translation $(11,3)$	

Rotation - Dolly rotation
5-by-3 array (default) | 8-by-3 array | 11-by-3 array
Dolly, axle, and wheel rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes, respectively, in m. Array dimensions depend on the Type parameter.

Type Parameter	Array Dimension
One-axle dolly (default)	5-by-3 array
Two-axle dolly	8-by-3 array
Three-axle dolly	11-by-3 array

The signal contains rotation information according to the dolly, axle, and wheel locations.

Signal Index	Description
Rotation(1,1)   Rotation(1,2)   Rotation(1,3)	Dolly rotation, Vehicle, about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Rotation $(2,1)$   Rotation $(2,2)$   Rotation(2,3)	Hitch socket, HitchSocket, rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Rotation $(3,1)$   Rotation $(3,2)$   Rotation $(3,3)$	Axle one, Axle1, rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Rotation $(4,1)$   Rotation $(4,2)$   Rotation(4,3)	Axle one left wheel, Wheel L1, rotation about the vehicle Z-down $X$-, $Y$-, and $\bar{Z}$ - axes


Signal Index	Description
Rotation $(5,1)$   Rotation $(5,2)$   Rotation(5,3)	Axle one right wheel, Wheel_R1, rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Rotation (6,1)   Rotation $(6,2)$   Rotation(6,3)	Axle two, Axle2, rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Rotation(7,1)   Rotation $(7,2)$   Rotation(7,3)	Axle two left wheel, Wheel L2, rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Rotation(8,1)   Rotation (8,2)   Rotation(8,3)	Axle two right wheel, Wheel_R2, rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Rotation (9,1)   Rotation $(9,2)$   Rotation $(9,3)$	Axle three, Axle3, rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Rotation (10,1)   Rotation(10,2)   Rotation(10,3)	Axle three left wheel, Wheel_L3, rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Rotation $(11,1)$   Rotation $(11,2)$   Rotation(11,3)	Axle three right wheel, Wheel_R3, rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes

## Parameters

## Vehicle Parameters

## Type - Type

One-axle dolly (default)|Two-axle dolly|Three-axle dolly
Use the Type parameter to specify the number of axles on the dolly. This table provides links to the dolly dimensions.

Type Setting	Dolly Dimensions
One-axle dolly	One-Axle Dolly
Two-axle dolly	Two-Axle Dolly


Type Setting	Dolly Dimensions
Three-axle dolly	Three-Axle Dolly
Name - Name of dolly   SimulinkVehiclel (default) \| character vector	

Name of dolly. By default, when you use the block in your model, the block sets the Name parameter to SimulinkVehicleX. The value of $X$ depends on the number of simulation 3D vehicle blocks that you have in your model.

Sample time - Sample time

- 1 (default) | scalar

Sample time, $T_{s}$. The graphics frame rate is the inverse of the sample time.

## Initial Values

Initial array values to translate vehicle per part, Translation - Vehicle initial translation zeros( 5, 3 ) (default) | zeros( 8, 3 ) | zeros( 11, 3 )

Initial dolly, axle, and wheel translation along the vehicle Z-down $X$-, $Y$-, and $Z$ - axes, respectively, in m . Array dimensions depend on the Type parameter.

Type Parameter	Array Dimension
One-axle dolly (default)	5-by-3 array
Two-axle dolly	8-by-3 array
Three-axle dolly	11-by-3 array

The parameter contains the initial translation values according to the dolly, axle, and wheel locations.

Signal Index	Description
Translation(1,1)   Translation (1,2)   Translation(1,3)	Dolly translation, Vehicle, along the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Translation $(2,1)$   Translation $(2,2)$   Translation $(2,3)$	Hitch socket, HitchSocket, translation along the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Translation $(3,1)$   Translation $(3,2)$   Translation $(3,3)$	Axle one, Axle1, translation along the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Translation $(4,1)$   Translation $(4,2)$   Translation(4,3)	Axle one left wheel, Wheel_L1, translation along the vehicle Z-down $X$-, $Y$-, and $\bar{Z}$ - axes


Signal Index	Description
Translation $(5,1)$   Translation $(5,2)$   Translation $(5,3)$	Axle one right wheel, Wheel_R1, translation along the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
```Translation(6,1) Translation(6,2) Translation(6,3)```	Axle two, Axle2, translation along the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Translation $(7,1)$ Translation $(7,2)$ Translation(7,3)	Axle two left wheel, Wheel L2, translation along the vehicle Z-down X-, Y-, and Z - axes
Translation(8,1) Translation (8,2) Translation(8,3)	Axle two right wheel, Wheel_R2, translation along the vehicle Z-down X-, Y-, and Z - axes
Translation (9,1) Translation (9,2) Translation (9,3)	Axle three, Axle3, translation along the vehicle Z-down X-, Y-, and Z - axes
$\begin{aligned} & \hline \text { Translation }(10,1) \\ & \text { Translation }(10,2) \\ & \text { Translation }(10,3) \end{aligned}$	Axle three left wheel, Wheel_L3, translation along the vehicle Z-down X-, Y-, and Z - axes
```Translation(11,1) Translation(11,2) Translation(11,3)```	Axle three right wheel, Wheel_R3, translation along the vehicle Z-down $X$-, $Y$-, and $Z$ - axes

Initial array values to rotate vehicle per part, Rotation - Initial rotation
zeros( 5, 3 ) (default) | zeros( 8, 3 ) | zeros( 11, 3 )
Initial dolly, axle, and wheel rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes, respectively, in m . Array dimensions depend on the Type parameter.

Type Parameter	Array Dimension
One-axle dolly (default)	5-by-3 array
Two-axle dolly	8-by-3 array
Three-axle dolly	11-by-3 array

The parameter contains the initial rotation values according to the dolly, axle, and wheel locations.

Signal Index	Description
Rotation $(1,1)$   Rotation $(1,2)$   Rotation(1,3)	Dolly rotation, Vehicle, about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Rotation $(2,1)$   Rotation $(2,2)$   Rotation $(2,3)$	Hitch socket, HitchSocket, rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Rotation $(3,1)$   Rotation $(3,2)$   Rotation $(3,3)$	Axle one, Axle1, rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Rotation(4,1)   Rotation $(4,2)$   Rotation (4,3)	Axle one left wheel, Wheel_L1, rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Rotation $(5,1)$   Rotation $(5,2)$   Rotation $(5,3)$	Axle one right wheel, Wheel_R1, rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Rotation $(6,1)$   Rotation $(6,2)$   Rotation $(6,3)$	Axle two, Axle2, rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Rotation $(7,1)$   Rotation $(7,2)$   Rotation(7,3)	Axle two left wheel, Wheel L2, rotation about the vehicle Z-down $X$-, $Y$-, and $\bar{Z}$ - axes
Rotation $(8,1)$   Rotation $(8,2)$   Rotation (8,3)	Axle two right wheel, Wheel_R2, rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Rotation (9,1)   Rotation $(9,2)$   Rotation(9,3)	Axle three, Axle3, rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes
Rotation(10,1)   Rotation(10,2)   Rotation(10,3)	Axle three left wheel, Wheel L3, rotation about the vehicle Z-down $X$-, $Y$-, and $Z$ - axes


Signal Index	Description
Rotation $(11,1)$	Axle three right wheel, Wheel_R3, rotation about the   vehicle Z-down $X-, Y$-, and $Z$ - axes
Rotation $(11,2)$	
Rotation $(11,3)$	

## Version History

Introduced in R2021b

## References

[1] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology J670. Warrendale, PA: SAE International, 2008.

## See Also

Simulation 3D Scene Configuration

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Prepare Custom Vehicle Mesh for the Unreal Editor"
"Unreal Engine Simulation Environment Requirements and Limitations"

## Simulation 3D Terrain Sensor

Implement multipoint terrain sensor in 3D environment


## Libraries:

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Vehicle / Components

## Description

The Simulation 3D Terrain Sensor block implements a multipoint terrain sensor in Unreal Engine. Use the block for contact modeling at high vehicle velocities over terrain changes, including speed bumps. The block implements ray tracing to detect the terrain below the tires. Use the block parameters to:

- Sense the terrain under any simulation 3D vehicle actor in the scene, including actors created by the Simulation 3D Vehicle and Simulation 3D Motorcycle blocks.
- Configure the ray origins, directions, and lengths to adjust the terrain sensor pattern for your scene and test scenario.

The block creates a terrain sensor pattern for each of the wheels on the vehicle actor. For specific patterns, this table provides the corresponding parameter settings.

Pattern	Parameter Settings
	- Ray origins - zeros $(5,3)$   - Ray directions - [sqrt(3)/2 0-1/2;1/2   $0-$ sqrt(3)/2; $00-1 ;-1 / 20-$   sqrt(3)/2; -sqrt(3)/2 0-1/2]   Ray lengths - ones $(5,1) * 6$   Number of wheels on parent vehicle - 4
- Five rays per wheel   - Rays originate at point specified by wheel spin axis   - Rays extend downward at $15^{\circ}$ intervals   - Rays length is 6 m	



Tip Verify that the Simulation 3D Scene Configuration block executes before the Simulation 3D Terrain Sensor block. That way, the Unreal Engine 3D visualization environment prepares the data before the Simulation 3D Terrain Sensor block receives it. To check the block execution order, rightclick the blocks and select Properties. On the General tab, confirm these Priority settings:

- Simulation 3D Scene Configuration - 0
- Simulation 3D Terrain Sensor - 1

For more information about execution order, see "Control and Display Execution Order".

## Ports

## Output

Info - Bus signal
bus
Bus signal containing block values. The signals are arrays that depend on the wheel location.

Signal	Description	Units
WheelWPosi   tions	Wheel $W$ ray hit location relative to ray origin, specified as a real-   valued $N$-by-3 array of the form $[X, Y, Z]$ in the 3D visualization   engine world coordinate system. $N$ is the number of rays per   wheel.	m
WheelWStat   us	Wheel $W$ ray hit status, specified as a $N$-by-1 array. $N$ is the number   of rays per wheel.   - Hit an object -1   - Miss an object - 0	NA

## Parameters

## Mounting

Sensor identifier, sensorld - Unique sensor identifier
0 (default) | positive integer
Unique sensor identifier, specified as a positive integer. In a multisensor system, the sensor identifier distinguishes between sensors. When you add a new sensor block to your model, the Sensor identifier of that block is $N+1 . N$ is the highest Sensor identifier value among existing sensor blocks in the model.

## Example: 2

Parent name, Vehicleldentifier - Name of parent to which sensor is mounted
SimulinkVehicle1 (default) | vehicle name
Name of the parent to which the sensor is mounted, specified as the name of a vehicle in your model. The vehicle names that you can select correspond to the Name parameters of the simulation 3D vehicle blocks in your model.

## Example: SimulinkVehicle2

## Parameters

## Ray origins, RayOrigins - Ray origin

[0 00 1] (default) | real-valued $N$-by-3 array
Ray origin relative to the wheel spin axis, specified as a real-valued $N$-by- 3 array of the form $[X, Y, Z]$. $N$ is the number of rays. Units are in meters.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then $X, Y$, and $Z$ are in the 3D visualization engine coordinate system, where:

- The $X$-axis points forward from the vehicle.
- The $Y$-axis points to the right of the vehicle, as viewed when looking in the forward direction of the vehicle.
- The Z-axis points up.

Example: zeros (10, 3)
Ray directions, RayDirections - Normalized ray direction
[0 0 - 1] (default) | real-valued $N$-by-3 array
Normalized ray direction relative to wheel, specified as a real-valued $N$-by-3 array of the form $[X, Y$, $Z] . N$ is the number of rays. Units are in dimensionless.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then $X, Y$, and $Z$ are in the 3D visualization engine coordinate system, where:

- The $X$-axis points forward from the vehicle.
- The $Y$-axis points to the right of the vehicle, as viewed when looking in the forward direction of the vehicle.
- The Z-axis points up.

Example: ones (10, 3 )
Ray lengths, RayLengths - Length
20 (default) | real-valued $N$-by-1 vector
Ray length, specified as a real-valued $N$-by- 1 vector $N, N$ is the number of rays. Units are in meters.
Example: ones (10, 1) *10
Number of wheels on parent vehicle - Number of wheels
4 (default) | positive integer
Name of wheels the parent to which the sensor is mounted. The vehicle name corresponds to the Name parameters of the simulation 3D vehicle blocks in your model.
Example: 6
Visualize trace line - Visualize ray traces
off (default) | on
Enable trace line visualization.
Sample time - Sample time

- 1 (default) | scalar

Sample time, $T_{s}$. The graphics frame rate is the inverse of the sample time.

## Version History <br> Introduced in R2022a

## See Also

Simulation 3D Scene Configuration | Simulation 3D Vehicle

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"Scene Interrogation in 3D Environment"

## External Websites

Unreal Engine

## Simulation 3D Ray Tracer

Implement ray tracing in 3D environment


## Libraries:

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Vehicle / Components

## Description

The Simulation 3D Ray Tracer block implements ray tracing to get the positions, surface normals, surface identifiers, and distances for objects in the scene. You can specify block parameters that configure the ray origins, directions, and lengths to adjust the ray trace sensor pattern for your scene and test scenario.

Tip Verify that the Simulation 3D Scene Configuration block executes before the Simulation 3D Ray Tracer block. That way, the Unreal Engine 3D visualization environment prepares the data before the Simulation 3D Ray Tracer block receives it. To check the block execution order, right-click the blocks and select Properties. On the General tab, confirm these Priority settings:

- Simulation 3D Scene Configuration - 0
- Simulation 3D Terrain Sensor - 1

For more information about execution order, see "Control and Display Execution Order".

## Ports

## Output

HitLocations - Hit locations
real-valued $N(B+1)$-by- 3 array
Hit locations, returned as a real-valued $N(B+1)$-by- 3 array of the form $[X, Y, Z]$, in meters. $N$ is the number of rays and $B$ is the number of bounces per ray.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then $X, Y$, and $Z$ are in the 3D visualization engine coordinate system, where:

- The $X$-axis points forward from the vehicle
- The $Y$-axis points to the right of the vehicle, as viewed when looking in the forward direction of the vehicle
- The $Z$-axis points up

Data Types: double
HitNormals - Ray normal to hit location
real-valued $N(B+1)$-by- 3 array

Ray normal to the hit location, returned as a real-valued $N(B+1)$-by- 3 array of the form $[X, Y, Z]$, in meters. $N$ is the number of rays and $B$ is the number of bounces per ray.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then $X, Y$, and $Z$ are in the 3D visualization engine coordinate system, where:

- The $X$-axis points forward from the vehicle
- The $Y$-axis points to the right of the vehicle, as viewed when looking in the forward direction of the vehicle
- The $Z$-axis points up

Data Types: double
HitDistances - Ray distance to hit location
real-valued $N(B+1)$-by- 1 array
Ray distance to hit location, returned as a real-valued $N(B+1)$-by- 1 vector $N$, in meters. $N$ is the number of rays and $B$ is the number of bounces per ray.

Data Types: double
Surfacelds - Object IDs of hit surfaces
integer-valued $N(B+1)$-by- 1 vector | 0
Object identifier of the surfaces hit by the ray, returned as an integer-valued $N(B+1)$-by-1 vector $N . N$ is the number of rays and $B$ is the number of bounces per ray.

The returned surface identifiers are the object values specified when creating custom surfaces in the Unreal Editor. If a surface identifier is unknown, the block assigns it an ID of 0 . For information about adding surfaces, see Add a Surface Type in the Unreal Engine documentation.
Data Types: uint8
IsValidHit - Hit flag
N -by-1 vector
Hit flag, returned as a $N$-by- 1 Boolean vector. $N$ is the number of rays. A value of 1 indicates the ray hit a surface.

Data Types: Boolean

## Parameters

Mounting
Sensor identifier - Unique sensor identifier
1 (default) | positive integer
Specify the unique identifier of the sensor. In a multisensor system, the sensor identifier enables you to distinguish between sensors. When you add a new sensor block to your model, the Sensor identifier of that block is $N+1$, where $N$ is the highest Sensor identifier value among the existing sensor blocks in the model.

Example: 2

Parent name - Name of parent
Scene Origin (default)
Name of parent to which the sensor is mounted, specified as the name of a vehicle in your model, or Scene Origin. The vehicle names that you can select correspond to the Name parameters of the simulation 3D vehicle blocks in your model.

Mounting location - Sensor mounting location
Origin (default)
Sensor mounting location.

- When Parent name is Scene Origin, the block mounts the sensor to the origin of the scene. You can set the Mounting location to Origin only. During simulation, the sensor remains stationary.
- When Parent name is the name of a vehicle, the block mounts the sensor to one of the predefined mounting locations described in the table. During simulation, the sensor travels with the vehicle.

Roll, pitch, and yaw are clockwise-positive when looking in the positive direction of the $X$-axis, $Y$-axis, and $Z$-axis, respectively. When looking at a vehicle from above, the yaw angle (the orientation angle) is counterclockwise-positive because you are looking in the negative direction of the axis.

Specify offset - Specify offset from mounting location
off (default) |on
Select this parameter to specify an offset from the mounting location by using the Relative translation [X, Y, Z] (m) and Relative rotation [Roll, Pitch, Yaw] (deg) parameters.

Relative translation [ $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ ] ( $\mathbf{m}$ ) - Translation offset relative to mounting location $[0,0,0]$ (default) | real-valued 1-by-3 vector

Translation offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3 vector of the form $[X, Y, Z]$, in meters.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then $X, Y$, and $Z$ are in the vehicle coordinate system, where:

- The $X$-axis points forward from the vehicle
- The $Y$-axis points to the left of the vehicle, as viewed when looking in the forward direction of the vehicle
- The Z-axis points up

The origin is the mounting location specified in the Mounting location parameter. This origin is different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then $X, Y$, and $Z$ are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see "Coordinate Systems in Vehicle Dynamics Blockset".
Example: [0,0,0.01]

## Dependencies

To enable this parameter, select Specify offset.
Relative rotation [Roll, Pitch, Yaw] (deg) - Rotational offset relative to mounting location [0, 0, 0] (default) | real-valued 1-by-3 vector

Rotational offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3 vector of the form [Roll, Pitch, Yaw], in degrees. Roll, pitch, and yaw are the angles of rotation about the $X$-, $Y$-, and $Z$-axes, respectively.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then $X, Y$, and $Z$ are in the vehicle coordinate system, where:

- The $X$-axis points forward from the vehicle.
- The $Y$-axis points to the left of the vehicle, as viewed when looking in the forward direction of the vehicle.
- The $Z$-axis points up.
- Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the $X$-axis, $Y$ axis, and $Z$-axis, respectively. If you view a scene from a 2 D top-down perspective, then the yaw angle (also called the orientation angle) is counterclockwise-positive because you are viewing the scene in the negative direction of the $Z$-axis.

The origin is the mounting location specified in the Mounting location parameter. This origin is different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then $X, Y$, and $Z$ are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see "Coordinate Systems in Vehicle Dynamics Blockset".

Example: [0, 0,10]

## Dependencies

To enable this parameter, select Specify offset.

## Parameters

Ray origins, RayOrigins - Ray origin
zeros (10, 3) (default) | real-valued $N$-by-3 array
Ray origin relative to sensor mounting location, specified as a real-valued $N$-by- 3 array of the form $[X$, $Y, Z$ ], in meters. $N$ is the number of rays.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then $X, Y$, and $Z$ are in the 3D visualization engine coordinate system, where:

- The $X$-axis points forward from the vehicle
- The $Y$-axis points to the right of the vehicle, as viewed when looking in the forward direction of the vehicle
- The $Z$-axis points up

Example: zeros (10, 3)

Ray directions, RayDirections - Normalized ray direction
ones $(10,3)$ (default) | real-valued $N$-by-3 array
Normalized ray direction relative to sensor mounting location, specified as a real-valued $N$-by- 3 array of the form $[X, Y, Z] . N$ is the number of rays. The units are dimensionless.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then $X, Y$, and $Z$ are in the 3D visualization engine coordinate system, where:

- The $X$-axis points forward from the vehicle
- The $Y$-axis points to the right of the vehicle, as viewed when looking in the forward direction of the vehicle
- The $Z$-axis points up

Example: ones (10,3)
Max ray lengths, RayLengths - Maximum total ray length
ones $(10,1) * 10$ (default) $\mid$ real-valued $N$-by- 1 vector
Maximum total ray length of a multi-bounce trace path, specified as a real-valued $N$-by- 1 vector, in meters. $N$ is the number of rays.
Example: ones $(10,1) * 10$
Number of bounces - Number of bounces per ray
2 (default) | positive integer
Number of bounces that a trace may have before terminating, $B$, specified as an integer.
Example: 0
Visualize trace line - Visualize ray traces
on (default) | off
Whether to enable Unreal Engine trace line visualization for the ray tracer.
Enable optimization - Enable optimization
on (default) | off
Whether to enable optimization of the ray tracer. Enabling this parameter allows the block to perform concurrent traces. Enable this parameter when the number of traces is large and your machine has multiple cores.

## Sample time - Sample time

- 1 (default) | positive scalar

Sample time of the block, in seconds, specified as a positive scalar. The 3D simulation environment frame rate is the inverse of the sample time.

If you set the sample time to -1 , the block inherits its sample time from the Simulation 3D Scene Configuration block.

## Version History

Introduced in R2022b

## See Also

Simulation 3D Camera Get | Simulation 3D Scene Configuration | Simulation 3D Vehicle | Simulation 3D Vehicle with Ground Following

## Topics

"Scene Interrogation in 3D Environment"

## External Websites

Unreal Engine

Scenes

## Straight Road

Straight road 3D environment

## Description

The Straight Road scene is a 3D environment of a straight four-lane divided highway. The scene is rendered using RoadRunner.


## Setup

To simulate a driving maneuver in this scene:
1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to Straight road.

## Layout

The scene uses the world coordinate system to locate objects.
The active area of the scene contains the road.


## Scene Dimensions

This table provides the scene area corner locations in the world coordinate system. Dimensions are in m.

Locations	$\mathbf{X}$	$\mathbf{Y}$	$\mathbf{Z}$
	$\mathbf{( m )}$	$(\mathbf{m})$	$(\mathbf{m})$
Scene - Top left	-1008	-1008	0
Scene - Bottom right	1008	1008	0
Active area - Bottom left	-800	8.35	0

## Recommended Starting Location

This table provides the recommended starting location for the vehicle in the world coordinate system. Dimensions are in $m$ and deg.

Recommended Starting Location							Roll	Pitch
$\mathbf{X}$	$\mathbf{Y}$	$\mathbf{Z}$	(m)	$(\mathrm{m})$	$(\mathrm{deg})$			

## Lane Dimensions

This figure and table provides the lane dimensions, in $m$.


Variable	Dimension (m)
$l w_{1}$	0.625
$l w_{2}$	3.85
$l w_{3}$	3.85
$l w_{4}$	0.34
$l w_{5}$	3.85
$l w_{6}$	3.85
$l w_{7}$	0.625
$m l$	1.5
$s$	4.5


Variable	Dimension (m)
$m w_{w}$	0.125
$m w_{y}$	0.125
$W$	16.70

## World Coordinate System

The 3D visualization environment uses a world coordinate system with axes that are fixed in the inertial reference frame.


Axis	Description		
$X$	Forward direction of the vehicle   Roll $~-~ R i g h t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$   $X$		
$Y$	Extends to the right of the vehicle, parallel to the ground plane   Pitch $~-~ R i g h t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$ -axis	,	Extends upwards
:---			
Yaw - Left-handed rotation about $Z$-axis			

## Tips

- If you have the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package, then you can modify this scene. In the Unreal Engine project file that comes with the support package, this scene is named HwStrght.

For more details on customizing scenes, see "Customize 3D Scenes for Vehicle Dynamics Simulations".

## Version History <br> Introduced in R2018b

## R2022b: Scene rendered using RoadRunner

Behavior changed in R2022b
Starting from R2022b, the Straight Road scene in the Unreal Engine 3D environment is rendered using RoadRunner. As a result, the locations of scene objects, including cones and parked vehicles, are moved from their pre-R2022b locations.

## See Also

Simulation 3D Scene Configuration | Curved Road | Double Lane Change | Open Surface | Large Parking Lot | Parking Lot | US City Block | US Highway | Virtual Mcity

Topics
"Unreal Engine Simulation Environment Requirements and Limitations"
"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Customize 3D Scenes for Vehicle Dynamics Simulations"

## Curved Road

Curved road 3D environment

## Description

The Curved Road scene is a 3D environment of a curved highway loop. The scene is rendered using RoadRunner.


## Setup

To simulate a driving maneuver in this scene:
1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to Curved road.

## Layout

The scene uses the world coordinate system to locate objects.


## Scene Dimensions

This table provides the scene corner locations in the world coordinate system. Dimensions are in $m$.

Location	X   (m)	Y   $(\mathbf{m})$	Z   $(\mathbf{m})$
Scene - Bottom left	-1587.75	195.39	0
Scene - Top right	428.26	-1820.60	0

## Recommended Starting Location

This table provides the recommended starting location for the vehicle in the world coordinate system. Dimensions are in $m$ and deg.

| Recommended Starting Location |
| :--- | :--- |
| $\mathbf{X}$ |


$\mathbf{X}$	$\mathbf{Y}$	$\mathbf{Z}$	Roll	Pitch	Yaw
$(\mathbf{m})$	$(\mathrm{m})$	$(\mathrm{m})$	(deg)	$($ deg $)$	(deg)
0.2	-1605.00	0	0	0	$-156^{\circ}$

## Lane Dimensions

This figure and table provides the lane dimensions, in m .


Variable	Dimension (m)
$l w_{1}$	0.625
$l w_{2}$	3.85
$l w_{3}$	3.85
$l w_{4}$	0.34
$l w_{5}$	3.85
$l w_{6}$	3.85
$l w_{7}$	0.625
$m l$	1.5
$s$	4.5
$m w_{w}$	0.125
$m w_{y}$	0.125


Variable	Dimension (m)
$W$	16.65

## World Coordinate System

The 3D visualization environment uses a world coordinate system with axes that are fixed in the inertial reference frame.


Axis	Description			
$X$	Forward direction of the vehicle   Roll $~-~ R i g h t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$   $X$			
$Y$	Extends to the right of the vehicle, parallel to the ground plane   Pitch $~-~ R i g h t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$ -axis	$	$	Extends upwards
:---	:---			
Yaw $~-~ L e f t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$				
$Z$-axis				

## Tips

- If you have the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package, then you can modify this scene. In the Unreal Engine project file that comes with the support package, this scene is named HwCurve.

For more details on customizing scenes, see "Customize 3D Scenes for Vehicle Dynamics Simulations".

## Version History <br> Introduced in R2018b

R2022b: Scene rendered using RoadRunner
Behavior changed in R2022b

Starting from R2022b, the Curved Road scene in the Unreal Engine 3D environment is rendered using RoadRunner. As a result, the locations of scene objects, including cones and parked vehicles, are moved from their pre-R2022b locations.

## See Also

Simulation 3D Scene Configuration | Double Lane Change | Open Surface | Large Parking Lot | Parking Lot | Straight Road | US City Block | US Highway | Virtual Mcity

## Topics

"Unreal Engine Simulation Environment Requirements and Limitations"
"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Customize 3D Scenes for Vehicle Dynamics Simulations"

## Parking Lot

Parking lot 3D environment

## Description

The Parking Lot scene is a 3D environment of a parking lot. The scene is rendered using RoadRunner.


## Setup

To simulate a driving maneuver in this scene:
1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to Parking lot.

## Layout

The scene uses the world coordinate system to locate objects. The active area of the scene contains the parking lot.


## Scene Dimensions

This table provides the scene and active area corner locations in the world coordinate system. Dimensions are in m.

Locations	$\mathbf{X}$	$\mathbf{Y}$	$\mathbf{Z}$
	$(\mathbf{m})$	$(\mathbf{m})$	$(\mathbf{m})$
Scene - Bottom left	-437.32	262.79	0
Scene - Top right	268.28	-442.81	0
Active area - Bottom left	-193.86	23.43	0

## Recommended Starting Location

This table provides the recommended starting location for the vehicle in the world coordinate system. Dimensions are in $m$ and deg.

Recommended Starting Location					
(m)	$\begin{aligned} & \mathbf{Y} \\ & (\mathrm{m}) \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { Roll } \\ & \text { (deg) } \end{aligned}$	$\begin{aligned} & \text { Pitch } \\ & \text { (deg) } \end{aligned}$	$\begin{aligned} & \hline \text { Yaw } \\ & \text { (deg) } \end{aligned}$
-104.0	-9.7	0	0	0	0

## Parking Space Dimensions

This figure shows the parking space dimensions, in m .


## World Coordinate System

The 3D visualization environment uses a world coordinate system with axes that are fixed in the inertial reference frame.


Axis	Description			
$X$	Forward direction of the vehicle   Roll $~-~ R i g h t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$   $X$			
$Y$	Extends to the right of the vehicle, parallel to the ground plane   Pitch $~-~ R i g h t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$ -axis	$	$	Extends upwards
:---	:---			
Yaw - Left-handed rotation about Z-axis				

## Tips

- If you have the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package, then you can modify this scene. In the Unreal Engine project file that comes with the support package, this scene is named SimpleLot.

For more details on customizing scenes, see "Customize 3D Scenes for Vehicle Dynamics Simulations".

## Version History

Introduced in R2018b

## R2022b: Scene rendered using RoadRunner

Behavior changed in R2022b
Starting from R2022b, the Parking Lot scene in the Unreal Engine 3D environment is rendered using RoadRunner. As a result, the locations of scene objects, including cones and parked vehicles, are moved from their pre-R2022b locations.

## See Also

Simulation 3D Scene Configuration | Curved Road | Double Lane Change | Open Surface | Large Parking Lot | Straight Road | US City Block | US Highway | Virtual Mcity

## Topics

"Unreal Engine Simulation Environment Requirements and Limitations"
"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Customize 3D Scenes for Vehicle Dynamics Simulations"

## Large Parking Lot

Large parking lot 3D environment

## Description

The Large Parking Lot scene is a 3D environment of a large parking lot that contains cones, curbs, traffic signs, and parked vehicles. The scene is rendered using RoadRunner.


## Setup

To simulate a driving maneuver in this scene:
1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to Large parking lot.

## Layout

The scene uses the world coordinate system to locate objects.


## Scene Dimensions

This table provides the scene area corner locations in the world coordinate system. Dimensions are in $m$ and deg.

Locations	X   (m)	(m)	Z   $(m)$
Scene - Top left	-78.6	-73.5	0
Scene - Bottom right	72.6	77.7	0

## Recommended Starting Location

This table provides the recommended starting location for the vehicle in the world coordinate system. Dimensions are in m and deg.

Recommended Starting Location					
$\begin{aligned} & X \\ & (m) \end{aligned}$	$\begin{aligned} & \mathbf{Y} \\ & (\mathrm{m}) \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { Roll } \\ & \text { (deg) } \end{aligned}$	$\begin{aligned} & \text { Pitch } \\ & \text { (deg) } \end{aligned}$	$\begin{aligned} & \text { Yaw } \\ & \text { (deg) } \end{aligned}$
45.0	54.7	0	0	0	-90

## Parking Space Dimensions

This figure shows the parking space dimensions, in m .


## World Coordinate System

The 3D visualization environment uses a world coordinate system with axes that are fixed in the inertial reference frame.


Axis	Description			
$X$	Forward direction of the vehicle   Roll $~-~ R i g h t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$			
$Y$	Extexis   Pitch $~$ Right-handed rotation about $Y$-axis	$	$	Extends upwards
:---				
Yaw - Left-handed rotation about $Z$-axis				

## Vehicles

## Hatchback, Pickups, and Sedans

This table provides the vehicle tag names and initial locations for other vehicles in the scene, in the world coordinate system. Dimensions are in m and deg.

Object	Unreal   Engine   Editor Name	Locations   $\mathbf{X}$   $\mathbf{( m )}$	Y   $\mathbf{( m )}$	Z   $\mathbf{( m )}$	Roll   (deg)	Pitch   $\mathbf{( d e g )}$	Yaw   $\mathbf{( d e g )}$
Vehicle	CompactCar   Node	-21.69	38.90	0.00	0	0	180
CompactCar   Node445	-16.11	4.40	0.00	0	0	0	
CompactCar   Node450	5.63	-14.25	0.00	0	0	0	
PickupTruc   kNode	5.61	-40.40	0.00	0	0	180	
PickupTruc   kNode396	-5.27	-34.87	0.00	0	0	0	


Object	Unreal   Engine Editor Name	Locations					
		(m)	$\begin{aligned} & Y \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { Roll } \\ & \text { (deg) } \end{aligned}$	$\begin{aligned} & \text { Pitch } \\ & \text { (deg) } \end{aligned}$	$\begin{aligned} & \text { Yaw } \\ & \text { (deg) } \end{aligned}$
	PickupTruc kNode443	-27.13	46.40	0.00	0	0	0
	PickupTruc kNode444	11.14	-0.90	0.00	0	0	180
	SedanNode	-40.71	18.40	0.00	0	0	180
	SedanNode4 $46$	-21.68	18.40	0.00	0	0	180
	SedanNode4 $47$	-27.12	18.40	0.00	0	0	180
	SedanNode4 49	5.70	4.80	0.00	0	0	0
	$\begin{aligned} & \text { SedanNode4 } \\ & 51 \end{aligned}$	29.55	-13.80	0.00	0	0	0
	$\begin{aligned} & \text { SedanNode4 } \\ & 52 \end{aligned}$	11.20	25.90	0.00	0	0	0
	SuvNode	-24.40	18.40	0.00	0	0	180
	SuvNode448	11.14	4.80	0.00	0	0	0

## Objects

## Cones



## Locations

This table provides the object names and locations in the world coordinate system. Dimensions are in $m$ and deg.

Object	Unreal Engine Editor Name	Location					
		$\begin{aligned} & X \\ & \hline(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{Y} \\ & (\mathrm{m}) \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { Roll } \\ & \text { (deg) } \end{aligned}$	$\begin{aligned} & \text { Pitch } \\ & \text { (deg) } \end{aligned}$	$\begin{aligned} & \text { Yaw } \\ & \text { (deg) } \end{aligned}$
Cone	TrafficCo ne01_Prop Node	-21.60	-23.41	0.00	0	0	0
	TrafficCo ne01_Prop Node453	-24.41	36.19	0.00	0	0	0
	TrafficCo ne01_Prop Node454	-27.00	-2.68	0.00	0	0	0
	TrafficCo ne01_Prop Node455	13.92	28.21	0.00	0	0	0
	TrafficCo ne01_Prop Node475	-38.02	48.02	0.00	0	0	0

## Traffic Signs



## Locations

This table provides the object names and locations in the world coordinate system. Dimensions are in m and deg.

Object	Unreal Engine Editor Name	Location					
		$\begin{aligned} & X \\ & \hline(m) \end{aligned}$	$\begin{aligned} & \mathbf{Y} \\ & (\mathrm{m}) \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { Roll } \\ & \text { (deg) } \end{aligned}$	Pitch   (deg)	$\begin{aligned} & \hline \text { Yaw } \\ & \text { (deg) } \end{aligned}$
Traffic signs	SignPost_10ftNode	34.78	57.38	0.00	0	0	90
	SignPost_10ftNode 456	35.30	36.38	0.00	0	0	90
	SignPost_10ftNode 457	35.28	15.95	0.00	0	0	90
	SignPost_10ftNode 458	35.35	-2.92	0.00	0	0	90
	$\begin{aligned} & \text { SignPost_10ftNode } \\ & 459 \end{aligned}$	35.69	-23.64	0.00	0	0	90
	$\begin{aligned} & \text { SignPost_10ftNode } \\ & 460 \end{aligned}$	24.01	42.80	0.00	0	0	0
	SignPost_10ftNode 461	24.29	-18.12	0.00	0	0	0
	SignPost_10ftNode 462	29.56	-18.12	0.00	0	0	0
	SignPost_10ftNode 463	29.27	41.80	0.00	0	0	180
	SignPost_10ftNode $464$	29.27	42.80	0.00	0	0	0
	$\begin{aligned} & \text { SignPost_10ftNode } \\ & 465 \end{aligned}$	24.29	-17.01	0.00	0	0	0
	$\begin{aligned} & \text { SignPost_10ftNode } \\ & 466 \end{aligned}$	25.01	41.80	0.00	0	0	180
	SignPost_10ftNode 474	29.56	-17.01	0.00	0	0	180

## Tips

- If you have the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package, then you can modify this scene. In the Unreal Engine project file that comes with the support package, this scene is named LargeParkingLot.

For more details on customizing scenes, see "Customize 3D Scenes for Vehicle Dynamics Simulations".

## Version History

Introduced in R2018b
R2022a: Scene rendered using RoadRunner
Behavior changed in R2022a

Starting from R2022a, the Large Parking Lot scene in the Unreal Engine 3D environment is rendered using RoadRunner. As a result, the locations of scene objects, including cones and parked vehicles, are moved from their pre-R2022a locations.

## See Also

Simulation 3D Scene Configuration | Curved Road | Double Lane Change | Open Surface | Parking Lot | Straight Road | US City Block | US Highway | Virtual Mcity

## Topics

"Unreal Engine Simulation Environment Requirements and Limitations"
"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Customize 3D Scenes for Vehicle Dynamics Simulations"

## Open Surface

Open surface 3D environment

## Description

The Open Surface scene contains a 3D environment of an open, black road surface. The scene is rendered using RoadRunner.


## Setup

To simulate a driving maneuver in this scene:
1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to Open surface.

## Layout

The scene contains line patterns that you can use for vehicle testing. The scene uses the world coordinate system to locate objects.


## Scene Dimensions

This table provides the scene corner locations in the world coordinate system. Dimensions are in $m$.

Location	X	Y	Z
Scene - Bottom left	-1010.00	1010.00	0
Scene - Top right	1010.00	-1010.00	0

## Recommended Starting Location

This table provides the recommended starting location for the vehicle in the world coordinate system. Dimensions are in m and deg.

Recommended Starting Location							Roll	Pitch
$\mathbf{X}$	$\mathbf{Y}$	Z						
$(\mathrm{m})$								

## World Coordinate System

The 3D visualization environment uses a world coordinate system with axes that are fixed in the inertial reference frame.


Axis	Description			
$X$	Forward direction of the vehicle   Roll $~-~ R i g h t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$   $X$			
$Y$	Extends to the right of the vehicle, parallel to the ground plane   Pitch $~-~ R i g h t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$ -axis	$	$	Extends upwards
:---	:---			
Yaw - Left-handed rotation about Z-axis				

## Tips

- If you have the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package, then you can modify this scene. In the Unreal Engine project file that comes with the support package, this scene is named BlackLake.

For more details on customizing scenes, see "Customize 3D Scenes for Vehicle Dynamics Simulations".

## Version History

Introduced in R2018b

## R2022b: Scene rendered using RoadRunner

Behavior changed in R2022b
Starting from R2022b, the Open Surface scene in the Unreal Engine 3D environment is rendered using RoadRunner. As a result, the locations of scene objects, including cones and parked vehicles, are moved from their pre-R2022b locations.

## See Also

Simulation 3D Scene Configuration | Curved Road | Double Lane Change | Large Parking Lot | Parking Lot | Straight Road | US City Block | US Highway | Virtual Mcity

## Topics

"Unreal Engine Simulation Environment Requirements and Limitations"
"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Customize 3D Scenes for Vehicle Dynamics Simulations"

## Double Lane Change

Double lane change 3D environment

## Description

The Double Lane Change scene is a 3D environment of a straight road containing cones, traffic signs, and barrels. The cones are set up for a vehicle to perform a double lane change maneuver. The scene is rendered using RoadRunner.


## Setup

To simulate a driving maneuver in this scene:
1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to Double lane change.

## Layout

The scene uses the world coordinate system to locate objects. The active area of the scene contains the road.


## Scene Dimensions

This table provides the scene area corner locations in the world coordinate system. Dimensions are in m.

Locations	X	Y	Z
Scene - Top left	-1008	-1008	0
Scene - Bottom right	1008	1008	0
Active area - Bottom left	-800	8.35	0

## Recommended Starting Location

This table provides the recommended starting location for the vehicle in the world coordinate system. Dimensions are in m and deg.

| Recommended Starting Location | Roll | Pitch | Yaw |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{X}$ | $\mathbf{Y}$ | Z |  |
| $(\mathbf{m})$ | (m) |  |  |

## Lane Dimensions

This figure and table provides the lane dimensions, in m.


Variable	Dimension (m)
$l w_{1}$	0.625
$l w_{2}$	3.85
$l w_{3}$	3.85
$l w_{4}$	0.34
$l w_{5}$	3.85
$l w_{6}$	3.85
$l w_{7}$	0.625
$m l$	1.5
$s$	4.5


Variable	Dimension (m)
$m w_{w}$	0.125
$m w_{y}$	0.125
$W$	16.70

## World Coordinate System

The 3D visualization environment uses a world coordinate system with axes that are fixed in the inertial reference frame.


Axis	Description			
$X$	Forward direction of the vehicle   Roll $~-~ R i g h t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$   $X$			
$Y$	Extends to the right of the vehicle, parallel to the ground plane   Pitch $~-~ R i g h t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$ -axis	$	$	Extends upwards
:---	:---			
Yaw - Left-handed rotation about $Z$-axis				

## Objects

## Traffic Signs



## Locations

This table provides the object names and locations in the world coordinate system. Dimensions are in m.

Object	Unreal Editor Name	Location					
		$\begin{aligned} & \mathrm{X} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{Y} \\ & (\mathrm{m}) \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { Roll } \\ & \text { (deg) } \end{aligned}$	Pitch   (deg)	$\begin{aligned} & \text { Yaw } \\ & \text { (deg) } \end{aligned}$
Traffic sign	$\begin{aligned} & \hline \text { Sign_R1-1_ } \\ & \text { ONode } \end{aligned}$	248.80	-10.00	0	0	0	0
	Sign R1-1 0Node 75	248.80	10.00	0			

## Traffic Signal Light



In the Unreal Editor, the Double Lane Change scene has a Sim3DGetInteger actor with signal name TrafficLight1. You can use it with the Simulation 3D Message Set block to control the traffic signal light color.

## Locations

This table provides the object names and locations in the world coordinate system. Dimensions are in m.

Object	Unreal   Editor   Name	Location   (m)	Y   (m)	Z   (m)	Roll   (deg)	Pitch   (deg)	Yaw   (deg)
Traffic   signal light	SM_Traffic   LightsSide   Only	5.43	9.00	0	0	0	$180.00^{\circ}$

## Barrels



## Locations

This table provides the object names and locations in the world coordinate system. Dimensions are in m.

Object	Unreal   Editor Name	Location   $\mathbf{X}$   $\mathbf{( m )}$	$\mathbf{Y}$   $(\mathbf{m})$	$\mathbf{Z}$   $(\mathbf{m})$	Roll   $(\mathbf{d e g})$	Pitch   (deg)	Yaw   (deg)
Barrels	Drum01Node	252.70	7.50	0	0	0	$180.00^{\circ}$
	Drum01Node   67	252.70	5.35	0	0	0	0
	Drum01Node   68	252.70	3.20	0	0	0	0
Drum01Node   69	252.70	-1.05	0	0	0	0	
Drum01Node   70	252.70	-1.1	0	0	0	0	
Drum01Node   71	252.70	-3.25	0	0	0	0	
Drum01Node   72	252.70	-5.40	0	0	0	0	
Drum01Node   73	252.70	-7.55	0	0	0	0	

## Tips

- If you have the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package, then you can modify this scene. In the Unreal Engine project file that comes with the support package, this scene is named DblLnChng.

For more details on customizing scenes, see "Customize 3D Scenes for Vehicle Dynamics Simulations".

## Version History

Introduced in R2018b
R2022b: Scene rendered using RoadRunner
Behavior changed in R2022b
Starting from R2022b, the Double Lane Change scene in the Unreal Engine 3D environment is rendered using RoadRunner. As a result, the locations of scene objects, including cones and parked vehicles, are moved from their pre-R2022b locations.

## See Also

Simulation 3D Scene Configuration | Curved Road | Open Surface | Large Parking Lot | Parking Lot | Straight Road | US City Block | US Highway | Virtual Mcity

## Topics

"Send and Receive Double-Lane Change Scene Data"
"Unreal Engine Simulation Environment Requirements and Limitations"
"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Customize 3D Scenes for Vehicle Dynamics Simulations"

## US City Block

US city block 3D environment

## Description

The US City Block scene is a 3D environment of a US city block that contains 15 intersections and 30 traffic lights. The scene is rendered using RoadRunner.


## Setup

To simulate a driving maneuver in this scene:
1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to US city block.

## Layout

The scene uses the world coordinate system to locate objects.


## Scene Dimensions

This table provides the scene area corner locations in the world coordinate system. Dimensions are in m.

Locations	X   $\mathbf{( m )}$	Y   $(\mathbf{m})$	Z   $(\mathbf{m})$
Scene - Top left	-1020	-1020	0
Scene - Bottom right	1020	1020	0
Active area - Bottom left	-240.77	151.67	0

## Recommended Starting Location

This table provides the recommended starting location for the vehicle in the world coordinate system. Dimensions are in m and deg.

Recommended Starting Location							Roll	Pitch
$\mathbf{X}$	$\mathbf{Y}$	$\mathbf{Z}$						
$\mathbf{( m )}$	1.65	(m)   (deg)	Yaw   (deg)	(deg)				
-125.19	-0.04 in   vehicle Z-down   coordinate   system	0	0	0				

## Intersections

The US city block scene has 15 intersections, as indicated in this diagram.


This table provides the intersection locations in the world coordinate system. Dimensions are in $m$.

Intersection	Center Location		
	X	Y	Z
	(m)	(m)	(m)
1	-202.60	-108	. 01


Intersection	Center Location		
	$\mathbf{X}$		
(m)			

## Lane Dimensions

The scene contains three types of roads.

## Road Type 1

This figure and table provides the road type 1 lane dimensions, in $m$.


Variable	Dimension (m)
$l w_{1}$	0.65
$l w_{2}$	3.85
$l w_{3}$	3.85
$l w_{4}$	0.65
$m l$	1.5
$s$	4.5
$m w$	0.125
$W$	9

## Road Type 2

This figure and table provides the road type 2 lane dimensions, in $m$.


Variable	Dimension (m)
$l w_{1}$	0.73
$l w_{2}$	3.77
$l w_{3}$	3.77
$l w_{4}$	4.5
$l w_{5}$	0.73
$m l$	1.5
$s$	4.5
$m w$	0.125
$W$	13.5

## Road Type 3

This figure and table provides the road type 3 lane dimensions, in $m$.


Variable	Dimension (m)
$l w_{1}$	0.65
$l w_{2}$	3.85
$l w_{3}$	3.85
$l w_{4}$	3.15
$m l$	1.5
$s$	4.5
$m w$	0.125
$W$	11.5

## World Coordinate System

The 3D visualization environment uses a world coordinate system with axes that are fixed in the inertial reference frame.


Axis	Description		
$X$	Forward direction of the vehicle   Roll $~-~ R i g h t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$   $X$		
$Y$	Extends to the right of the vehicle, parallel to the ground plane   Pitch $~-~ R i g h t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$ -axis	,	Extends upwards
:---			
Yaw - Left-handed rotation about Z-axis			

## Objects

## Barrier



## Locations

This table provides the object names and locations in the world coordinate system. Dimensions are in m.

Unreal Engine Editor Name		Location					
		X	Y	Z	Roll	Pitch	Yaw
	PropNode25 52	69.71	150.15	0.09	0	0	0
	PropNode25 $54$	74.43	150.15	0.01	0	0	0
	PropNode25 59	168.36	150.15	0.01	0	0	0
	$\begin{aligned} & \text { PropNode25 } \\ & 94 \end{aligned}$	-110.71	-147.37	0.01	0	0	0
	PropNode25 $38$	-191.29	150.15	0.08	0	0	0
	PropNode25 27	-192.46	-147.40	0.03	0	0	0
	```PropNode25 92```	-102.49	-147.40	0.04	0	0	0
	PropNode25 68	197.05	1.98	0.01	0	0	-90 ${ }^{\circ}$
	$\begin{aligned} & \hline \text { PropNode25 } \\ & 24 \end{aligned}$	-204.50	-147.40	0.01	0	0	0
	PropNode25 37	-240.00	-120.63	0.07	0	0	-90 ${ }^{\circ}$
	PropNode25 71	197.05	-101.32	0.06	0	0	-90 ${ }^{\circ}$
	PropNode25 86	-16.60	-147.40	0.01	0	0	0
	$\begin{aligned} & \text { PropNode25 } \\ & 40 \end{aligned}$	-182.61	150.15	0.01	0	0	0
	PropNode25 25	-200.71	-147.40	0.01	0	0	0
	$\begin{aligned} & \text { PropNode25 } \\ & 31 \end{aligned}$	-240.00	6.67	0.12	0	0	-90 ${ }^{\circ}$
	$\begin{aligned} & \text { PropNode25 } \\ & 30 \end{aligned}$	-240.00	1.93	0.01	0	0	-90 ${ }^{\circ}$
	PropNode25 88	-29.31	-147.40	0.04	0	0	0
	PropNode25 95	-114.52	-147.40	0.01	0	0	0
	PropNode25 84	-24.42	-147.40	0.01	0	0	0
	$\begin{aligned} & \hline \text { PropNode25 } \\ & 29 \end{aligned}$	-240.00	-1.82	0.01	0	0	-90 ${ }^{\circ}$

Unreal Engine Editor Name	Location					
	X	Y	Z	Roll	Pitch	Yaw
PropNode25 56	159.73	150.15	0.11	0	0	0
$\begin{aligned} & \text { PropNode25 } \\ & 69 \end{aligned}$	197.05	5.43	0.01	0	0	-90 ${ }^{\circ}$
PropNode25 74	164.46	-147.40	0.11	0	0	-180°
$\begin{aligned} & \text { PropNode25 } \\ & 26 \end{aligned}$	-195.90	-105.25	0	0	0	0
$\begin{aligned} & \text { PropNode25 } \\ & 61 \end{aligned}$	197.05	114.37	0.01	0	0	-90 ${ }^{\circ}$
$\begin{aligned} & \text { PropNode25 } \\ & 75 \end{aligned}$	168.39	-147.40	0.01	0	0	0
PropNode25 49	-16.49	150.15	0.11	0	0	0
$\begin{array}{\|l} \text { PropNode25 } \\ 81 \end{array}$	82.13	-147.40	0.03	0	0	0
$\begin{aligned} & \text { PropNode25 } \\ & 43 \end{aligned}$	119.29	150.15	0.13	0	0	0
```PropNode25 66```	197.05	12.11	0.05	0	0	-90 ${ }^{\circ}$
PropNode25 $93$	-105.93	-147.40	0.10	0	0	0
$\begin{aligned} & \hline \text { PropNode25 } \\ & 23 \\ & \hline \end{aligned}$	-208.80	-147.40	0.13	0	0	0
PropNode25 $77$	156.30	-147.40	0.03	0	0	0
PropNode25 $90$	-7.98	-147.40	0.03	0	0	0
PropNode25 $82$	65.37	-147.40	0.12	0	0	0
$\begin{aligned} & \text { PropNode25 } \\ & 70 \end{aligned}$	197.05	-114.66	0.13	0	0	-90 ${ }^{\circ}$
PropNode25 $50$	-24.53	150.15	0.01	0	0	0
$\begin{aligned} & \text { PropNode25 } \\ & 48 \end{aligned}$	-29.31	150.15	0.06	0	0	0
$\begin{aligned} & \text { PropNode25 } \\ & 67 \end{aligned}$	197.05	-1.90	0.01	0	0	$-90^{\circ}$
PropNode25 $57$	173.10	150.15	0.12	0	0	0


Unreal Engine Editor Name	Location					
	X	Y	Z	Roll	Pitch	Yaw
PropNode25 53	83.12	150.15	0.03	0	0	0
PropNode25 $97$	-122.75	-147.37	0.04	0	0	0
```PropNode25 55```	78.37	150.15	0.01	0	0	0
PropNode25 91	-99.03	-147.40	0.04	0	0	0
PropNode25 60	197.05	119.24	0.12	0	0	-90 ${ }^{\circ}$
PropNode25 73	197.05	-106.00	0.01	0	0	-90 ${ }^{\circ}$
$\begin{aligned} & \text { PropNode25 } \\ & 47 \end{aligned}$	-110.71	150.15	0.01	0	0	
$\begin{aligned} & \text { PropNode25 } \\ & 33 \end{aligned}$	-240.00	103.96	0.04	0	0	-90 ${ }^{\circ}$
$\begin{aligned} & \text { PropNode25 } \\ & 34 \end{aligned}$	-240.00	108.62	0.01	0	0	-90°
```PropNode25 79```	73.95	-147.40	0.01	0	0	
PropNode25 64	197.05	-6.67	0.07	0	0	-90 ${ }^{\circ}$
PropNode25 $89$	-32.70	-147.40	0.04	0	0	
$\begin{aligned} & \text { PropNode25 } \\ & 20 \end{aligned}$	-32.70	-109.92	0.01	0	0	-90 ${ }^{\circ}$
PropNode25 $62$	197.05	110.62	0.01	0	0	-90 ${ }^{\circ}$
$\begin{aligned} & \text { PropNode25 } \\ & 32 \end{aligned}$	-240.00	100.81	0.04	0	0	-90 ${ }^{\circ}$
PropNode25 $63$	197.05	105.79	0.07	0	0	-90 ${ }^{\circ}$
$\begin{aligned} & \text { PropNode25 } \\ & 22 \end{aligned}$	-240.00	101.32	0.03	0	0	-90 ${ }^{\circ}$
PropNode25 $45$	-102.57	150.15	0.03	0	0	0
PropNode25 $41$	-177.93	150.15	0.04	0	0	0
PropNode25 $87$	-11.39	147. 40	0.12	0	0	0


Unreal Engine Editor Name	Location					
	X	Y	Z	Roll	Pitch	Yaw
PropNode25   58	164.52	150.15	0.12	0	0	0
$\begin{aligned} & \text { PropNode25 } \\ & 46 \end{aligned}$	-114.50	150.15	0.01	0	0	0
PropNode25   65	-197.05	8.89	0.11	0	0	$-90^{\circ}$
$\begin{aligned} & \text { PropNode25 } \\ & 72 \end{aligned}$	197.05	-109.93	0.01	0	0	$-90^{\circ}$
$\begin{aligned} & \text { PropNode25 } \\ & 21 \end{aligned}$	-240.00	-106.09	0.01	0	0	$-90^{\circ}$
$\begin{aligned} & \text { PropNode25 } \\ & 36 \end{aligned}$	-240.00	117.19	0.13	0	0	-90 ${ }^{\circ}$
$\begin{aligned} & \text { PropNode25 } \\ & 28 \end{aligned}$	-240.00	-6.67	0.07	0	0	-90 ${ }^{\circ}$
$\begin{aligned} & \text { PropNode25 } \\ & 83 \end{aligned}$	62.05	-147.40	0.04	0	0	0
$\begin{aligned} & \text { PropNode25 } \\ & 44 \end{aligned}$	-105.91	150.15	0.10	0	0	0
$\begin{aligned} & \text { PropNode27 } \\ & 94 \end{aligned}$	159.70	-147.40	0.11	0	0	0
PropNode25 85	-20.74	-147.40	0.01	0	0	0
PropNode25 76	173.09	-147.40	0.12	0	0	0
PropNode25 $35$	-240.00	112.41	0.01	0	0	-90 ${ }^{\circ}$
PropNode25 $51$	-20.68	150.15	0.01	0	0	0
$\begin{aligned} & \text { PropNode25 } \\ & 78 \end{aligned}$	70.13	-147.40	0.01	0	0	0
PropNode25 $96$	-119.32	-147.41	0.13	0	0	0
PropNode25 $80$	78.73	-147.40	0.11	0	0	0
$\begin{aligned} & \text { PropNode25 } \\ & 42 \end{aligned}$	-174.47	-150.15	0.04	0	0	0

## Traffic Lights



The US City Scene contains 30 traffic lights, two at each of the 15 intersections. Each intersection has a traffic light group. If you have the "Customize 3D Scenes for Vehicle Dynamics Simulations" for customizing scenes, you can control the timing of the traffic lights.

## Locations

This table provides the traffic light names and locations in the world coordinate system. Dimensions are in m . Only one of the traffic lights in the group can be green at a time. The traffic lights are green for 10 s and yellow for 3 s . At the start of the simulation, the first traffic lights in the group are green (for example, SM_TrafficLights1_3 and SM_TrafficLights2_3). The second lights in the group are red (for example, SM_TrafficLights1_4 and SM_TrafficLights2_4).

Intersect ion	Unreal Engine Editor Name		Location					
	Traffic Light Group	Traffic Light	X	Y	Z	Roll	Pitch	Yaw
1	TrafficLig htGroup	$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s1_3 } \end{aligned}$	-196.55	-100.65	0	0	0	$90^{\circ}$
		$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s1_4 } \end{aligned}$	-210.20	-113.40	0	0	0	0
2	TrafficLig htGroup2	$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s2_3 } \end{aligned}$	-106.35	98.35	0	0	0	-90 ${ }^{\circ}$
		$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s2_4 } \end{aligned}$	-120.40	-113.50	0	0	0	0
3	TrafficLig htGroup3	$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s3_1 } \end{aligned}$	-13.10	-116.20	0.2	0	0	$90^{\circ}$


Intersect ion	Unreal Engine Editor Name		Location					
	Traffic Light Group	Traffic Light	X	Y	Z	Roll	Pitch	Yaw
		$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s3_4 } \end{aligned}$	-30.60	-113.80	0	0	0	0
4	$\begin{aligned} & \text { TrafficLig } \\ & \text { htGroup4 } \end{aligned}$	$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s4_3 } \end{aligned}$	71.40	-100.30	0	0	0	$-100^{\circ}$
		$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s4_4 } \end{aligned}$	64.80	-113.0	0	0	0	0
5	TrafficLig htGroup5	$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s5_1 } \end{aligned}$	171.50	-115.70	0	0	0	$90^{\circ}$
		$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s5_4 } \end{aligned}$	157.40	-113.50	0	0	0	0
6	TrafficLig htGroup6	$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s6_2 } \end{aligned}$	-177.30	5.70	0	0	0	$180^{\circ}$
		$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s6_3 } \end{aligned}$	-189.60	7.40	0	0	0	-90 ${ }^{\circ}$
7	TrafficLig htGroup7	$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s7_2 } \end{aligned}$	-105.20	5.50	0	0	0	$180^{\circ}$
		SM Tr affic   Light   s7_3	-117.80	7.70	0.2	0	0	-90 ${ }^{\circ}$
8	TrafficLig htGroup8	$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s8_1 } \end{aligned}$	-13.10	-7.60	0.1	0	0	$90^{\circ}$


Intersect ion	Unreal Engine Editor Name		Location					
	Traffic Light Group	Traffic Light	X	Y	Z	Roll	Pitch	Yaw
		$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s8_2 } \end{aligned}$	-10.90	5.60	0	0	0	$180^{\circ}$
9	TrafficLig htGroup9	$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s9_2 } \end{aligned}$	85.90	7.60	0.2	0	0	$180^{\circ}$
		$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s9_3 } \end{aligned}$	70.90	9.20	0	0	0	$-90^{\circ}$
10	TrafficLig htGroup10	$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s10_1 } \end{aligned}$	172.10	-7.70	0	0	0	$90^{\circ}$
		$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s10_2 } \end{aligned}$	173.70	7.50	0	0	0	$180^{\circ}$
11	TrafficLig htGroupl1	$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s11_3 } \end{aligned}$	-189.80	118.45	0	0	0	$-90^{\circ}$
		$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s11_4 } \end{aligned}$	-191.05	104.55	0	0	0	0
12	TrafficLig htGroup12	$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s12_3 } \end{aligned}$	-117.60	117.60	0	0	0	$-90^{\circ}$
		$\begin{aligned} & \hline \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s12_4 } \end{aligned}$	-120.50	105.40	0	0	0	0
13	TrafficLig htGroup13	$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s13_1 } \\ & \hline \end{aligned}$	-12.80	102.50	0	0	0	$90^{\circ}$


Intersect ion	Unreal Engine Editor Name		Location					
	Traffic Light Group	Traffic Light	X	Y	Z	Roll	Pitch	Yaw
		$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s13_4 } \end{aligned}$	-30.50	105.30	0	0	0	0
14	TrafficLig htGroup14	$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s14_3 } \end{aligned}$	70.90	118.70	0	0	0	-90 ${ }^{\circ}$
		$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s14_4 } \end{aligned}$	69.30	105.30	0	0	0	0
15	TrafficLig htGroup15	$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s15_1 } \end{aligned}$	171.40	105.20	0	0	0	$90^{\circ}$
		$\begin{aligned} & \text { SM_Tr } \\ & \text { affic } \\ & \text { Light } \\ & \text { s15_4 } \end{aligned}$	158.40	107.20	0	0	0	0

## Tips

- If you have the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package, then you can modify this scene. In the Unreal Engine project file that comes with the support package, this scene is named USCityBlock.

For more details on customizing scenes, see "Customize 3D Scenes for Vehicle Dynamics Simulations".

## Version History

Introduced in R2018b

## R2022b: Scene rendered using RoadRunner

Behavior changed in R2022b
Starting from R2022b, the US City Block scene in the Unreal Engine 3D environment is rendered using RoadRunner. As a result, the locations of scene objects, including cones and parked vehicles, are moved from their pre-R2022b locations.

## See Also

Simulation 3D Scene Configuration | Curved Road | Double Lane Change | Open Surface | Large Parking Lot | Parking Lot | Straight Road | Virtual Mcity | US Highway

## Topics

"Unreal Engine Simulation Environment Requirements and Limitations"
"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Customize 3D Scenes for Vehicle Dynamics Simulations"

## US Highway

US highway 3D environment

## Description

The US Highway scene is a 3D environment of a US highway that contains barriers, cones, and traffic signs. The scene is rendered using RoadRunner.


## Setup

To simulate a driving maneuver in this scene:
1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to US highway.

## Layout

The scene uses the world coordinate system to locate objects. The active area of the scene contains the road.


## Scene Dimensions

This table provides the scene area corner locations in the world coordinate system. Dimensions are in m.

Locations	$\mathbf{X}$	$\mathbf{Y}$	$\mathbf{Z}$
	$(\mathbf{m})$	$(\mathbf{m})$	$(\mathbf{m})$
Scene - Top left	-5080	-5080	1
Scene - Bottom right	5080	5080	1
Active area - Bottom left	2867.41	3169.93	1

## Recommended Starting Location

This table provides the recommended starting location for the vehicle in the world coordinate system. Dimensions are in m and deg.

Recommended Starting Location						
$\mathbf{X}$	$\mathbf{Y}$	$\mathbf{Z}$	Roll			
(m)	2617.00	(deg)	Pitch   (deg)	(deg)		
3592.00	(d.00   -1.00 in   vehicle Z-down   coordinate   system	0	0	0		

## Lane Dimensions

This figure and table provides the lane dimensions, in m .


Variable	Dimension (m)
$l w_{1}$	0.625
$l w_{2}$	3.85
$l w_{3}$	3.85
$l w_{4}$	0.625
$m l$	1.5
$s$	4.5
$m w$	0.125
$W$	8.95

## World Coordinate System

The 3D visualization environment uses a world coordinate system with axes that are fixed in the inertial reference frame.


Axis	Description
$X$	Forward direction of the vehicle
Roll - Right-handed rotation about $X$-axis	


Pitch - Right-handed rotation about Y -axis\end{array}\right|\)| Extends upwards |  |
| :--- | :--- |
| $Z$ | $Y a w ~-~ L e f t-h a n d e d ~ r o t a t i o n ~ a b o u t ~ Z-a x i s ~$ |,

## Objects

## Barrier



## Locations

This table provides the object names and locations in the world coordinate system. Dimensions are in m.

Unreal Engine Editor Name		Location					
		X	Y	Z	Roll	Pitch	Yaw
		(m)	(m)	(m)	(deg)	(deg)	(deg)
f_shaped barrier_m esh_	PropNode	2866.45	2609.80	1.01	0	0	-90 ${ }^{\circ}$
	PropNode99   14	2866.45	2593.70	1.01			
	PropNode99 $12$	2866.45	2606.03	1.01			
	PropNode99 $13$	2866.45	2597.61	1.01			

## Cones



## Locations

This table provides the cone tag names and locations in the world coordinate system. Dimensions are in $m$.

Unreal Engine Editor Name		Location					
		X	Y	Z	Roll	Pitch	Yaw
		(m)	(m)	(m)	(deg)	(deg)	(deg)
$\begin{aligned} & \text { TrafficCo } \\ & \text { ne01_ } \end{aligned}$	$\begin{aligned} & \text { PropNode49 } \\ & 70 \end{aligned}$	3022.85	2599.90	1	0	0	0
	PropNode49 $69$	3022.85	2599.10	1			
	PropNode49 $68$	3022.85	2598.25	1			
	PropNode49 $67$	3022.85	2597.30	1			
	PropNode49 66	3022.85	2596.50	1			
	PropNode49 65	3022.85	2595.65	1			
	PropNode49   64	3022.85	2594.70	1			
	PropNode49 $63$	3022.85	2593.90	1			
	PropNode49 $62$	3022.85	2593.05	1			
	$\begin{aligned} & \text { PropNode49 } \\ & 61 \end{aligned}$	3022.85	2592.20	1			
	PropNode	3022.85	2591.40	1			

## Traffic Signs



## Locations

This table provides the traffic sign tag names and locations in the world coordinate system. Dimensions are in m.

Unreal Engine Editor   Name	Location   X   (m)					

## Tips

- If you have the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package, then you can modify this scene. In the Unreal Engine project file that comes with the support package, this scene is named USHighway.

For more details on customizing scenes, see "Customize 3D Scenes for Vehicle Dynamics Simulations".

## Version History

Introduced in R2018b

## R2022b: Scene rendered using RoadRunner

Behavior changed in R2022b
Starting from R2022b, the US Highway scene in the Unreal Engine 3D environment is rendered using RoadRunner. As a result, the locations of scene objects, including cones and parked vehicles, are moved from their pre-R2022b locations.

## See Also

Simulation 3D Scene Configuration | Curved Road | Double Lane Change | Open Surface | Large Parking Lot | Parking Lot | Straight Road | US City Block | Virtual Mcity

Topics
"Unreal Engine Simulation Environment Requirements and Limitations"
"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Customize 3D Scenes for Vehicle Dynamics Simulations"

## Virtual Mcity

Virtual Mcity 3D environment

## Description

The Virtual Mcity scene is a 3D environment containing a virtual representation of Mcity ${ }^{\circledR}$, which is a testing ground belonging to the University of Michigan. For more details, see Mcity Test Facility.

The scene is rendered using the Unreal Engine from Epic Games.


## Setup

To simulate a driving maneuver in this scene:
1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to Virtual Mcity.

## Layout

The scene uses the world coordinate system to locate objects. The active area of the scene contains the road.


## Scene Dimensions

This table provides the scene area corner locations in the world coordinate system. Dimensions are in m.
$\left.\begin{array}{|l|l|l|l|}\hline \text { Locations } & \mathbf{X} & \mathbf{Y} \\ \mathbf{( m )}\end{array}\right)$

## Recommended Starting Location

This table provides the recommended starting location for the vehicle in the world coordinate system. Dimensions are in m and deg.

| Recommended Starting Location |
| :--- | :--- |
| $\mathbf{X}$ |


$\mathbf{X}$	Y	Z	Roll	Pitch	Yaw
$(\mathbf{m})$	$(\mathrm{m})$	(m)	(deg)	$($ deg $)$	$($ deg $)$
-26.00	76.0	0	0	0	-40

## World Coordinate System

The 3D visualization environment uses a world coordinate system with axes that are fixed in the inertial reference frame.


Axis	Description
$X$	Forward direction of the vehicle   Roll $~-~ R i g h t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$   $X$
$Y$	-axis
$Z$	Extends to the right of the vehicle, parallel to the ground plane   Yaw   Yaw $~-~ L e f t-h a n d e d ~ r o t a t i o n ~ a b o u t ~$ -axis

## Vehicles

## Trucks, Bicycles, and Sedans

This table provides the vehicle tag names and initial locations for other vehicles in the scene, in the world coordinate system. Dimensions are in m and deg.

Object	Unreal   Engine   Editor   Name	Locations   (m)	Y   (m)	(m)   (m)	Roll   (deg)	Pitch   (deg)	Yaw   (deg)
Vehicle	SK_BoxTr   uck	20.96	-136.90	0	0	0	-90
	SM_Motor   cycle	42.50	-157.60	0	0	0	-20
	SK_Sedan   Car	5.83	-117.91	0	0	0	0
	SM_Bicyc   le-	10.88	-84.42	0	0	0	90

## Objects

## Cones



## Locations

This table provides the object names and locations in the world coordinate system. Dimensions are in m and deg.

Object	Unreal   Engine   Editor   Name	Location   $\mathbf{( m )}$	Y   $\mathbf{( m )}$	$\mathbf{Z}$   $(\mathbf{m})$	Roll   (deg)	Pitch   (deg)	Yaw   (deg)
Cone	SM_Cone	22.33	-131.51	0	0	0	0
	SM_Cone2	21.23	-131.51	0	0	0	0
	SM_Cone3	20.03	-131.51	0	0	0	0
	SM_Cone4	18.93	-131.51	0	0	0	0

## Barrier



## Locations

This table provides the object names and locations in the world coordinate system. Dimensions are in $m$ and deg.

Object	Unreal Engine Editor Name	Location					
		$\begin{aligned} & X \\ & \hline(m) \end{aligned}$	$\begin{aligned} & \mathbf{Y} \\ & (\mathrm{m}) \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Roll } \\ \text { (deg) } \end{array}$	Pitch (deg)	$\begin{aligned} & \text { Yaw } \\ & \text { (deg) } \end{aligned}$
Barrier	$\begin{aligned} & \text { SM Barrie } \\ & \text { r1 } \overline{3} \end{aligned}$	79.65	-173.39	0	0	0	-35
	$\begin{aligned} & \text { SM_Barrie } \\ & \text { r1 } \end{aligned}$	77.31	-175.94	0	0	0	-55
	$\begin{aligned} & \text { SM Barrie } \\ & \text { r15 } \end{aligned}$	74.42	-177.49	0	0	0	-80
	$\begin{aligned} & \text { SM Barrie } \\ & \text { r1 } \end{aligned}$	71.18	-177.64	0	0	0	-95

## Animals



## Locations

This table provides the object names and locations in the world coordinate system. Dimensions are in $m$ and deg.
$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline \text { Object } & \begin{array}{l}\text { Unreal } \\ \text { Engine } \\ \text { Editor } \\ \text { Name }\end{array} & \text { Location } & \text { X } & \text { (m) } & \text { Y } & \text { Z } & \text { Roll } \\ \text { (m) }\end{array}\right)$

## Traffic Signs

## STOP

## Locations

This table provides the object names and locations in the world coordinate system. Dimensions are in m and deg.

Object	Unreal   Engine   Editor   Name	Location					


Object	Unreal Engine Editor Name	Location					
		$\begin{aligned} & X \\ & (m) \end{aligned}$	$\begin{aligned} & \mathbf{Y} \\ & (\mathrm{m}) \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { Roll } \\ & \text { (deg) } \end{aligned}$	$\begin{aligned} & \text { Pitch } \\ & \text { (deg) } \end{aligned}$	$\begin{aligned} & \text { Yaw } \\ & \text { (deg) } \end{aligned}$
	LargeDoub leArrowSi gn3	47.54	-218.00	0	0	0	-15
	SM_StopSi $\mathrm{gn} \overline{9}$	70.32	-195.66	0	0	0	0
	SM Yellow RoadSign3	82.66	-285.75	-. 02	0	0	15
	SM_SpeedL imitSign2	80.89	-226.85	-. 06	0	0	0
	LargeDoub leArrowSi gn5	104.10	-212.80	0	0	0	80
	ChevronAl ignmentSi gn	98.45	-191.22	0	0	0	101
	ChevronAl ignmentSi gn2	102.05	-197.62	0	0	0	76.5
	ChevronAl ignmentSi gn3	103.98	-206.06	0	0	0	85
	SM_Large Exit_Sign	122.45	-212.50	0	0	0	0
	SM_Large Exit_Sign 2	101.79	-151.66	0	0	0	180
	SM_StopSi $\mathrm{gn} \overline{3}$	32.01	-163.68	0	0	0	160
	SM_StopSi $\mathrm{gn} \overline{2}$	54.98	-177.12	0	0	0	90
	$\begin{aligned} & \text { SM_StopSi } \\ & \mathrm{gn} \overline{5} \end{aligned}$	126.63	-58.50	0	0	0	155
	SM_StopSi gn6	125.28	-130.73	0	0	0	-180
	$\begin{aligned} & \text { SM_StopSi } \\ & \mathrm{gn} \overline{8} \end{aligned}$	82.01	-192.74	0	0	0	-180
	$\begin{aligned} & \text { SM_StopSi } \\ & \text { gn4 } \end{aligned}$	59.90	-161.03	0	0	0	-25
	LargeSing leArrowSi gn	121.01	-148.56	0	0	0	0


Object	Unreal Engine Editor Name	Location					
		$\begin{aligned} & X \\ & (m) \end{aligned}$	$\begin{aligned} & \mathbf{Y} \\ & (\mathrm{m}) \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { Roll } \\ & \text { (deg) } \end{aligned}$	Pitch   (deg)	$\begin{aligned} & \hline \text { Yaw } \\ & \text { (deg) } \end{aligned}$
	SM YieldS ign2	162.22	-109.64	0	0	0	25
	SM Windin gRoadSign	127.11	-50.21	. 01	0	0	50
	SchoolBus OnlySign	44.03	-51.11	0	0	0	90
	SM Yellow RoadSign5	68.05	-47.03	. 01	0	0	-175
	SM_CrossS ignal8	74.37	-14.11	0	0	0	-165
	SM_CrossS ignal7	64.69	-22.69	0	0	0	-150
	SM_CrossS ignal6	62.51	-20.34	0	0	0	40
	SM CrossS igñal5	72.42	-12.06	0	0	0	40
	SM Yellow RoadSign2	60.01	-2.69	-. 01	0	0	50
	SM_CrossS ignal2	28.53	-20.58	0	0	0	-20
	SM_CrossS ignal	21.19	-17.95	0	0	0	-20
	SM_CrossS ignal3	17.55	-21.53	0	0	0	-170
	SM_CrossS ignal4	6.59	-27.66	0	0	0	-145
	SM_YieldS ign4	4.89	-23.42	0	0	0	-140
	SM Yellow RoadSign4	9.23	-45.63	0	0	0	-175
	SM BikeLa neSign	24.13	-92.03	. 15	0	0	0

## Traffic Lights



## Locations

This table provides the object names and locations in the world coordinate system. Dimensions are in $m$ and deg.

Object	Unreal Engine Editor Name	Location					
		$\begin{aligned} & \mathrm{X} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{Y} \\ & (\mathrm{m}) \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \hline \text { Roll } \\ & \text { (deg) } \end{aligned}$	Pitch   (deg)	Yaw   (deg)
Traffic lights	SM Traffi cLights	27.40	-138.55	. 16	0	0	90
	SM_Traffi cLights2	9.38	-106.90	. 16	0	0	-90
	SM Traffi cLightsSi deOnly3	8.44	-47.95	-. 03	0	0	-92.2
	SM Traffi cLīghtsSi deOnly4	1.64	-55.10	. 16	0	0	-5
	SM Traffi cLīghtsSi deOnly5	9.24	-67.70	. 16	0	0	85
	SM Traffi cLightsSi deOnly6	24.50	-67.82	. 16	0	0	85
	SM Traffi cLights3	27.89	-109.86	. 16	0	0	180
	SM_Hangin gTrafficL ightSingl e	74.43	-69.25	7.37	0	0	0


Object	Unreal Engine Editor Name	Location					
		$\begin{aligned} & \mathrm{X} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathbf{Y} \\ & (\mathrm{m}) \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { Roll } \\ & \text { (deg) } \end{aligned}$	Pitch   (deg)	$\begin{aligned} & \hline \text { Yaw } \\ & \text { (deg) } \end{aligned}$
	SM_Hangin gTrafficL ightSingl e2	76.13	-69.10	7.34	0	0	0
	SM_Hangin gTrafficL ightSingl e3	82.58	-60.10	7.57	0	0	-90
	SM_Hangin gTrafficL ightSingl e4	82.65	-61.48	7.54	0	0	-90
	SM_Hangin gTrafficL ightSingl e6	73.67	-51.25	7.97	0	0	-180
	SM_Hangin gTrafficL ightSingl e7	75.07	-51.25	7.95	0	0	-180
	SM_Hangin gTrafficL ight	-24.78	-61.49	6.71	0	0	100
	SM Railro adत̄rossin g4	-18.21	-86.63	. 01	0	0	8
	SM Railro adC̄rossin g5	-26.73	-90.78	. 01	0	0	-172

## Limitations

- In the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package, this scene is not available for customization.

For details on which scenes you can customize, see "Customize 3D Scenes for Vehicle Dynamics Simulations".

## Version History

Introduced in R2018b

## See Also

Simulation 3D Scene Configuration | Curved Road | Double Lane Change | Open Surface | Large
Parking Lot | Parking Lot | Straight Road | US City Block | US Highway
Topics
"Unreal Engine Simulation Environment Requirements and Limitations"
"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Customize 3D Scenes for Vehicle Dynamics Simulations"
External Websites
Mcity Test Facility

## Vehicle Dimensions

## Hatchback

Hatchback vehicle dimensions

## Description

Hatchback is one of the vehicles that you can use within the 3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games. The diagram provides the dimensions of this vehicle. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the vehicle in the vehicle coordinate system. The origin is on the ground, at the geometric center of the vehicle. For more detailed views of these diagrams, see the Dimensions section.


To add this type of vehicle to the 3D simulation environment:
1 Add a Simulation 3D Vehicle or Simulation 3D Vehicle with Ground Following block to your Simulink model.
2 In the block, set the Type parameter to Hatchback.

## Dimensions

Top-down view - Vehicle width dimensions
diagram


Side view - Vehicle length, front overhang, and rear overhang dimensions diagram


Front view - Tire width and front axle dimensions
diagram


Rear view - Vehicle height and rear axle dimensions
diagram


## Sensor Mounting Locations

In the 3D simulation sensor blocks, use the Mounting location parameter to mount sensors at predefined locations on the vehicle. The table shows the $X, Y$, and $Z$ positions of the mounting locations relative to the vehicle origin. These locations are in the vehicle coordinate system, where:

- The $X$-axis points forward from the vehicle.
- The $Y$-axis points to the left of the vehicle, as viewed when facing forward.
- The $Z$-axis points up from the ground.

Hatchback - Sensor Locations Relative to Vehicle Origin

Mounting Location	$\mathbf{X ( m )}$	$\mathbf{Y}(\mathbf{m})$	$\mathbf{Z}(\mathbf{m})$
Front bumper	1.93	0	0.51
Rear bumper	-1.93	0	0.51
Right mirror	0.43	-0.84	1.01
Left mirror	0.43	0.84	1.01
Rearview mirror	0.32	0	1.27
Hood center	1.44	0	1.01
Roof center	0	0	1.57

## See Also

Simulation 3D Scene Configuration | Simulation 3D Vehicle | Simulation 3D Vehicle with Ground Following

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

## Muscle Car

Muscle car vehicle dimensions

## Description

Muscle Car is one of the vehicles that you can use within the 3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games. The following diagram provides the dimensions of this vehicle. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the vehicle in the vehicle coordinate system. The origin is on the ground, at the geometric center of the vehicle. For more detailed views of these diagrams, see the Dimensions section.


To add this type of vehicle to the 3D simulation environment:
1 Add a Simulation 3D Vehicle or Simulation 3D Vehicle with Ground Following block to your Simulink model.
2 In the block, set the Type parameter to Muscle car.
Dimensions
Top-down view - Vehicle width dimensions
diagram


Side view - Vehicle length, front overhang, and rear overhang dimensions
diagram


Front view - Tire width and front axle dimensions
diagram


Rear view - Vehicle height and rear axle dimensions
diagram


## Sensor Mounting Locations

In the 3D simulation sensor blocks, use the Mounting location parameter to mount sensors at predefined locations on the vehicle. The table shows the $X, Y$, and $Z$ positions of the mounting locations relative to the vehicle origin. These locations are in the vehicle coordinate system, where:

- The $X$-axis points forward from the vehicle.
- The $Y$-axis points to the left of the vehicle, as viewed when facing forward.
- The $Z$-axis points up from the ground.

Muscle Car - Sensor Locations Relative to Vehicle Origin

Mounting Location	$\mathbf{X}(\mathbf{m})$	$\mathbf{Y}(\mathbf{m})$	$\mathbf{Z}(\mathbf{m})$
Front bumper	2.47	0	0.45
Rear bumper	-2.47	0	0.45
Right mirror	0.43	-1.08	1.01
Left mirror	0.43	1.08	1.01
Rearview mirror	0.32	0	1.20
Hood center	1.28	0	1.14
Roof center	-0.25	0	1.58

## See Also

Simulation 3D Scene Configuration | Simulation 3D Vehicle | Simulation 3D Vehicle with Ground Following

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

## Sedan

Sedan vehicle dimensions

## Description

Sedan is one of the vehicles that you can use within the 3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games. The diagram provides the dimensions of this vehicle. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the vehicle in the vehicle coordinate system. The origin is on the ground, at the geometric center of the vehicle. For more detailed views of these diagrams, see the Dimensions section.


To add this type of vehicle to the 3D simulation environment:
1 Add a Simulation 3D Vehicle or Simulation 3D Vehicle with Ground Following block to your Simulink model.
2 In the block, set the Type parameter to Sedan.

## Dimensions

Top-down view - Vehicle width dimensions
diagram


Side view - Vehicle length, front overhang, and rear overhang dimensions
diagram


Front view - Tire width and front axle dimensions
diagram


Rear view - Vehicle height and rear axle dimensions
diagram


## Sensor Mounting Locations

In the 3D simulation sensor blocks, use the Mounting location parameter to mount sensors at predefined locations on the vehicle. The table shows the $X, Y$, and $Z$ positions of the mounting locations relative to the vehicle origin. These locations are in the vehicle coordinate system, where:

- The $X$-axis points forward from the vehicle.
- The $Y$-axis points to the left of the vehicle, as viewed when facing forward.
- The $Z$-axis points up from the ground.


## Sedan - Sensor Locations Relative to Vehicle Origin

Mounting Location	$\mathbf{X}(\mathbf{m})$	$\mathbf{Y}(\mathbf{m})$	$\mathbf{Z}(\mathbf{m})$
Front bumper	2.42	0	0.51
Rear bumper	-2.42	0	0.51
Right mirror	0.59	-0.94	1.09
Left mirror	0.59	0.94	1.09
Rearview mirror	0.43	0	1.31
Hood center	1.46	0	1.11
Roof center	-0.45	0	1.69

## See Also

Simulation 3D Scene Configuration | Simulation 3D Vehicle | Simulation 3D Vehicle with Ground Following

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

## Sport Utility Vehicle

Sport utility vehicle dimensions

## Description

Sport Utility Vehicle is one of the vehicles that you can use within the 3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games. The following diagram provides the dimensions of this vehicle. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the vehicle in the vehicle coordinate system. The origin is on the ground, at the geometric center of the vehicle. For more detailed views of these diagrams, see the Dimensions section.


To add this type of vehicle to the 3D simulation environment:
1 Add a Simulation 3D Vehicle or Simulation 3D Vehicle with Ground Following block to your Simulink model.
2 In the block, set the Type parameter to Sport utility vehicle.

## Dimensions

Top-down view - Vehicle width dimensions
diagram


Side view - Vehicle length, front overhang, and rear overhang dimensions
diagram


Front view - Tire width and front axle dimensions
diagram


Rear view - Vehicle height and rear axle dimensions
diagram


## Sensor Mounting Locations

In the 3D simulation sensor blocks, use the Mounting location parameter to mount sensors at predefined locations on the vehicle. The table shows the $X, Y$, and $Z$ positions of the mounting locations relative to the vehicle origin. These locations are in the vehicle coordinate system, where:

- The $X$-axis points forward from the vehicle.
- The $Y$-axis points to the left of the vehicle, as viewed when facing forward.
- The $Z$-axis points up from the ground.

Sport Utility Vehicle - Sensor Locations Relative to Vehicle Origin

Mounting Location	$\mathbf{X}(\mathbf{m})$	$\mathbf{Y}(\mathbf{m})$	$\mathbf{Z}(\mathbf{m})$
Front bumper	2.42	0	0.51
Rear bumper	-2.42	0	0.51
Right mirror	0.60	-1	1.35
Left mirror	0.60	1	1.35
Rearview mirror	0.39	0	1.55
Hood center	1.58	0	1.39
Roof center	-0.56	0	2

## See Also

Simulation 3D Scene Configuration | Simulation 3D Vehicle | Simulation 3D Vehicle with Ground Following

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

## Small Pickup Truck

Small pickup truck vehicle dimensions

## Description

Small Pickup Truck is one of the vehicles that you can use within the 3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games. The following diagram provides the dimensions of this vehicle. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the vehicle in the vehicle coordinate system. The origin is on the ground, at the geometric center of the vehicle. For more detailed views of these diagrams, see the Dimensions section.


To add this type of vehicle to the 3D simulation environment:
1 Add a Simulation 3D Vehicle or Simulation 3D Vehicle with Ground Following block to your Simulink model.
2 In the block, set the Type parameter to Small pickup truck.

## Dimensions

Top-down view - Vehicle width dimensions
diagram


Side view - Vehicle length, front overhang, and rear overhang dimensions diagram


Front view - Tire width and front axle dimensions
diagram


Rear view - Vehicle height and rear axle dimensions
diagram


## Sensor Mounting Locations

In the 3D simulation sensor blocks, use the Mounting location parameter to mount sensors at predefined locations on the vehicle. The table shows the $X, Y$, and $Z$ positions of the mounting locations relative to the vehicle origin. These locations are in the vehicle coordinate system, where:

- The $X$-axis points forward from the vehicle.
- The $Y$-axis points to the left of the vehicle, as viewed when facing forward.
- The $Z$-axis points up from the ground.

Small Pickup Truck - Sensor Locations Relative to Vehicle Origin

Mounting Location	$\mathbf{X ( m )}$	$\mathbf{Y}(\mathbf{m})$	$\mathbf{Z}(\mathbf{m})$
Front bumper	3.07	0	0.51
Rear bumper	-3.07	0	0.51
Right mirror	1.10	-1.13	1.52
Left mirror	1.10	1.13	1.52
Rearview mirror	0.85	0	1.77
Hood center	2.22	0	1.59
Roof center	0	0	2.27

## See Also

Simulation 3D Scene Configuration | Simulation 3D Vehicle | Simulation 3D Vehicle with Ground Following

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

## Box Truck

Box truck vehicle dimensions

## Description

Box truck is one of the vehicles that you can use within the 3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games. The following diagram provides the dimensions of this vehicle. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the vehicle in the vehicle coordinate system. The origin is on the ground, at the geometric center of the vehicle. For more detailed views of these diagrams, see the Dimensions section.

To add this type of vehicle to the 3D simulation environment:
1 Add a Simulation 3D Vehicle or Simulation 3D Vehicle with Ground Following block to your Simulink model.
2 In the block, set the Type parameter to Box truck.

## Dimensions

Top-down view - Vehicle width dimensions
diagram


Side view - Vehicle length, front overhang, and rear overhang dimensions
diagram


Front view - Tire width and front axle dimensions
diagram


Rear view - Vehicle height and rear axle dimensions
diagram


## Sensor Mounting Locations

In the 3D simulation sensor blocks, use the Mounting location parameter to mount sensors at predefined locations on the vehicle. The table shows the $X, Y$, and $Z$ positions of the mounting locations relative to the vehicle origin. These locations are in the vehicle coordinate system, where:

- The $X$-axis points forward from the vehicle.
- The $Y$-axis points to the left of the vehicle, as viewed when facing forward.
- The $Z$-axis points up from the ground.


## Box Truck - Sensor Locations Relative to Vehicle Origin

Mounting Location	$\mathbf{X ( m )}$	$\mathbf{Y}(\mathbf{m})$	$\mathbf{Z}(\mathbf{m})$
Front bumper	5.10	0	0.60
Rear bumper	-5	0	0.60
Right mirror	2.90	1.60	2.10
Left mirror	2.90	-1.60	2.10
Rearview mirror	2.60	0.20	2.60
Hood center	3.80	0	2.10
Roof center	1.30	0	4.20

## See Also

Simulation 3D Scene Configuration | Simulation 3D Vehicle | Simulation 3D Vehicle with Ground Following

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

## Formula Student Vehicle

Formula student vehicle dimensions

## Description

Formula Student Vehicle is one of the vehicles that you can use within the 3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games. The Dimensions section provides the dimensions of this vehicle. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the vehicle in the vehicle coordinate system. The origin is on the ground, at the geometric center of the vehicle.

To add this type of vehicle to the 3D simulation environment:
1 Add a Simulation 3D Vehicle or Simulation 3D Vehicle with Ground Following block to your Simulink model.
2 In the block, set the Type parameter to Formula student vehicle.

## Dimensions

Top-down view - Top-down view of vehicle diagram


Side view - Vehicle length, front overhang, and rear overhang dimensions diagram


Front view - Tire width and front axle dimensions
diagram


Rear view - Vehicle height and rear axle dimensions diagram


## Sensor Mounting Locations

Formula Student Vehicle - Sensor Locations Relative to Vehicle Origin

Mounting   Location	$\mathbf{X ( m )}$	$\mathbf{Y ( m )}$	$\mathbf{Z}(\mathbf{m})$	Roll   (radian)	Pitch   (radian)	Yaw   (radian)
Front   bumper	1.3	0	0.3	0	0	0
Rear   bumper	-1.4	0	0.3	0	0	pi
Roll bar   center	-0.6	0	1.05	0	0	0

## See Also

Simulation 3D Scene Configuration | Simulation 3D Vehicle | Simulation 3D Vehicle with Ground Following

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

## Cab-Over Tractor

Cab-over tractor dimensions

## Description

Cab-Over Tractor is one of the tractors that you can use in the 3D simulation environment. The environment is rendered using the Unreal Engine from Epic Games. The Dimensions section provides the dimensions of this tractor. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the tractor in the vehicle coordinate system. The origin is on the ground plane, at the normal projection of the mid-point of the rear axles along the vehicle centerline.

To add this type of tractor to the 3D simulation environment:
1 Add a Simulation 3D Tractor block to your Simulink model.
2 In the block, set the Type parameter to Cab-over tractor.

## Dimensions

Top-down view - Tractor width dimensions
diagram


Side view - Tractor length, front overhang, and rear overhang dimensions
diagram


Front view - Tire width and front axle dimensions
diagram


## See Also

Simulation 3D Tractor | Simulation 3D Scene Configuration

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

## Conventional Tractor

Conventional tractor dimensions

## Description

Conventional Tractor is one of the tractors that you can use in the 3D simulation environment. The environment is rendered using the Unreal Engine from Epic Games. The Dimensions section provides the dimensions of this tractor. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the tractor in the vehicle coordinate system. The origin is on the ground plane, at the normal projection of the mid-point of the rear axles along the vehicle centerline.

To add this type of tractor to the 3D simulation environment:
1 Add a Simulation 3D Tractor block to your Simulink model.
2 In the block, set the Type parameter to Conventional tractor.
Dimensions
Top-down view - Tractor width dimensions
diagram


Side view - Tractor length, front overhang, and rear overhang dimensions diagram


Front view - Tire width and front axle dimensions
diagram


## See Also

Simulation 3D Tractor | Simulation 3D Scene Configuration

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

## One-Axle Trailer

One-axle trailer dimensions

## Description

One-Axle Trailer is one of the trailers that you can use in the 3D simulation environment. The environment is rendered using the Unreal Engine from Epic Games. The Dimensions section provides the dimensions of this trailer. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the trailer in the vehicle coordinate system. The origin is on the ground plane, at the normal projection of the hitch.

To add this type of trailer to the 3D simulation environment:
1 Add a Simulation 3D Trailer block to your Simulink model.
2 In the block, set the Type parameter to One-axle trailer.

## Dimensions

Top-down view - Top-down view of trailer
diagram


Side view - Trailer length, front overhang, and rear overhang dimensions
diagram


Front view - Tire width and front axle dimensions
diagram


Back view - Rear axle dimensions
diagram


## See Also

Simulation 3D Trailer | Simulation 3D Scene Configuration

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

## Two-Axle Trailer

Two-axle trailer dimensions

## Description

Two-Axle Trailer is one of the trailers that you can use in the 3D simulation environment. The environment is rendered using the Unreal Engine from Epic Games. The Dimensions section provides the dimensions of this trailer. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the trailer in the vehicle coordinate system. The origin is on the ground plane, at the normal projection of the hitch.

To add this type of trailer to the 3D simulation environment:
1 Add a Simulation 3D Trailer block to your Simulink model.
2 In the block, set the Type parameter to Two-axle trailer.

## Dimensions

Top-down view - Trailer width dimensions
diagram

Side view - Trailer length, front overhang, and rear overhang dimensions diagram


Back view - Tire width and front axle dimensions
diagram


## See Also

Simulation 3D Trailer | Simulation 3D Scene Configuration

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

## Three-Axle Trailer

Three-axle trailer dimensions

## Description

Three-Axle Trailer is one of the trailers that you can use in the 3D simulation environment. The environment is rendered using the Unreal Engine from Epic Games. The Dimensions section provides the dimensions of this trailer. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the trailer in the vehicle coordinate system. The origin is on the ground plane, at the normal projection of the hitch.

To add this type of trailer to the 3D simulation environment:
1 Add a Simulation 3D Trailer block to your Simulink model.
2 In the block, set the Type parameter to Three-axle trailer.

## Dimensions

Top-down view - Trailer width dimensions
diagram


Side view - Trailer length, front overhang, and rear overhang dimensions diagram


Front view - Tire width and front axle dimensions
diagram


## See Also

Simulation 3D Trailer | Simulation 3D Scene Configuration

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

## One-Axle Dolly

One-axle dolly dimensions

## Description

The One-Axle Dolly is one of the dollies that you can use in the 3D simulation environment. The environment is rendered using the Unreal Engine from Epic Games. The Dimensions section provides the dimensions of this dolly. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the dolly in the vehicle coordinate system. The origin is on the ground plane, at the projection of the hitch socket.

To add this type of dolly to the 3D simulation environment:
1 Add a Simulation 3D Dolly block to your Simulink model.
2 In the block, set the Type parameter to One-axle dolly.

## Dimensions

Top-down view - Dolly width
diagram


Side view - Dolly length and height
diagram


Front view - Dolly width
diagram


## See Also

Simulation 3D Trailer | Simulation 3D Scene Configuration

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

## Two-Axle Dolly

Two-axle dolly dimensions

## Description

The Two-Axle Dolly is one of the dollies that you can use in the 3D simulation environment. The environment is rendered using the Unreal Engine from Epic Games. The Dimensions section provides the dimensions of this dolly. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the dolly in the vehicle coordinate system. The origin is on the ground plane, at the projection of the hitch socket.

To add this type of dolly to the 3D simulation environment:
1 Add a Simulation 3D Dolly block to your Simulink model.
2 In the block, set the Type parameter to Two-axle dolly.

## Dimensions

Top-down view - Dolly and tire width diagram


Side view - Dolly length and height
diagram


Front view - Dolly width
diagram


## See Also

Simulation 3D Trailer | Simulation 3D Scene Configuration

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

## Three-Axle Dolly

Three-axle dolly dimensions

## Description

The Three-Axle Dolly is one of the dollies that you can use in the 3D simulation environment. The environment is rendered using the Unreal Engine from Epic Games. The Dimensions section provides the dimensions of this dolly. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the dolly in the vehicle coordinate system. The origin is on the ground plane, at the projection of the hitch socket.

To add this type of dolly to the 3D simulation environment:
1 Add a Simulation 3D Dolly block to your Simulink model.
2 In the block, set the Type parameter to Three-axle dolly.

## Dimensions

Top-down view - Dolly and tire width
diagram


Side view - Dolly length and height
diagram


Front view - Dolly width
diagram


## See Also

Simulation 3D Trailer | Simulation 3D Scene Configuration

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

## Scooter

Scooter dimensions

## Description

The Scooter is one of the motorcycles that you can use in the 3D simulation environment. The environment is rendered using the Unreal Engine from Epic Games. The Dimensions section provides the dimensions of this scooter. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the scooter in the vehicle coordinate system. The origin is on the ground plane, at the projection of the hitch socket.

To add this type of scooter to the 3D simulation environment:
1 Add a Simulation 3D Motorcycle block to your Simulink model.
2 In the block, set the Type parameter to Scooter.

## Dimensions

Side view - Scooter length and detailed dimensions diagram


Front view - Scooter width and height
diagram


## See Also

Simulation 3D Motorcycle | Simulation 3D Scene Configuration

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

## Motor Bike

Motor bike dimensions

## Description

The Motor bike is one of the motorcycles that you can use in the 3D simulation environment. The environment is rendered using the Unreal Engine from Epic Games. The Dimensions section provides the dimensions of this dolly. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the dolly in the vehicle coordinate system. The origin is on the ground plane, at the projection of the hitch socket.

To add this type of dolly to the 3D simulation environment:
1 Add a Simulation 3D Motorcycle block to your Simulink model.
2 In the block, set the Type parameter to Motor bike.

## Dimensions

Side view - Motor bike length and detailed dimensions
diagram


Front view - Motor bike width and height
diagram


## See Also

Simulation 3D Motorcycle | Simulation 3D Scene Configuration

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

## Sports Bike

Sports bike dimensions

## Description

The Sports bike is one of the motorcycles that you can use in the 3D simulation environment. The environment is rendered using the Unreal Engine from Epic Games. The Dimensions section provides the dimensions of this dolly. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the dolly in the vehicle coordinate system. The origin is on the ground plane, at the projection of the hitch socket.

To add this type of dolly to the 3D simulation environment:
1 Add a Simulation 3D Motorcycle block to your Simulink model.
2 In the block, set the Type parameter to Sports bike.

## Dimensions

Side view - Sports bike length and detailed dimensions
diagram


Front view - Sports bike width and height
diagram


## See Also

Simulation 3D Motorcycle | Simulation 3D Scene Configuration

## Topics

"Coordinate Systems in Vehicle Dynamics Blockset"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

## Blocks in Reference Applications

## 3D Engine

Configure scenes in reference applications

## Description

The 3D Engine block implements the 3D simulation environment. Vehicle Dynamics Blockset integrates the 3D simulation environment with Simulink so that you can query the world around the vehicle for virtually testing perception, control, and planning algorithms.

To position the vehicle in the scene:
1 Select the position initialization method:

- Recommended for scene - Set the initial vehicle position to values recommended for the scene
- User-specified - Set your own initial vehicle position

2 Click Update the model workspaces with the initial values to overwrite the initial vehicle position in the model workspaces with the applied values.

## Ports

Input
VehFdbk - Vehicle feedback
Bus
Bus containing vehicle feedback signals, including velocity, acceleration, and steering wheel torque.

## Parameters

## 3D Engine

3D Engine - Enable 3D visualization
off (default) | on
Enable 3D visualization.

## Scene - 3D scene

Straight road|Curved road|Parking lot|Double lane change|Open surface|US city block|US highway|Virtual Mcity|Large parking lot

Specify the name of the 3D scene.

## Engine frame rate, dt3D - Graphics

. 03 (default)
Graphics frame rate, in s. The graphics frame rate is the inverse of the sample time.
Recommended for scene - Initial vehicle position
on (default) | off

Use vehicle positions that are recommended for the scene.
User-specified - Initial vehicle position
off (default) | on
Specify to set your own initial vehicle position values.
Initial longitudinal position, X_o - Initial longitudinal position
off (default) | on
Initial vehicle CG position along the earth-fixed $X$-axis, in m.
Initial lateral position, Y_o - Initial lateral position
off (default) | on
Initial vehicle CG position along the earth-fixed $Y$-axis, in $m$.
Initial vertical position, Z_o - Initial vertical position
off (default) | on
Initial vehicle CG position along the earth-fixed $Z$-axis, in m.
Initial roll angle, phi_o - Roll
off (default) | on
Rotation of the vehicle-fixed frame about the earth-fixed $X$-axis (roll), in rad.
Initial pitch angle, theta_o - Pitch
off (default) | on
Rotation of the vehicle-fixed frame about the earth-fixed $Y$-axis (pitch), in rad.
Initial yaw angle, psi_o - Yaw
off (default) | on
Rotation of the vehicle-fixed frame about the earth-fixed $Z$-axis (yaw), in rad.

## Version History

Introduced in R2019a

See Also<br>Curved Road | Double Lane Change | Open Surface | Large Parking Lot | Parking Lot | Straight Road | US City Block | US Highway | Virtual Mcity<br>Topics<br>"Double-Lane Change Maneuver"<br>"Slowly Increasing Steering Maneuver"<br>"Swept-Sine Steering Maneuver"<br>"How 3D Simulation for Vehicle Dynamics Blockset Works"<br>"Unreal Engine Simulation Environment Requirements and Limitations"

## External Websites

Unreal Engine

## Bicycle Model

Implement a single track 3DOF rigid vehicle body to calculate longitudinal, lateral, and yaw motion

## Description

The Bicycle Model block implements a rigid two-axle single track vehicle body model to calculate longitudinal, lateral, and yaw motion. The block accounts for body mass, aerodynamic drag, and weight distribution between the axles due to acceleration and steering. There are two types of Bicycle Model blocks.


To calculate the normal forces on the front and rear axles, the block uses rigid-body vehicle motion, suspension system forces, and wind and drag forces. The block resolves the force and moment components on the rigid vehicle body frame.

## Ports

Input
WhIAngF - Wheel angle
scalar
Front wheel angle, in rad.
FxF - Force Input: Total longitudinal force on the front axle scalar

Longitudinal force on the front axle, $F x_{F}$, along vehicle-fixed $x$-axis, in N .

Bicycle Model - Force Input block input port.
FxR - Force Input: Total longitudinal force on the rear axle
scalar
Longitudinal force on the rear axle, $F x_{R}$, along vehicle-fixed $x$-axis, in N .
Bicycle Model - Force Input block input port.
xdotin - Velocity Input: Longitudinal velocity
scalar
Vehicle CG velocity along vehicle-fixed $x$-axis, in $m / s$.
Bicycle Model - Velocity Input block input port.

## Output

Info - Bus signal
bus
Bus signal containing these block values.

Signal				Description	Value	Units
InertFrm	Cg	Disp	X	Vehicle CG displacement along the earth-fixed $X$ axis	Computed	m
			Y	Vehicle CG displacement along the earth-fixed $Y$ axis	Computed	m
			Z	Vehicle CG displacement along the earth-fixed $Z$ axis	0	m
		Vel	Xdot	Vehicle CG velocity along the earth-fixed $X$-axis	Computed	m/s
			Ydot	Vehicle CG velocity along the earth-fixed $Y$-axis	Computed	m/s
			Zdot	Vehicle CG velocity along the earth-fixed $Z$-axis	0	m/s
		Ang	phi	Rotation of the vehiclefixed frame about the earth-fixed $X$-axis (roll)	0	rad
			theta	Rotation of the vehiclefixed frame about the earth-fixed $Y$-axis (pitch)	0	rad
			psi	Rotation of the vehiclefixed frame about the earth-fixed $Z$-axis (yaw)	Computed	rad


Signal			Description	Value	Units
FrntAxl	Disp	X	Front wheel displacement along the earth-fixed $X$ axis	Computed	m
		Y	Front wheel displacement along the earth-fixed $Y$ axis	Computed	m
		Z	Front wheel displacement along the earth-fixed Zaxis	0	m
	Vel	Xdot	Front wheel velocity along the earth-fixed $X$-axis	Computed	$\mathrm{m} / \mathrm{s}$
		Ydot	Front wheel velocity along the earth-fixed $Y$-axis	Computed	m/s
		Zdot	Front wheel velocity along the earth-fixed $Z$-axis	0	m/s
RearAxl	Disp	X	Rear wheel displacement along the earth-fixed $X$ axis	Computed	m
		Y	Rear wheel displacement along the earth-fixed $Y$ axis	Computed	m
		Z	Rear wheel displacement along the earth-fixed Zaxis	0	m
	Vel	Xdot	Rear wheel velocity along the earth-fixed $X$-axis	Computed	m/s
		Ydot	Rear wheel velocity along the earth-fixed $Y$-axis	Computed	m/s
		Zdot	Rear wheel velocity along the earth-fixed $Z$-axis	0	m/s
Hitch	Disp	X	Hitch offset from axle plane along the earthfixed $X$-axis	Computed	m
		Y	Hitch offset from center plane along the earthfixed $Y$-axis	Computed	m
		Z	Hitch offset from axle plane along the earthfixed $Z$-axis	Computed	m
	Vel	Xdot	Hitch offset velocity from axle plane along the earth-fixed $X$-axis	Computed	m


Signal				Description	Value	Units
			Ydot	Hitch offset velocity from center plane along the earth-fixed $Y$-axis	Computed	m
			Zdot	Hitch offset velocity from axle plane along the earth-fixed Z-axis	Computed	m
	Geom	Disp	X	Vehicle chassis offset from axle plane along the earth-fixed $X$-axis	Computed	m
			Y	Vehicle chassis offset from center plane along the earth-fixed $Y$-axis	Computed	m
			Z	Vehicle chassis offset from axle plane along the earth-fixed $Z$-axis	Computed	m
		Vel	Xdot	Vehicle chassis offset velocity along the earthfixed $X$-axis	Computed	m/s
			Ydot	Vehicle chassis offset velocity along the earthfixed $Y$-axis	Computed	m/s
			Zdot	Vehicle chassis offset velocity along the earthfixed Z-axis	Computed	$\mathrm{m} / \mathrm{s}$
BdyFrm	Cg	Vel	xdot	Vehicle CG velocity along the vehicle-fixed $x$-axis	Computed	m/s
			ydot	Vehicle CG velocity along the vehicle-fixed $y$-axis	Computed	m/s
			zdot	Vehicle CG velocity along the vehicle-fixed $z$-axis	0	m/s
		Ang	Beta	Body slip angle, $\beta$ $\beta=\frac{V_{y}}{V_{x}}$	Computed	rad
		AngVel	p	Vehicle angular velocity about the vehicle-fixed $x$ axis (roll rate)	0	$\mathrm{rad} / \mathrm{s}$
			q	Vehicle angular velocity about the vehicle-fixed $y$ axis (pitch rate)	0	rad/s
			r	Vehicle angular velocity about the vehicle-fixed $z$ axis (yaw rate)	Computed	rad/s



Signal				Description	Value	Units
				External force on vehicle CG along the vehicle-fixed $z$-axis	0	N
	Hitch	Fx		Hitch force applied to body at the hitch location along the vehicle-fixed $x$ axis	Input	N
		Fy		Hitch force applied to body at the hitch location along the vehicle-fixed $y$ axis	Input	N
		Fz		Hitch force applied to body at the hitch location along the vehicle-fixed $z$ axis	Input	N
	FrntAxl	Fx		Longitudinal force on front wheel, along the vehicle-fixed $x$-axis	Computed	N
		Fy		Lateral force on front wheel along the vehiclefixed $y$-axis	Computed	N
		Fz		Normal force on front wheel, along the vehiclefixed $z$-axis	Computed	N
	RearAxl	Fx		Longitudinal force on rear wheel, along the vehiclefixed $x$-axis	Computed	N
		Fy		Lateral force on rear wheel along the vehiclefixed $y$-axis	Computed	N
		Fz		Normal force on rear wheel, along the vehiclefixed $z$-axis	Computed	N
	Tires	FrntTire	Fx	Front tire force, along the vehicle-fixed $x$-axis	Computed	N
			Fy	Front tire force, along the vehicle-fixed $y$-axis	Computed	N
			Fz	Front tire force, along the vehicle-fixed $z$-axis	Computed	N
		$\begin{aligned} & \text { RearTir } \\ & \mathrm{e} \end{aligned}$	$\begin{aligned} & \text { FxF } \\ & \mathrm{x} \end{aligned}$	Rear tire force, along the vehicle-fixed $x$-axis	Computed	N
			Fy	Rear tire force, along the vehicle-fixed $y$-axis	Computed	N


Signal				Description	Value	Units
					Rear tire force, along the   vehicle-fixed $z$-axis	Computed


Signal			Description	Value	Units
		Mz	External moment on vehicle CG about the vehicle-fixed $z$-axis	0	$\mathrm{N} \cdot \mathrm{m}$
	Hitch	Mx	Hitch moment at the hitch location about vehiclefixed $x$-axis	0	$\mathrm{N} \cdot \mathrm{m}$
		My	Hitch moment at the hitch location about vehiclefixed $y$-axis	Computed	$\mathrm{N} \cdot \mathrm{m}$
		Mz	Hitch moment at the hitch location about vehiclefixed $z$-axis	0	$\mathrm{N} \cdot \mathrm{m}$
FrntAxl	Disp	x	Front wheel displacement along the vehicle-fixed $x$ axis	Computed	m
		y	Front wheel displacement along the vehicle-fixed $y$ axis	Computed	m
		z	Front wheel displacement along the vehicle-fixed $z$ axis	Computed	m
	Vel	xdot	Front wheel velocity along the vehicle-fixed $x$-axis	Computed	m/s
		ydot	Front wheel velocity along the vehicle-fixed $y$-axis	Computed	m/s
		zdot	Front wheel velocity along the vehicle-fixed $z$-axis	0	m/s
	Steer	WhlangFL	Front left wheel steering angle	Computed	rad
		WhlangFR	Front right wheel steering angle	Computed	rad
RearAxl	Disp	x	Rear wheel displacement along the vehicle-fixed $x$ axis	Computed	m
		y	Rear wheel displacement along the vehicle-fixed $y$ axis	Computed	m
		z	Rear wheel displacement along the vehicle-fixed $z$ axis	Computed	m
	Vel	xdot	Rear wheel velocity along the vehicle-fixed $x$-axis	Computed	m/s
		ydot	Rear wheel velocity along the vehicle-fixed $y$-axis	Computed	m/s



| Signal | Ang | Bet <br> a | Body slip angle, $\beta$ <br> $\beta=\frac{V_{y}}{V_{x}}$ | Value | Units |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | Computed | rad |  |


Signal			Description	Value	Units
PwrInfo	PwrTrnsfrd	PwrFxExt	Externally applied longitudinal force power	Comp uted	W
		PwrFyExt	Externally applied lateral force power	Comp uted	W
		PwrMzExt	Externally applied roll moment power	Comp uted	W
		PwrFwFx	Longitudinal force applied at the front axle power	Comp uted	W
		PwrFwFy	Lateral force applied at the front axle power	Comp uted	W
		PwrFwRx	Longitudinal force applied at the rear axle power	Comp uted	W
		PwrFwRy	Lateral force applied at the rear axle power	Comp uted	W
	PwrNotTrnsfr d	PwrFxDrag	Longitudinal drag force power	Comp uted	W
		PwrFyDrag	Lateral drag force power	Comp uted	W
		PwrMzDrag	Drag pitch moment power	Comp uted	W
	PwrStored	PwrStoredGrvty	Rate change in gravitational potential energy	Comp uted	W
		PwrStoredxdot	Rate of change of longitudinal kinetic energy	Comp uted	W
		PwrStoredydot	Rate of change of lateral kinetic energy	Comp uted	W
		PwrStoredr	Rate of change of rotational yaw kinetic energy	Comp uted	W

xdot - Vehicle body longitudinal velocity

## scalar

Vehicle CG velocity along vehicle-fixed x -axis, in $\mathrm{m} / \mathrm{s}$.
ydot - Vehicle body lateral velocity
scalar
Vehicle CG velocity along vehicle-fixed y -axis, in $\mathrm{m} / \mathrm{s}$.
psi - Yaw
scalar
Rotation of the vehicle-fixed frame about earth-fixed Z-axis (yaw), in rad..
$\mathbf{r}$ - Yaw rate
scalar
Vehicle angular velocity, $r$, about the vehicle-fixed $z$-axis (yaw rate), in rad/s.

## Parameters

## Longitudinal

Number of wheels on front axle, NF - Front wheel count
2 (default) | scalar
Number of wheels on front axle, $N_{F}$. The value is dimensionless.
Number of wheels on rear axle, NR - Rear wheel count
2 (default) | scalar
Number of wheels on rear axle, $N_{R}$. The value is dimensionless.
Vehicle mass, m - Vehicle mass
2000 (default) | scalar
Vehicle mass, $m$, in kg .
Longitudinal distance from center of mass to front axle, a-Front axle distance
1.4 (default) | scalar

Horizontal distance $a$ from the vehicle CG to the front wheel axle, in $m$.
Longitudinal distance from center of mass to rear $\mathbf{a x l e}, \mathbf{b}$ - Rear axle distance
1.6 (default) | scalar

Horizontal distance $b$ from the vehicle CG to the rear wheel axle, in $m$.
Vertical distance from center of mass to axle plane, $\mathbf{h}$ - Height
0.35 (default) | scalar

Height of vehicle CG above the axles, $h$, in $m$.
Longitudinal distance from center of mass to hitch, dh - Distance from CM to hitch 1 (default) | scalar

Longitudinal distance from center of mass to hitch, $d h$, in $m$.

## Dependencies

To enable this parameter, on the Input signals pane, select Hitch forces or Hitch moments.
Vertical distance from hitch to axle plane, $\mathbf{h h}$ - Distance from hitch to axle plane 0.2 (default) | scalar

Vertical distance from hitch to axle plane, $h h$, in $m$.

## Dependencies

To enable this parameter, on the Input signals pane, select Hitch forces or Hitch moments.
Initial inertial frame longitudinal position, X_o - Position
0 (default) | scalar
Initial vehicle CG displacement along earth-fixed $X$-axis, in $m$.
Initial longitudinal velocity, xdot_o - Velocity
0 (default) | scalar
Initial vehicle CG velocity along vehicle-fixed $x$-axis, in $m / s$.

## Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter, set Axle forces to one of these options:

- External longitudinal forces
- External forces


## Lateral

Front tire corner stiffness, Cy_f - Stiffness
12e3 (default) | scalar
Front tire corner stiffness, $C y_{f}$, in $\mathrm{N} / \mathrm{rad}$.

## Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter:

1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces


## 2 Clear Mapped corner stiffness.

## Rear tire corner stiffness, Cy_r - Stiffness

11e3 (default) | scalar
Rear tire corner stiffness, $C y_{r}$, in N/rad.

## Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter:

1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces


## 2 Clear Mapped corner stiffness.

Initial inertial frame lateral displacement, Y_o - Position
0 (default) | scalar
Initial vehicle CG displacement along earth-fixed $Y$-axis, in $m$.
Initial lateral velocity, ydot_o - Velocity
0 (default) | scalar
Initial vehicle CG velocity along vehicle-fixed $y$-axis, in $\mathrm{m} / \mathrm{s}$.

## Yaw

Yaw polar inertia, Izz - Inertia
4000 (default) | scalar
Yaw polar inertia, in $\mathrm{kg}^{*} \mathrm{~m}^{\wedge} 2$.
Initial yaw angle, psi_o - Psi rotation
0 (default) | scalar
Rotation of the vehicle-fixed frame about earth-fixed Z-axis (yaw), in rad.
Initial yaw rate, r_o - Yaw rate
0 (default) | scalar
Vehicle angular velocity about the vehicle-fixed $z$-axis (yaw rate), in rad/s.

## Aerodynamic

Longitudinal drag area, Af - Effective vehicle cross-sectional area
2 (default) | scalar
Effective vehicle cross-sectional area, $A_{f}$, to calculate the aerodynamic drag force on the vehicle, in $\mathrm{m}^{2}$.

Longitudinal drag coefficient, Cd - Air drag coefficient
. 3 (default) | scalar
Air drag coefficient, $C_{d}$. The value is dimensionless.
Longitudinal lift coefficient, CI - Air lift coefficient
. 1 (default) | scalar
Air lift coefficient, $C_{l}$. The value is dimensionless.
Longitudinal drag pitch moment, Cpm - Pitch drag
. 1 (default) | scalar
Longitudinal drag pitch moment coefficient, $C_{p m}$. The value is dimensionless.
Relative wind angle vector, beta_w - Wind angle
[0:0.01:0.3] (default) | vector
Relative wind angle vector, $\beta_{w}$, in rad.

Side force coefficient vector, Cs - Side force coefficient
[0:0.03:0.9] (default)| vector
Side force coefficient vector coefficient, $C_{s}$. The value is dimensionless.
Yaw moment coefficient vector, Cym - Yaw moment drag
[0:0.01:0.3] (default) | vector
Yaw moment coefficient vector coefficient, $C_{y m}$. The value is dimensionless.

## Environment

Absolute air pressure, Pabs - Pressure
101325 (default) | scalar | scalar
Environmental absolute pressure, $P_{a b s}$, in Pa.
Air temperature, Tair - Temperature
273 (default) | scalar
Environmental absolute temperature, $T$, in K .

## Dependencies

To enable this parameter, clear Air temperature.
Gravitational acceleration, g-Gravity
9.81 (default) | scalar

Gravitational acceleration, $g$, in $\mathrm{m} / \mathrm{s}^{\wedge} 2$.
Nominal friction scaling factor, $\mathbf{m u}$ - Friction scale factor
1 (default) | scalar
Nominal friction scale factor, $\mu$. The value is dimensionless.

## Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter:

1 Set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces


## 2 Clear External Friction.

Simulation
Longitudinal velocity tolerance, xdot_tol - Tolerance
. 01 (default) | scalar
Longitudinal velocity tolerance, in $\mathrm{m} / \mathrm{s}$.
Nominal normal force, Fznom - Normal force
5000 (default) | scalar

Nominal normal force, in N .

## Dependencies

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter, set Axle forces to one of these options:

- External longitudinal velocity
- External longitudinal forces

Geometric longitudinal offset from axle plane, longOff - Longitudinal offset 0 (default) | scalar

Vehicle chassis offset from axle plane along body-fixed $x$-axis, in $m$. When you use the 3D visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

Geometric lateral offset from center plane, latOff - Lateral offset
0 (default) | scalar
Vehicle chassis offset from center plane along body-fixed $y$-axis, in $m$. When you use the 3D visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

Geometric vertical offset from axle plane, vertOff - Vertical offset
0 (default) | scalar
Vehicle chassis offset from axle plane along body-fixed $z$-axis, in $m$. When you use the 3D visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

Wrap Euler angles, wrapAng - Selection
off (default) | on
Wrap the Euler angles to the interval [-pi, pi]. For vehicle maneuvers that might undergo vehicle yaw rotations that are outside of the interval, consider deselecting the parameter if you want to:

- Track the total vehicle yaw rotation.
- Avoid discontinuities in the vehicle state estimators.


## Version History

## Introduced in R2018a

## References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.

## Driver Commands

Configure driver

## Description

The Driver Commands block implements the driver model that the reference application uses to generate acceleration, braking, gear, and steering commands. By default, if you select the Reference Generator block parameter Use maneuver-specific driver, initial position, and scene, the reference application selects the driver for the maneuver that you specified.

Vehicle Command   Mode Setting	Implementation
Longitudinal Driver	Longitudinal Driver block - Longitudinal speed-tracking controller. Based   on reference and feedback velocities, the block generates normalized   acceleration and braking commands that can vary from 0 through 1. Use   the block to model the dynamic response of a driver or to generate the   commands necessary to track a longitudinal drive cycle.
Predictive Driver   (default)	Predictive Driver block - Controller that generates normalized steering,   acceleration, and braking commands to track longitudinal velocity and a   lateral reference displacement. The normalized commands can vary   between -1 to 1. The controller uses a single-track (bicycle) model for   optimal single-point preview control.
Open Loop	Implements an open-loop system so that you can configure the reference   application for constant or signal-based steering, acceleration, braking,   and gear command input.

## Ports

## Input

VehRef - Vehicle reference signals
Bus
Bus containing the vehicle reference signals, including longitudinal and lateral displacement, and steering.

VehFdbk - Vehicle feedback signals
Bus
Bus containing vehicle displacement feedback signals.

## Output

Driver - Command signals
Bus
Bus containing the commands, including steering, acceleration, braking, and gear commands.

## Parameters

Vehicle command mode - Enable 3D visualization
Predictive Driver (default)|Longitudinal Driver|Open Loop
Specify driver model.

## Version History

Introduced in R2019a

## See Also

Longitudinal Driver | Predictive Driver

## Reference Generator

Generate maneuver reference signals

## Description

The Reference Generator block sets the parameters that configure the maneuver and 3D simulation environment. By default, the block is set for the constant radius maneuver with the 3D simulation engine environment disabled.

## Model

Use the Maneuver parameter to specify the type of maneuver. After you select the maneuver, use the parameters to specify the maneuver settings. By default:

- Use maneuver-specific driver, initial position, and scene - Set to on
- Maneuver start time - Set to 3s
- Longitudinal velocity reference - Set to 30 s
- Longitudinal entrance velocity setpoint units - Set to mph

Maneuver Setting	Implementation			
Double Lane Change	"Double-Lane Change Maneuver"   - Vehicle width - Lane signals for the Visualization subsystem; used   for the left and right lane boundaries			
- Lateral reference data - Lateral reference trajectory as a function				
of the longitudinal distance				
- Distance after target speed to begin reference - Start the				
maneuver at specified distance after the vehicle reaches the target				
speed		$	$	"Slowly Increasing Steering Maneuver"
:---				
- Handwheel rate - Linear rate to increase steering wheel angle				
- Maximum handwheel angle - Maximum steering wheel angle				


Maneuver Setting	Implementation
Sine with Dwell	In the test, the vehicle:   - Accelerates until it hits a target velocity.   - Maintains the target velocity.   - Responds to a sinusoidal with dwell steering command.   - Steer frequency - Sinusoidal wave frequency   - Steer amplitude - Sinusoidal wave amplitude   - Dwell time - Dwell time
Constant Radius	"Constant Radius Maneuver"   - Radius value - Turn radius
Fishhook	In the test, the vehicle:   - Accelerates until it hits a target velocity.   - Maintains the target velocity.   - Responds to initial rapid steering input.   - Responds to steering overcorrection.   - Steer and countersteer speed - Steering rate   - Initial dwell time - Initial steer time   - Countersteer dwell time - Countersteer time

## 3D Engine

The 3D engine implements the 3D simulation environment. Vehicle Dynamics Blockset integrates the 3D simulation environment with Simulink so that you can query the world around the vehicle for virtually testing perception, control, and planning algorithms. For 3D engine requirements, see "Unreal Engine Simulation Environment Requirements and Limitations". To enable the 3D engine, on the 3D Engine tab, select Enabled.

To position the vehicle in the scene:
1 Select the position initialization method:

- Recommended for scene - Set the initial vehicle position to values recommended for the scene
- User-specified - Set your own initial vehicle position

2 Click Update the model workspaces with the initial values to overwrite the initial vehicle position in the model workspaces with the applied values.

## Ports

Input
VehFdbk - Vehicle feedback
Bus

Bus containing vehicle feedback signals, including velocity, acceleration, and steering wheel torque.

## Output

Vis - Visualization reference signals
Bus
Bus containing the visualization reference signals, including longitudinal and lateral displacement, and steering.

Ref - Vehicle reference signals
Bus
Bus containing the vehicle reference signals, including longitudinal and lateral displacement, and steering.

Fdbk - Vehicle location feedback signals
Bus
Bus containing vehicle location feedback signals, including position.

## Parameters

Configuration
Maneuver - Select maneuver
Constant Radius (default)|Double Lane Change|Increasing Steer|Swept Sine|Sine with Dwell

Specify the scene type.
Maneuver start time - Start time
scalar
Maneuver start time, in s.
Longitudinal velocity reference - Target velocity
scalar
Target velocity.
Longitudinal entrance velocity setpoint units - Units
mph (default)
Units for target velocity.
Simulation time - Simulation time
scalar
Time, in s.

## Constant Radius

Radius value - Radius
scalar

Radius value, in m.
Turn direction - Turn direction
Right (default)| Left
Turn direction.
Lateral acceleration threshold - Lateral acceleration
scalar
Lateral acceleration threshold, in g.
Stop simulation at lateral acceleration threshold - Selection
off (default) | on
Stop simulation if vehicle exceeds lateral acceleration threshold.

```
Double Lane Change
Inertial longitudinal position of gate entrance - Position
scalar
```

Inertial longitudinal position of gate entrance, in m.
Distance after target speed to begin reference - Start distance scalar

Distance after target speed to begin reference, in $m$.
Vehicle width - Vehicle width
scalar
Vehicle width, in m.
The left and right lane boundaries are a function of the Vehicle width parameter.
Lateral offset - Lateral offset
scalar
Lateral offset, in m.
Lateral reference position breakpoints - Breakpoints
scalar
Lateral reference position breakpoints, in m.
Use the Lateral reference position breakpoints and Lateral reference data parameters to specify the lateral reference trajectory as a function of the longitudinal distance.

Lateral reference data - Lateral data
scalar
Use the Lateral reference position breakpoints and Lateral reference data parameters to specify the lateral reference trajectory as a function of the longitudinal distance.

Increasing Steer
Handwheel rate - Handwheel rate
scalar
Handwheel rate, in deg/s.
Maximum handwheel angle - Maximum handwheel
scalar
Maximum handwheel angle, in deg.
Steering hold time after max angle reached - Steering hold scalar

Steering hold, in s.
Lateral acceleration threshold - Lateral acceleration
scalar
Lateral acceleration threshold, in g.
Stop simulation at lateral acceleration threshold - Selection
off (default) | on
Stop simulation if vehicle exceeds lateral acceleration threshold.

## Swept Sign

Swept time - Sweep time scalar

Sweep time, in s.
Steering amplitude - Steering amplitude scalar

Sinusoidal steering amplitude, in deg.
Final frequency - Final frequency
scalar
Cut off frequency to stop the maneuver, in Hz .
Fishhook
Steer and countersteer speed, steerRate - Steer and countersteer speed scalar

Steer and countersteer speed, in deg/s.
Steer amplitude, steerAFH - Steer amplitude scalar

Steer amplitude, in deg.

Initial dwell time, tDwell1 - Initial dwell time scalar

Initial dwell time, in s.
Countersteer dwell time, tDwell2 - Countersteer dwell time scalar

Countersteer dwell time, in s.
Return to center time, tSteer3 - Return to center time scalar

Return to center time, in s.
Roll rate countersteer initiation zero crossing threshold, pZero - Crossing threshold scalar

Roll rate countersteer initiation zero crossing threshold, in deg.

## 3D Engine

3D Engine - Enable 3D visualization
off (default) | on
Enable 3D visualization.

## Scene - 3D scene

Straight road|Curved road|Parking lot|Double lane change|Open surface|US city block|US highway|Virtual Mcity|Large parking lot

Specify the name of the 3D scene.
Engine frame rate, dt3D - Graphics
. 03 (default)
Graphics frame rate, in s . The graphics frame rate is the inverse of the sample time.
Recommended for scene - Initial vehicle position
on (default) | off
Use vehicle positions that are recommended for the scene.
User-specified - Initial vehicle position
off (default) | on
Specify to set your own initial vehicle position values.
Initial longitudinal position, X_o - Initial longitudinal position
off (default) | on
Initial vehicle CG position along the earth-fixed $X$-axis, in $m$.
Initial lateral position, Y_o - Initial lateral position off (default) | on

Initial vehicle CG position along the earth-fixed $Y$-axis, in $m$.
Initial vertical position, Z_o - Initial vertical position
off (default) | on
Initial vehicle CG position along the earth-fixed $Z$-axis, in m.
Initial roll angle, phi_o - Roll
off (default) | on
Rotation of the vehicle-fixed frame about the earth-fixed $X$-axis (roll), in rad.
Initial pitch angle, theta_o - Pitch
off (default) | on
Rotation of the vehicle-fixed frame about the earth-fixed $Y$-axis (pitch), in rad.
Initial yaw angle, psi_o - Yaw
off (default) | on
Rotation of the vehicle-fixed frame about the earth-fixed $Z$-axis (yaw), in rad.

## Version History

## Introduced in R2019a

## See Also

3D Engine | Driver Commands

## Topics

"Braking Test"
"Constant Radius Maneuver"
"Double-Lane Change Maneuver"
"Slowly Increasing Steering Maneuver"
"Swept-Sine Steering Maneuver"
"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Unreal Engine Simulation Environment Requirements and Limitations"
External Websites
Unreal Engine

## Straight Maneuver Reference Generator

Generate straight maneuver reference signals

## Description

The Straight Maneuver Reference Generator block generates accelerator and brake commands to conduct a straight line maneuver for the "Braking Test". The acceleration begins at the specified rate until the vehicle achieves the longitudinal velocity setpoint. The vehicle controller maintains the longitudinal velocity setpoint for the specified time or distance. The controller then decelerates the vehicle.

Use the Maneuver Parameters to specify the maneuver start time, velocity setpoint, acceleration, and deceleration.

Optionally, on the Tracking Parameters tab, select Enable fault tracking before braking. Use the parameters to specify fault conditions before braking during a split-mu test. If the vehicle speed, steering angle, or yaw rate is not within the allowable range before braking, the block sets a fault condition. The default values represent compliance with ISO $14512^{1}$.

## Ports

Input
VehFdbk - Vehicle feedback
Bus
Bus containing vehicle feedback signals, including velocity, acceleration, and steering wheel torque.

## Output

Ref - Vehicle reference signals
Bus
Bus containing the vehicle reference signals, including longitudinal and lateral displacement, and steering.

## Parameters

## Maneuver Parameters

Maneuver start time, t_start - Start time
2 (default) | scalar
Maneuver start time, in s.

## Longitudinal acceleration at t_start, ax - Longitudinal acceleration

0.5 (default) | scalar

Longitudinal acceleration at maneuver start, in g.

Longitudinal velocity reference, $\mathbf{x d o t} \mathbf{r}$ - Longitudinal velocity reference, $x$ dot_r 20 (default) | scalar

Longitudinal velocity reference, xdot_r, in units specified by Units of velocity, xdotUnit.
Units of velocity, xdotUnit - Units
m/s (default) | km/h | char
Units of velocity.
Brake pedal actuation - Deceleration trigger
Longitudinal displacement (default) | Time
Method to start deceleration.
Select Longitudinal displacement to specify a displacement to start decelerating the vehicle.
Select Time to specify a time to start decelerating the vehicle.
Longitudinal displacement of vehicle CG, x_brake - Displacement
200 (default) | scalar
Longitudinal displacement of vehicle CG to start deceleration, in m.
Dependency
To enable this parameter, set Brake pedal actuation to Longitudinal displacement.
Brake actuation time, t_brake - Time
15 (default) | scalar
Time to start deceleration, in s.

## Dependency

To enable this parameter, set Brake pedal actuation to Time.
Longitudinal deceleration at t_brake, ax_dec - Deceleration
1 (default) | scalar
Longitudinal deceleration at braking time, in g.
Transport delay buffer size, BufferSize - Buffer
4096 (default) | scalar
Transport delay buffer size.
Select handwheel angle to $\mathbf{0}$ deg after braking - Selection
on (default) | off
Set the handwheel angle to 0 after braking.
Tracking Parameters
Enable fault tracking before braking - Enable fault tracking on (default) | off

Select this parameter to enable fault tracking before braking. Use the parameters to specify fault conditions before braking during a split-mu test. If the vehicle speed, steering angle, or yaw rate is not within the allowable range before braking, the block sets a fault condition. The default values represent compliance with ISO $14512^{1}$.

Longitudinal velocity and mean longitudinal velocity, xdot_rmax - Maximum velocity tolerance 1 (default) | scalar

The longitudinal velocity and mean longitudinal velocity tolerance. If the longitudinal velocity or mean longitudinal velocity exceeds the allowable range, the block sets a fault condition.

## Dependencies

To enable this parameter, on the Tracking Parameters tab, select Enable fault tracking before braking.

Mean longitudinal velocity and longitudinal velocity reference, xdot_rmean - Mean velocity tolerance
2 (default) | scalar
The mean longitudinal velocity and longitudinal velocity reference tolerance. If the mean longitudinal velocity or longitudinal velocity exceeds the allowable range, the block sets a fault condition.

## Dependencies

To enable this parameter, on the Tracking Parameters tab, select Enable fault tracking before braking.

Yaw velocity and mean yaw velocity, r_max - Yaw velocity tolerance
1 (default) | scalar
The yaw velocity and mean yaw velocity tolerance, in deg/s. If the yaw velocity or mean yaw velocity exceeds the allowable range, the block sets a fault condition.

## Dependencies

To enable this parameter, on the Tracking Parameters tab, select Enable fault tracking before braking.

Handwheel angle and mean handwheel angle, hw_max - Handwheel angle tolerance 3 (default) | scalar

Handwheel angle and mean handwheel angle, in deg. If the handwheel angle or mean handwheel angle exceeds the allowable range, the block sets a fault condition.

## Dependencies

To enable this parameter, on the Tracking Parameters tab, select Enable fault tracking before braking.

Stop simulation when fault occurs - Select to stop simulation
off (default) | on
Select this parameter to stop the simulation if a fault occurs.

## Dependencies

To enable this parameter, on the Tracking Parameters tab, select Enable fault tracking before braking.

## Version History

Introduced in R2021a

## See Also

Road Track Friction

## Topics

"Braking Test"

## Road Track Friction

Configure road for braking test

## Description

The Road Track Friction block implements the road, including friction, for the "Braking Test". Use the Type of surface parameter to specify the friction coefficient scaling factor:

- Constant friction coefficient scaling factor - Constant surface friction during the maneuver
- Split friction coefficient scaling factor - Two friction coefficients

Select this option to specify the friction scaling coefficients for a split-mu braking test. Use the enabled parameters to set the ground friction and rectangular surface friction coefficient scaling factors.

## Ports

## Input

XWhI - Wheel displacement along X-axis
4-by-1 array
Wheel displacement along the earth-fixed X -axis, specified as a 4-by-1 array.
YWhI - Wheel displacement along Y -axis
4-by-1 array
Wheel displacement along the earth-fixed Y -axis, specified as a 4-by-1 array.
$\mathbf{C g}$ - Vehicle CG
3-by-1 array
Vehicle cg, along earth-fixed axis, specified as a 3-by-1 array.

## Output

FricCoeffLambda - Friction coefficient applied to wheels
4-by-1 array
Wheel friction coefficient, specified as a 4-by-1 array.

## Parameters

Type of surface - Friction
Split friction coefficient scaling factor (default)|Constant friction coefficient scaling factor

- Constant friction coefficient scaling factor - Constant surface friction during the maneuver
- Split friction coefficient scaling factor - Two friction coefficients Select this option to specify the friction scaling coefficients for a split-mu braking test. Use the enabled parameters to set the ground friction and rectangular surface friction coefficient scaling factors.

Scaling factor for the friction coefficient of ground, lambda_g - Scaling factor
. 6 (default) | scalar
Scaling factor for the ground friction coefficient.
Scaling factor for the friction coefficient of rectangular surface, lambda_r - Scaling factor . 8 (default) | scalar

Scaling factor for the friction coefficient of the rectangular surface.

## Dependencies

To enable this parameter, set Type of surface/track to Split friction coefficient scaling factor.
$X$ coordinate of lower left corner of rectangular surface, $\mathbf{r}_{-} \times 0-X$ coordinate
175 (default) | scalar
X coordinate of lower left corner of rectangular surface, in earth-fixed coordinate system, in m .

## Dependencies

To enable this parameter, set Type of surface/track to Split friction coefficient scaling factor.
$\mathbf{Y}$ coordinate of lower left corner of rectangular surface, $\mathbf{r}_{\mathbf{\prime}} \mathbf{y 0} \mathbf{- X}$ coordinate

- 100 (default) | scalar

Y coordinate of lower left corner of rectangular surface, in earth-fixed coordinate system.

## Dependencies

To enable this parameter, set Type of surface/track to Split friction coefficient scaling factor.

Rectangular surface width in X direction, $\mathbf{r}_{\mathbf{-}} \mathbf{x w}$ - Rectangular surface
1000 (default) | scalar
Rectangular surface width in X direction, in m .

## Dependencies

To enable this parameter, set Type of surface/track to Split friction coefficient scaling factor.

Rectangular surface width in Y direction, r_yw - Rectangular surface 500 (default) | scalar

Rectangular surface width in $Y$ direction, in $m$.

## Dependencies

To enable this parameter, set Type of surface/track to Split friction coefficient scaling factor.

## Version History

Introduced in R2021a

## See Also

Straight Maneuver Reference Generator

## Topics

"Braking Test"

## Lane Change Reference Generator

Generate double-lane change maneuver reference signals

## Description

The Lane Change Reference Generator block sets the parameters that configure the double-lane change maneuver.

After the vehicle reaches the reference velocity, the block commands a zero acceleration signal and generates a lateral reference trajectory as a function of the longitudinal displacement. The block also generates signals indicating the left and right lane boundaries as a function of the axle width.

Use the Steady-state initial conditions parameter to specify the initial conditions for the maneuver. By default, the parameter is set to Initialize from model, and the simulation starts with the vehicle at rest at the specified initial position. If you want to start the simulation at the non-zero steady-state velocity:

1 Set Steady-state initial conditions to Solve using block parameters.
2 On the Steady-State Solver tab, specify the initial conditions, workspace variable, and solver settings. Click Generate steady state solution.
3 After the simulation completes, set Steady-state initial conditions to Resume from a workspace variable.
4 Set Steady-state solution to start from, ssVar to the workspace variable you specified in step 2.

5 Run the simulation.
For an example, see "Start Double-Lane Change Maneuver at Target Velocity".

## Ports

Input
VehFdbk - Vehicle feedback
Bus
Bus containing vehicle feedback signals, including velocity, acceleration, and steering wheel torque.

## Output

Lane - Lane boundaries
Bus
Bus containing left, right, and lateral reference lane boundaries.
Ref - Vehicle reference signals
Bus
Bus containing the vehicle reference signals, including longitudinal and lateral displacement, and steering.

## Parameters

Maneuver

Steady-state initial conditions - Start maneuver from steady-state
Initialize from model (default)|Solve using block parameters|Resume from a workspace variable

Use the Steady-state initial conditions parameter to specify the steady-state initial conditions for the maneuver. By default, the simulation will not find or start the simulation at the steady-state operating points.

Setting	Description
Initialize from model	Simulation starts maneuver at the simulation start time   specified by Maneuver start time, t_start at   longitudinal velocity of 0.
Solve using block parameters	Simulation finds the steady-state operating points using   the parameters on the Steady-State Solver tab.
Resume from a workspace variable	Simulation starts at the steady-state operating points   workspace variable specified by Steady-state solution   to start from, ssVar.

Steady-state solution to start from, ssVar - Workspace variable with steady-state operating points
char
Workspace variable containing the steady-state operating points.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Resume from a workspace variable.

Maneuver start time, t_start - Start time
scalar
Maneuver start time, in s.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Initialize from model.
Inertial longitudinal position of gate entrance, XGate - Position
175 (default) | scalar
Inertial longitudinal position of gate entrance, in m .
Longitudinal entrance velocity setpoint, xdot_r - Target velocity
35 (default) | scalar
Target velocity.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Initialize from model or Solve using block parameters.

Longitudinal entrance velocity setpoint units, xdotUnit - Units
mph (default)
Units for target velocity.
Dependencies
To enable this parameter, set Steady-state initial conditions to Initialize from model or Solve using block parameters.

Vehicle width, vehW - Vehicle width
2 (default) | scalar
Vehicle width, in m.
The left and right lane boundaries are a function of the Vehicle width parameter.
Lateral offset, latoff - Lateral offset
scalar
Lateral offset, in m.
Lateral reference position breakpoints, latRefbp - Breakpoints
scalar
Lateral reference position breakpoints, in $m$.
Use the Lateral reference position breakpoints and Lateral reference data parameters to specify the lateral reference trajectory as a function of the longitudinal distance.

Lateral reference data, latRef - Lateral data
scalar
Use the Lateral reference position breakpoints and Lateral reference data parameters to specify the lateral reference trajectory as a function of the longitudinal distance.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Initialize from model or Solve using block parameters.

## Steady-State Solver

Initial longitudinal position, X_o - Initial longitudinal position
175 (default) | scalar
Initial vehicle CG position along the earth-fixed $X$-axis, in $m$.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Solve using block parameters.

Initial lateral position, Y_o - Initial lateral position scalar

Initial vehicle CG position along the earth-fixed $Y$-axis, in $m$.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Solve using block parameters.

Initial heading (yaw) angle, psi_o - Initial yaw angle
scalar
Initial vehicle yaw angle about the earth-fixed $Z$-axis, in rad.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Solve using block parameters.

Steady-state solver tolerance, ssTol - Solver velocity tolerance
scalar
Steady-state solver velocity tolerance.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Solve using block parameters.

Maximum simulated time to reach steady-state, ssMaxTime - Max time scalar

Maximum simulated time to reach steady-state, in s.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Solve using block parameters.

Workspace variable name to generate, ssWSName - Steady-state operating points scalar

Name of workspace variable containing steady-state operating points.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Solve using block parameters.

## Version History

Introduced in R2019a

## See Also

Driver Commands

## Topics

"Double-Lane Change Maneuver"
"Start Double-Lane Change Maneuver at Target Velocity"

## Slowly Increasing Steer Reference Generator

Generate slowly increasing steer maneuver reference signals

## Description

The Slowly Increasing Steer Reference Generator block sets the parameters that configure the slowly increasing steer maneuver.

The block generates steering, accelerator, and brake commands to conduct a linearly increasing steering maneuver. The steering command begins at the specified rate once the vehicle reaches the longitudinal velocity setpoint. After the vehicle achieves the maximum steering angle, the vehicle maintains the steering angle for a desired duration. The block then reduces the steering angle to zero at the same rate. A longitudinal controller regulates the vehicle at the prescribed speed throughout the maneuver.

Use the Steady-state solver mode parameter to specify the initial conditions for the maneuver. By default, the parameter is set to Initialize from model, and the simulation starts with the vehicle at rest at the specified initial position. If you want to start the simulation at the non-zero steady-state velocity:

1 Set Steady-state solver mode to Solve using block parameters.
2 On the Steady-State Solver tab, specify the initial conditions, workspace variable, and solver settings. Click Generate steady state solution.
3 After the simulation completes, set Steady-state solver mode to Resume from a workspace variable.

4 Set Steady-state solution to start from, ssVar to the workspace variable you specified in step 2.

5 Run the simulation.

## Ports

Input
VehFdbk - Vehicle feedback
Bus
Bus containing vehicle feedback signals, including velocity, acceleration, and steering wheel torque.

## Output

Ref - Vehicle reference signals
Bus
Bus containing the vehicle reference signals, including longitudinal and lateral displacement, and steering.

## Parameters

Maneuver
Steady-state solver mode - Start maneuver from steady-state
Initialize from model (default)|Solve using block parameters|Resume from a workspace variable

Use the Steady-state solver mode parameter to specify the steady-state initial conditions for the maneuver. By default, the simulation will not find or start the simulation at the steady-state operating points.

Setting	Description
Initialize from model	Simulation starts maneuver at the simulation start time   specified by Maneuver start time, t_start at   longitudinal velocity of 0.
Solve using block parameters	Simulation finds the steady-state operating points using   the parameters on the Steady-State Solver tab.
Resume from a workspace variable	Simulation starts at the steady-state operating points   workspace variable specified by Steady-state solution   to start from, ssVar.

Steady-state solution to start from, ssVar - Workspace variable with steady-state operating points
char
Workspace variable containing the steady-state operating points.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Resume from a workspace variable.

Maneuver start time, t_start - Start time
scalar
Maneuver start time, in s.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Initialize from model.
Longitudinal speed setpoint, xdot_r - Target velocity
50 (default) | scalar
Target velocity.
Longitudinal speed setpoint units, xdotUnit - Units
mph (default)
Units for target velocity.
Handwheel rate, omega_hw - Handwheel rate scalar

Handwheel rate, in deg/s.
Maximum absolute handwheel angle, theta_max - Maximum handwheel scalar

Maximum handwheel angle, in deg.
Steering hold time after max angle reached, t_stop - Steering hold scalar

Steering hold, in s.
Lateral acceleration absolute threshold, ay_max - Lateral acceleration scalar

Lateral acceleration threshold, in g.
Steady-State Solver
Initial longitudinal position, X_o - Initial longitudinal position
175 (default) | scalar
Initial vehicle CG position along the earth-fixed $X$-axis, in m.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Solve using block parameters.

Initial lateral position, Y_o - Initial lateral position
scalar
Initial vehicle CG position along the earth-fixed $Y$-axis, in $m$.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Solve using block parameters.

Initial heading (yaw) angle, psi_o - Initial yaw angle scalar

Initial vehicle yaw angle about the earth-fixed $Z$-axis, in rad.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Solve using block parameters.

Steady-state solver tolerance, ssTol - Solver velocity tolerance scalar

Steady-state solver velocity tolerance.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Solve using block parameters.

Maximum simulated time to reach steady-state, ssMaxTime - Max time scalar

Maximum simulated time to reach steady-state, in s.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Solve using block parameters.

Workspace variable name to generate, ssWSName - Steady-state operating points scalar

Name of workspace variable containing steady-state operating points.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Solve using block parameters.

# Version History <br> Introduced in R2019a 

## See Also

Driver Commands

## Topics

"Slowly Increasing Steering Maneuver"

## Swept Sine Reference Generator

Generate swept-sine maneuver reference signals

## Description

The Swept Sine Reference Generator block sets the parameters that configure the swept-sine maneuver. Once the vehicle reaches the target longitudinal velocity, the block generates a sinusoidal steering command with linearly increasing frequency, up to the maximum specified in the allotted time.

Use the Steady-state solver mode parameter to specify the initial conditions for the maneuver. By default, the parameter is set to Initialize from model, and the simulation starts with the vehicle at rest at the specified initial position. If you want to start the simulation at the non-zero steady-state velocity:

1 Set Steady-state solver mode to Solve using block parameters.
2 On the Steady-State Solver tab, specify the initial conditions, workspace variable, and solver settings. Click Generate steady state solution.
3 After the simulation completes, set Steady-state solver mode to Resume from a workspace variable.
4 Set Steady-state solution to start from, ssVar to the workspace variable you specified in step 2.

5 Run the simulation.

## Ports

Input
VehFdbk - Vehicle feedback
Bus
Bus containing vehicle feedback signals, including velocity, acceleration, and steering wheel torque.

## Output

Ref - Vehicle reference signals
Bus
Bus containing the vehicle reference signals, including longitudinal and lateral displacement, and steering.

## Parameters

## Maneuver

Steady-state solver mode - Start maneuver from steady-state
Initialize from model (default)|Solve using block parameters|Resume from a workspace variable

Use the Steady-state solver mode parameter to specify the steady-state initial conditions for the maneuver. By default, the simulation will not find or start the simulation at the steady-state operating points.

Setting	Description
Initialize from model	Simulation starts maneuver at the simulation start time   specified by Maneuver start time, t_start at   longitudinal velocity of 0.
Solve using block parameters	Simulation finds the steady-state operating points using   the parameters on the Steady-State Solver tab.
Resume from a workspace variable	Simulation starts at the steady-state operating points   workspace variable specified by Steady-state solution   to start from, ssVar.

## Steady-state solution to start from, ssVar - Workspace variable with steady-state operating points <br> char

Workspace variable containing the steady-state operating points.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Resume from a workspace variable.

Maneuver start time, t_start - Start time
scalar
Maneuver start time, in s.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Initialize from model.

## Longitudinal velocity setpoint, xdot_ref - Target velocity

## 50 (default) | scalar

Target velocity.

## Longitudinal speed setpoint units, xdotUnit - Units

mph (default)
Units for target velocity.

## Steering amplitude, theta_hw - Steering amplitude

 scalarSinusoidal steering amplitude, in deg.
Final frequency, theta_hw_final - Final frequency scalar

Cut off frequency to stop the maneuver, in Hz .

## Swept time, t_sweep - Sweep time

## scalar

Sweep time, in s.
Steady-State Solver
Initial longitudinal position, X_o - Initial longitudinal position
175 (default) | scalar
Initial vehicle CG position along the earth-fixed $X$-axis, in m.
Dependencies
To enable this parameter, set Steady-state initial conditions to Solve using block parameters.

Initial lateral position, Y_o - Initial lateral position
scalar
Initial vehicle CG position along the earth-fixed $Y$-axis, in $m$.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Solve using block parameters.

Initial heading (yaw) angle, psi_o - Initial yaw angle
scalar

Initial vehicle yaw angle about the earth-fixed $Z$-axis, in rad.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Solve using block parameters.

Steady-state solver tolerance, ssTol - Solver velocity tolerance
scalar
Steady-state solver velocity tolerance.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Solve using block parameters.

Maximum simulated time to reach steady-state, ssMaxTime - Max time scalar

Maximum simulated time to reach steady-state, in s.

## Dependencies

To enable this parameter, set Steady-state initial conditions to Solve using block parameters.

Workspace variable name to generate, ssWSName - Steady-state operating points scalar

Name of workspace variable containing steady-state operating points.
Dependencies
To enable this parameter, set Steady-state initial conditions to Solve using block parameters.

# Version History <br> Introduced in R2019a 

## See Also

Driver Commands

## Topics

"Swept-Sine Steering Maneuver"

11

Classes

## sim3d.Editor

Interface to the Unreal Engine project

## Description

Use the sim3d.Editor class to interface with the Unreal Editor.
To develop scenes with the Unreal Editor and co-simulate with Simulink, you need the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package. The support package contains an Unreal Engine project that allows you to customize the Vehicle Dynamics Blockset scenes. For information about the support package, see "Customize 3D Scenes for Vehicle Dynamics Simulations".

## Creation

## Syntax

sim3d.Editor(project)

## Description

MATLAB creates an sim3d.Editor object for the Unreal Editor project specified in sim3d.Editor( project).

Input Arguments
project - Project path and name
string array
Project path and name.
Example: "C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject"
Data Types: string

## Properties

## Uproject - Project path and name <br> string array

This property is read-only.
Project path and name with Unreal Engine project file extension.
Example: "C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject"
Data Types: string

## Object Functions

open Open the Unreal Editor

## Examples

## Open Project in Unreal Editor

Open an Unreal Engine project in the Unreal Editor.
Create an instance of the sim3d.Editor class for the Unreal Engine project located in C: \Local \AutoVrtlEnv\AutoVrtlEnv.uproject.
editor = sim3d.Editor(fullfile("C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject"))
Open the project in the Unreal Editor.
editor.open();

## Version History

Introduced in R2019b

## See Also

## Topics

"Customize 3D Scenes for Vehicle Dynamics Simulations"
"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Unreal Engine Simulation Environment Requirements and Limitations"

## open

Open the Unreal Editor

## Syntax

[status,result] = open(sim3dEditor0bj)

## Description

[status, result] = open(sim3dEditorObj) opens the Unreal Engine project in the Unreal Editor.

To develop scenes with the Unreal Editor and co-simulate with Simulink, you need the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package. The support package contains an Unreal Engine project that allows you to customize the Vehicle Dynamics Blockset scenes. For information about the support package, see "Customize 3D Scenes for Vehicle Dynamics Simulations".

## Input Arguments

sim3dEditorObj - sim3d.Editor object
sim3d.Editor object
sim3d.Editor object for the Unreal Engine project.

## Output Arguments

## status - Command exit status

0 | nonzero integer
Command exit status, returned as either 0 or a nonzero integer. When the command is successful, status is 0 . Otherwise, status is a nonzero integer.

- If command includes the ampersand character ( $\delta$ ), then status is the exit status when command starts
- If command does not include the ampersand character ( $\&$ ), then status is the exit status upon command completion.
result - Output of operating system command
character vector
Output of the operating system command, returned as a character vector. The system shell might not properly represent non-Unicode ${ }^{\circledR}$ characters.


## Version History

Introduced in R2019b

## See Also

sim3d.Editor

## Topics

"Customize 3D Scenes for Vehicle Dynamics Simulations"
"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Unreal Engine Simulation Environment Requirements and Limitations"

## ASim3dActor

Abstract class to use as a base class for user-defined Unreal Engine C++ or blueprint actors

## Description

ASim3dActor is an abstract class that you can use as a base class for user-defined Unreal Engine C+ + or blueprint actors.

The base classes are inherently synchronized during co-simulation with a Simulink model.
Additionally, the Simulation 3D Actor Transform Set block can control the base class. To extend behavior of ASim3dActor, you can use the message interface functions to override the class methods so they send and receive messages to and from a model.

ASim3dActor is included in the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects. For information about the support package, see "Customize 3D Scenes for Vehicle Dynamics Simulations".

## Properties

## Translation - Actor translation

1-by-3 (default) | number of parts per actor-by-3
This property is protected. It is used in the derived C++ class. Value is set by the Simulation 3D Actor Transform Set block.

Actor translation along world $X$-, $Y$, and $Z$ - axes, respectively, in m. Array dimensions are number of parts per actor-by-3.
Data Types: float

## Rotation - Actor rotation

1-by-3 (default) | number of parts per actor-by-3
This property is protected. It is used in the derived C++ class. Value is set by the Simulation 3D Actor Transform Set block.

Actor rotation across a $[-\mathrm{pi} / 2, \mathrm{pi} / 2]$ range about world $X$-, $Y$, and $Z$ - axes, respectively, in rad. Array dimensions are number of parts per actor-by-3.

## Data Types: float

## Scale - Actor scale

1-by-3 (default) | number of parts per actor-by-3
This property is protected. It is used in the derived C++ class. Value is set by the Simulation 3D Actor Transform Set block.

Actor scale. Array dimensions are number of parts per actor-by-3.
Data Types: float

## Object Functions

Sim3dSetup C++ method that sets up actor in Unreal Engine 3D simulation
Sim3dStep C++ method that steps actor in Unreal Engine 3D simulation
Sim3dRelease C++ method that releases actor in Unreal Engine 3D simulation

## Version History

Introduced in R2020b

See Also<br>StartSimulation3DMessageReader | ReadSimulation3DMessage |<br>StopSimulation3DMessageReader|StartSimulation3DMessageWriter|<br>WriteSimulation3DMessage|StopSimulation3DMessageWriter

External Websites
Unreal Engine 4 Documentation

## Sim3dSetup

C++ method that sets up actor in Unreal Engine 3D simulation

## Syntax

void ASetGetActorLocation::Sim3dSetup()

## Description

The C++ method void ASetGetActorLocation::Sim3dSetup() sets up an actor in the Unreal Engine 3D simulation environment. The Unreal Engine AActor: : BeginPlay class calls the Sim3dSetup method every frame.

## Examples

## Set Up Actor

void ASetGetActorLocation: :Sim3dSetup()
\{
Super::Sim3dSetup();
if (Tags.Num() != 0) \{
FString tagName = Tags. Top().ToString();
FString MessageReaderTag = tagName;
MessageReaderTag.Append(TEXT("SimulinkMessage_OUT")); // a message from Simulink model
MessageReader = StartSimulation3DMessageReader (TCHAR_TO_ANSI (*MessageReaderTag), MAX_MESSAGE_SIZE);
FString MessageWriterTag = tagName;
MessageWriterTag.Append(TEXT("SimulinkMessage_IN")); // a message to Simulink model
MessageWriter = StartSimulation3DMessageWriter (TCHAR_TO_ANSI (*MessageWriterTag) ), MAX_MESSAGE_SIZE);
\}
\}

## Version History

Introduced in R2020b

## See Also

ASim3dActor

## Topics

"Customize 3D Scenes for Vehicle Dynamics Simulations"

## External Websites

Unreal Engine 4 Documentation

## Sim3dStep

C++ method that steps actor in Unreal Engine 3D simulation

## Syntax

void ASetGetActorLocation::Sim3dStep(float DeltaSeconds)

## Description

The C++ method void ASetGetActorLocation::Sim3dStep(float DeltaSeconds) steps an actor in the Unreal Engine 3D simulation environment. The Unreal Engine AActor: :Tick class calls the Sim3dStep method.

## Examples

## Step Actor

```
void ASetGetActorLocation::Sim3dStep(float DeltaSeconds)
```

\{
Super::Sim3dStep(DeltaSeconds);
uint32 messageSize = MAX_MESSAGE_SIZE;
int statusR = ReadSimulātion3DMessage (MessageReader, \&messageSize, message);
int statusW = WriteSimulation3DMessage (MessageWriter, messageSize, message);
\}

## Input Arguments

DeltaSeconds - Elapsed time
. 01
Time elapsed since Unreal Engine modified the frame.
Data Types: float

## Version History <br> Introduced in R2020b

## See Also

ASim3dActor

## Topics

"Customize 3D Scenes for Vehicle Dynamics Simulations"

## External Websites

Unreal Engine 4 Documentation

## Sim3dRelease

C++ method that releases actor in Unreal Engine 3D simulation

## Syntax

void ASetGetActorLocation::Sim3dRelease()

## Description

The C++ method void ASetGetActorLocation::Sim3dRelease() releases an actor in the Unreal Engine 3D simulation environment. The Unreal Engine AActor: : EndPlay class calls the Sim3dRelease method when the 3D simulation ends.

## Examples

```
Release Actor
void ASetGetActorLocation::Sim3dRelease()
{
 Super::Sim3dRelease();
 if (MessageReader) {
 StopSimulation3DMessageReader (SignalReader);
 }
 MessageReader = nullptr;
 if (MessageWriter) {
 StopSimulation3DMessageWriter (SignalWriter);
 }
 MessageWriter = nullptr;
}
```


## Version History

Introduced in R2020b

## See Also

ASim3dActor

## Topics

"Customize 3D Scenes for Vehicle Dynamics Simulations"

## External Websites

Unreal Engine 4 Documentation

## StartSimulation3DMessageReader

Constructs a message reader object in the Unreal Editor

## Syntax

MessageReader = StartSimulation3DMessageReader(topicName, maxDataSize)

## Description

MessageReader = StartSimulation3DMessageReader(topicName, maxDataSize) constructs a message reader object in the Unreal Editor.

The C++ syntax is
void *StartSimulation3DMessageReader(const char* topicName,uint32 maxDataSize);

## Input Arguments

topicName - Simulink signal topic name
mySignal
Name of the Simulink signal with the message topic.
Data Types: char *
maxDataSize - Maximum size of data
number of bytes|scalar
Maximum size of the data, in bytes.
Data Types: uint32

## Output Arguments

MessageReader - Pointer to message reader object
object pointer
Pointer to message reader object, ReadSimulation3DMessage.
Data Types: void *

## Version History

Introduced in R2020b

## See Also

ASim3dActor

## Topics

"Customize 3D Scenes for Vehicle Dynamics Simulations"

## External Websites

Unreal Engine 4 Documentation

## ReadSimulation3DMessage

Receives message from Simulink model using a message reader object

## Syntax

status=ReadSimulation3DMessage(MessageReader, dataSize, data)

## Description

status=ReadSimulation3DMessage(MessageReader, dataSize, data) receives a message from a Simulink model using a message reader object.

The C++ syntax is
int ReadSimulation3DMessage(void *MessageReader, uint32 dataSize, void *data);

## Input Arguments

## MessageReader - Pointer to message reader object

object pointer
Pointer to message reader object, ReadSimulation3DMessage.
Data Types: void *
dataSize - Size of data
number of bytes|scalar
Size of data, that is, data (sizeof(datatype) *num of elements). For example, if you want to read a vector of 3 floats, the data size is sizeof (float) $\bar{*} * 3$.

Data Types: uint32
data - Pointer to data object
object pointer
Pointer to data object.
Data Types: void *

## Output Arguments

## status - Operation exit status

0 | nonzero integer
Status, returned as either 0 or a nonzero integer. When the operation is successful, status is 0 . Otherwise, status is a nonzero integer.

## Version History

Introduced in R2020b

## See Also

ASim3dActor

## Topics

"Customize 3D Scenes for Vehicle Dynamics Simulations"

## External Websites

Unreal Engine 4 Documentation

## StopSimulation3DMessageReader

Deletes message reader object in the Unreal Editor

## Syntax

status=StopSimulation3DMessageReader(MessageReader)

## Description

status=StopSimulation3DMessageReader(MessageReader) deletes the Unreal Editor 3D message reader object.

The C++ syntax is
int StopSimulation3DMessageReader(void * MessageReader);

## Input Arguments

MessageReader - Pointer to message reader object
object pointer
Pointer to message reader object, ReadSimulation3DMessage.
Data Types: void *

## Output Arguments

## status - Operation exit status

0 | nonzero integer
Status, returned as either 0 or a nonzero integer. When the operation is successful, status is 0 . Otherwise, status is a nonzero integer.

## Version History

Introduced in R2020b

## See Also

ASim3dActor

## Topics

"Customize 3D Scenes for Vehicle Dynamics Simulations"
External Websites
Unreal Engine 4 Documentation

## StartSimulation3DMessageWriter

Constructs a message writer object in the Unreal Editor

## Syntax

MessageWriter $=$ StartSimulation3DMessageWriter(topicName, maxDataSize)

## Description

MessageWriter = StartSimulation3DMessageWriter(topicName, maxDataSize) constructs a message writer object in the Unreal Editor.

The C++ syntax is
void *StartSimulation3DMessageWriter(const char* topicName, uint32 maxDataSize);

## Input Arguments

topicName - Simulink signal topic name
mySignal
Name of the Simulink signal with the message topic.
Data Types: char *
maxDataSize - Maximum size of data
number of bytes|scalar
Maximum size of the data, in bytes.
Data Types: uint32

## Output Arguments

MessageWriter - Pointer to message writer object
object pointer
Pointer to message writer object, WriteSimulation3DMessage.
Data Types: void *

## Version History

Introduced in R2020b

## See Also

ASim3dActor

## Topics

"Customize 3D Scenes for Vehicle Dynamics Simulations"

## External Websites

Unreal Engine 4 Documentation

## WriteSimulation3DMessage

Sends message to Simulink model using a message writer object

## Syntax

status=WriteSimulation3DMessage(MessageWriter, dataSize, data)

## Description

status=WriteSimulation3DMessage(MessageWriter, dataSize, data) sends a message to a Simulink model using a message writer object.

The C++ syntax is
int WriteSimulation3DMessage(void * MessageWriter, uint32 dataSize, void *data);

## Input Arguments

## MessageWriter - Pointer to message writer object

object pointer
Pointer to message writer object, WriteSimulation3DMessage.
Data Types: void *
dataSize - Size of data
number of bytes|scalar
Size of data, that is, data (sizeof(datatype) *num_of_elements). For example, if you want to read a vector of 3 floats, the data size is sizeof (float) $\bar{*} * 3$.

Data Types: uint32
data - Pointer to data object
object pointer
Pointer to data object.
Data Types: void *

## Output Arguments

## status - Operation exit status

0 | nonzero integer
Status, returned as either 0 or a nonzero integer. When the operation is successful, status is 0 . Otherwise, status is a nonzero integer.

## Version History

Introduced in R2020b

## See Also

ASim3dActor

## Topics

"Customize 3D Scenes for Vehicle Dynamics Simulations"

## External Websites

Unreal Engine 4 Documentation

## StopSimulation3DMessageWriter

Deletes message writer object in the Unreal Editor

## Syntax

status=StopSimulation3DMessageWriter(MessageWriter)

## Description

status=StopSimulation3DMessageWriter(MessageWriter) deletes the Unreal Editor 3D message writer object.

The C++ syntax is
int StopSimulation3DMessageWriter(void *MessageWriter);

## Input Arguments

MessageWriter - Pointer to message writer object
object pointer
Pointer to message writer object, WriteSimulation3DMessage.
Data Types: void *

## Output Arguments

status - Operation exit status
0 | nonzero integer
Status, returned as either 0 or a nonzero integer. When the operation is successful, status is 0 . Otherwise, status is a nonzero integer.

## Version History

Introduced in R2020b

## See Also

ASim3dActor

## Topics

"Customize 3D Scenes for Vehicle Dynamics Simulations"
External Websites
Unreal Engine 4 Documentation

## copyExampleSim3dProject

Copy support package files and plugins to specified folders

## Syntax

sim3d.utils.copyExampleSim3dProject(DestFldr)
sim3d.utils.copyExampleSim3dProject(DestFldr, Name=Value)

## Description

sim3d.utils.copyExampleSim3dProject(DestFldr) copies the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package project files to the destination folder, DestFldr. By default, copyExampleSim3dProject copies the plugins to your Epic Games installation folder.
sim3d.utils.copyExampleSim3dProject(DestFldr, Name=Value) copies support package files to the destination with additional options specified by name-value arguments.

Running the sim3d.utils.copyExampleSim3dProject function configures your environment so that you can customize scenes. The support package contains these Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects.

- An Unreal project, defined in AutoVrtlEnv. uproject, and its associated files. The project includes editable versions of the prebuilt 3D scenes that you can select from the Scene name parameter of the Simulation 3D Scene Configuration block.
- Three plugins, MathWorkSimulation: RoadRunnerMaterials, and MathWorksAutomotiveContent. These plugins establish the connection between MATLAB and the Unreal Editor and are required for co-simulation.


## Input Arguments

## DestFldr - Destination folder for Unreal project files

character vector
Destination folder name, specified as a character vector.
Running copyExampleSim3dProject copies the Unreal project, defined in AutoVrtlEnv.uproject, and its associated files to the destination folder.

Note You must have write permission for the destination folder.

Example: C:\project
Data Types: char|string

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

## Source - Support package source folder

character vector
Support package source folder, specified as a character vector. The folder contains the downloaded support packages files.

By default, if you do not specify the source folder, copyExampleSim3dProject copies the file from the support package installation folder, matlabshared.supportpkg.getSupportPackageRoot().
Example: Source="shared\sim3dprojects\spkg\"
Data Types: char \| string

## PluginDestination - Option to change the plugin destination folder

character vector
Option to change the plugin destination folder, specified as a character vector.
By default, if you do not change the plugin installation folder location, copyExampleSim3dProject tries to copy the plugins to C:\Program Files $\backslash$ Epic Games\UE_4.27\Engine\Plugins \MathWorks.
Example: PluginDestination="C:\Program Files\Epic Games\UE_4.27\Engine\Plugins \MathWorks"
Data Types: char | string

## VerboseOutput - Option to enable verbose logging

0 or false (default) | 1 or true
Option to enable verbose logging, specified as a logical 0 (false) or 1 (true). Verbose logging displays intermediate iteration information on the MATLAB command line.

## Example: VerboseOutput=true

Data Types: logical

## Examples

## Copy Support Package Files to Destination Folder

Copy the support package files to $C: \backslash p r o j e c t$.

```
sim3d.utils.copyExampleSim3dProject("C:\project");
```

Copy the support package files to C:\project with VerboseOutput set to true.

```
sim3d.utils.copyExampleSim3dProject("C:\project", VerboseOutput=true)
Copying ...\spkg\project\AutoVrtlEnv to C:\project\AutoVrtlEnv
Creating C:\project\AutoVrtlEnv\Plugins
```

Copying ...\spkg\plugins\mw_aerospace\MathWorksAerospace to C:\project\AutoVrtlEnv\Plugins\MathW Copying ...\spkg\plugins\mw_automotive\MathWorksAutomotiveContent to C:\project\AutoVrtlEnv\Plug Copying ... \spkg\plugins\mw simulation\MathWorksSimulation to C:\project\AutoVrtlEnv\Plugins\Mat Copying ...\spkg\plugins\mw_uav\MathWorksUAVContent to C:\project\AutoVrtlEnv\Plugins\MathWorksU Copying ...\spkg\plugins\rr_materials \RoadRunnerMaterials to C:\project\AutoVrtlEnv\Plugins\Road
Ensuring C:\project\AutoVrtlEnv\AutoVrtlEnv.uproject is writable
Enabling plugin MathWorksSimulation in C:\project $\backslash$ AutoVrtlEnv\AutoVrtlEnv.uproject
Enabling plugin MathWorksUAVContent in C:\project\AutoVrtlEnv\AutoVrtlEnv.uproject
Enabling plugin MathWorksAutomotiveContent in C:\project\AutoVrtlEnv\AutoVrtlEnv.uproject
Enabling plugin RoadRunnerMaterials in C:\project\AutoVrtlEnv\AutoVrtlEnv.uproject

## Version History

Introduced in R2022b

## See Also

## Topics

"Install Support Package and Configure Environment"
"How 3D Simulation for Vehicle Dynamics Blockset Works"
"Unreal Engine Simulation Environment Requirements and Limitations"

## External Websites

Unreal Engine
Using Unreal Engine with Simulink

## sim3d.maps

Access additional scenes from the server

## Description

Use the sim3d.maps to download and access additional scenes from the server so that they can be automatically available in the Simulation 3D Scene Configuration block.

Object Functions<br>sim3d.maps.Map.download Download maps from the server<br>sim3d.maps.Map.server List of maps available for download from the server<br>sim3d.maps.Map.delete Delete local maps downloaded from the server<br>sim3d.maps.Map.local List of locally available maps

## Troubleshooting

- If you cannot reach the server, the download will fail due to a timeout.
- If the download fails while updating an existing map, the existing outdated file will remain functional.
- If you delete the CSV file, you will lose automatic tracking of updates for the existing maps.


## Version History

Introduced in R2022b

## See Also

Simulation 3D Scene Configuration

## sim3d.maps.Map.download

Download maps from the server

## Syntax

sim3d.maps.Map.download(Scene)

## Description

sim3d.maps.Map.download(Scene) downloads the map Scene from the server.

## Examples

## Download Suburban Scene Map

This example shows how to download and access the Suburban scene map from the Simulation 3D Scene Configuration block.

To begin, check the maps available in the server.

```
sim3d.maps.Map.server
```

MapName
"Suburban scene"

Description
"a suburban area beyond the city's border"

Version
"1"

MinimumRelease
"R2022b"

Download the Suburban scene from the server.
sim3d.maps.Map.download('Suburban scene')
Map is susccesfully downloaded and is up-to-date
Check if the downloaded maps are available in your local machine.
sim3d.maps.Map.local

MapName
"Suburban scene"

Description
"a suburban area beyond the city's border"

Version
"1"

MinimumRelease
"R2022b"
Add the Simulation 3D Scene Configuration block to your model.


Open the block mask and select the suburban scene from Scene name.


Run the model.


## Input Arguments

## Scene - Name of scene

string | character array
Name of the map being downloaded from the server, specified as a string or character array. Maps are downloaded in the default folder that is added to MATLAB search path at startup.

Maps are stored by user profile. For multiuser setup with a single MATLAB installation, the maps will be downloaded multiple times.

If a new version of the map is available on the server, you will see a warning message asking you to download the map again to get the recent version.

## Version History

Introduced in R2022b

## See Also

sim3d.maps|sim3d.maps.Map.server|sim3d.maps.Map.delete|sim3d.maps.Map.local

## sim3d.maps.Map.server

List of maps available for download from the server

## Syntax

sim3d.maps.Map.server

## Description

sim3d.maps.Map.server lists the available maps in the server.

## Examples

## Download Suburban Scene Map

This example shows how to download and access the Suburban scene map from the Simulation 3D Scene Configuration block.

To begin, check the maps available in the server.
sim3d.maps.Map.server

MapName
"Suburban scene"

Description
"a suburban area beyond the city's border"

Version
"1"

MinimumRelease
"R2022b"

Download the Suburban scene from the server.
sim3d.maps.Map.download('Suburban scene')
Map is susccesfully downloaded and is up-to-date
Check if the downloaded maps are available in your local machine.
sim3d.maps.Map.local

MapName
"Suburban scene"

Description
"a suburban area beyond the city's border"

Version
"1"

Add the Simulation 3D Scene Configuration block to your model.


Open the block mask and select the suburban scene from Scene name.


Run the model.


## Version History

Introduced in R2022b

## See Also

sim3d.maps | sim3d.maps.Map.download|sim3d.maps.Map.delete| sim3d.maps.Map.local

## sim3d.maps.Map.delete

Delete local maps downloaded from the server

## Syntax

sim3d.maps.Map.delete(Scene)

## Description

sim3d.maps.Map.delete(Scene) deletes the map Scene from your local system.

## Examples

## Download Suburban Scene Map

This example shows how to download and access the Suburban scene map from the Simulation 3D Scene Configuration block.

To begin, check the maps available in the server.
Add the Simulation 3D Scene Configuration block to your model.


Open the block mask and select the suburban scene from Scene name.


Run the model.


Delete the model and check if the map is till available locally.

```
sim3d.maps.Map.delete('Suburban scene')
Suburban scene was successfully deleted
```


## Input Arguments

## Scene - Name of scene

string | character array
Name of the map being deleted, specified as a string or character array. Once the map is deleted, it automatically disappears from the Simulation 3D Scene Configuration block mask menu.

## Version History

Introduced in R2022b

```
See Also
sim3d.maps|sim3d.maps.Map.download| sim3d.maps.Map.server |
sim3d.maps.Map.local
```


## sim3d.maps.Map.local

List of locally available maps

## Syntax

sim3d.maps.Map.local

## Description

sim3d.maps.Map. local lists the locally available maps.

## Examples

## Download Suburban Scene Map

This example shows how to download and access the Suburban scene map from the Simulation 3D Scene Configuration block.

To begin, check the maps available in the server.

```
sim3d.maps.Map.server
```

MapName
"Suburban scene"

Description
"a suburban area beyond the city's border"

Version
"1"

MinimumRelease "R2022b"

Download the Suburban scene from the server.
sim3d.maps.Map.download('Suburban scene')
Map is susccesfully downloaded and is up-to-date
Check if the downloaded maps are available in your local machine.
sim3d.maps.Map.local

MapName
"Suburban scene"

Description
"a suburban area beyond the city's border"

Version
"1"

Add the Simulation 3D Scene Configuration block to your model.


Open the block mask and select the suburban scene from Scene name.


Run the model.


## Version History

Introduced in R2022b

## See Also

sim3d.maps | sim3d.maps.Map.download|sim3d.maps.Map.server| sim3d.maps.Map.delete

Apps

## Virtual Vehicle Composer

Configure, build, and analyze a virtual automotive vehicle

## Description

The Virtual Vehicle Composer app enables you to quickly configure and build a virtual vehicle that you can use for system-level performance testing and analysis, including component sizing, fuel economy, drive cycle tracking, vehicle handling maneuvers, software integration testing, and hardware-in-the-loop (HIL) testing. Use the app to enter your vehicle parameter data, build a virtual vehicle model, run test scenarios, and analyze the results.

The virtual vehicle model utilizes sets of blocks and reference application subsystems available with Powertrain Blockset ${ }^{\mathrm{TM}}$, Vehicle Dynamics Blockset, and Simscape ${ }^{\mathrm{TM}}$ add-ons. Virtual Vehicle Composer simplifies the task of configuring the architecture and entering parameter data.

If you have Powertrain Blockset, use the app to:

- Configure conventional vehicle, electric vehicle (EV), and hybrid-electric vehicle (HEV) architectures.
- Operate the vehicle in test conditions such as FTP cycles.
- Analyze design tradeoffs and size components.

If you have Vehicle Dynamics Blockset, use the app to:

- Configure passenger cars and analyze their ride-and-handling characteristics by running standard test maneuvers.
- Configure and test a motorcycle. Requires a Simscape license.
- Visualize your virtual vehicle in the Unreal Engine simulation environment.

If you have Simscape and these Simscape add-ons, you can use the app to configure vehicles with Simscape subsystems:

- Simscape Driveline ${ }^{\mathrm{TM}}$
- Simscape Electrical ${ }^{\mathrm{TM}}$
- Simscape Fluids ${ }^{\text {TM }}$
- Simscape Multibody ${ }^{\mathrm{TM}}$ - Required for motorcycles

To build, operate, and analyze your virtual vehicle, use the Composer tab. The options and settings depend on the available products.

Step	Section	Button		Description
1	Configure			Setup   -

## Required Products

The Virtual Vehicle Composer requires either of these products:

- "Powertrain Blockset"
- "Vehicle Dynamics Blockset"

With "Vehicle Dynamics Blockset" you can run your virtual vehicle in the Unreal Engine 3D simulation environment. See the requirements in "Unreal Engine Simulation Environment Requirements and Limitations".

If you have Simscape and these Simscape add-ons, you can use the app to configure vehicles with Simscape subsystems.

- "Simscape Driveline"
- "Simscape Electrical"
- "Simscape Fluids"
- "Simscape Multibody" - Required for motorcycles



## Open the Virtual Vehicle Composer App

- MATLAB Toolstrip: On the Apps tab, under Automotive, click the Virtual Vehicle Composer icon.
- MATLAB Command Window: Enter virtualVehicleComposer.


## Examples

- "Get Started with the Virtual Vehicle Composer"


## Parameters

## Setup

Start here to quickly enter your virtual vehicle class, powertrain architecture, model template, and vehicle dynamics.

Project path - Project location
C: \Users\username\MATLAB\Projects\examples (default)
Project location, specified as a character vector.

Note The combined Project path and Configuration name must be less than 80 characters.

## Data Types: char

Configuration name - Name of vehicle and test configuration
ConfiguredVirtualVehicle (default)
Name of the vehicle and test configuration.

Note The combined Project path and Configuration name must be less than 80 characters.

## Data Types: char

Vehicle class - Type of vehicle
Passenger car (default) | Motorcycle
Use this parameter to specify the vehicle type.
The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain   Blockset	Vehicle   Dynamics   Blockset	Description
Passenger		$\checkmark$	Four-wheeled passenger car.
car			


Setting	Powertrain   Blockset	Vehicle   Dynamics   Blockset	Description
		$\boldsymbol{V}$	Two-wheeled motorcycle.
Motorcycle			

## Dependencies

If you set Vehicle class to Motorcycle, the app sets the parameter Model template to Simscape.
If you have Simscape and these Simscape add-ons, you can use the app to configure vehicles with Simscape subsystems:

- Simscape Driveline
- Simscape Electrical
- Simscape Fluids
- Simscape Multibody - Required for motorcycles

Powertrain architecture - Conventional, electric (EV), or hybrid electric (HEV) passenger vehicle. Conventional or electric motorcycle Conventional Vehicle|Electric Vehicle 1EM|Electric Vehicle 2EM|Electric Vehicle 3EM Dual Front|Electric Vehicle 3EM Dual Rear|Electric Vehicle 4EM| Hybrid Electric P0|Hybrid Electric P1|Hybrid Electric P2|Hybrid Electric P3| Hybrid Electric P4|Hybrid Electric MM|Hybrid Electric IPS|Conventional Motorcycle with Chain Drive|Electric Motorcycle with Chain Drive

The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Note To refer back to your Powertrain architecture diagram, click the Setup tab. You will see the configuration of the system, including motor placement.

Setting	Powertrain   Blockset	Vehicle   Dynamics   Blockset	Description
Conventional   Vehicle	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Vehicle with an SI or CI internal combustion   engine, transmission, and corresponding   control units. May be FWD, RWD, or AWD.
Electric Vehicle   1EM	$\checkmark$	$\boldsymbol{\checkmark}$	Vehicle with one electric motor, and battery,   driveline, and corresponding control units.   May be FWD, RWD, or AWD.
Electric Vehicle   2EM	$\boldsymbol{\checkmark}$		Vehicle with one motor driving the front axle   and one motor driving the rear axle; battery,   driveline, and corresponding control units.


Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Electric Vehicle 3EM Dual Front	$\checkmark$		Vehicle with two independent motors driving the front axle and one motor driving the rear axle; battery, driveline, and corresponding control units.
Electric Vehicle 3EM Dual Rear	$\checkmark$		Vehicle with one motor driving the front axle and two independent motors driving the rear axle; battery, driveline, and corresponding control units.
```Electric Vehicle 4EM```	$\checkmark$		Vehicle with one independent motor driving each wheel; battery, and corresponding control units.
Hybrid Electric P0	\checkmark		Vehicle with P0 hybrid-electric propulsion, including an SI engine, transmission, motor, battery, and corresponding control units.
Hybrid Electric P1	\checkmark		Vehicle with P1 hybrid-electric propulsion, including an SI engine, transmission, motor, battery, and corresponding control units.
Hybrid Electric P2	\checkmark		Vehicle with P2 hybrid-electric propulsion, including an SI engine, transmission, motor, battery, and corresponding control units.
Hybrid Electric P3	\checkmark		Vehicle with P3 hybrid-electric propulsion, including an SI engine, transmission, motor, battery, and corresponding control units.
Hybrid Electric P4	\checkmark		Vehicle with P4 hybrid-electric propulsion, including an SI engine, transmission, motor, battery, and corresponding control units.
Hybrid Electric MM	\checkmark		Vehicle with multi-mode hybrid-electric propulsion, including an SI engine, transmission, motor, generator, battery, and corresponding control units.
Hybrid Electric IPS	\checkmark		Vehicle with input power split hybridelectric propulsion, including an SI engine, transmission, motor, generator, battery, and corresponding control units.
Conventional Motorcycle with Chain Drive		\checkmark	Motorcycle with an SI engine, transmission and chain reduction, and corresponding control units. Requires Simscape.
Electric Motorcycle with Chain Drive		\checkmark	Motorcycle with an electric motor, gear and chain reductions, battery, and corresponding control units. Requires Simscape.

If you have Simscape and Simscape add-ons, you can use the app to configure vehicles that incorporate Simscape subsystems, including motorcycles.

Model template - Vehicle plant model and powertrain architecture template Simulink (default) | Simscape

Use this parameter to specify a Simulink or Simscape vehicle plant model and powertrain architecture. By default, the virtual vehicle uses a Simulink model template.

If you have Simscape and these Simscape add-ons, you can use the app to configure vehicles with Simscape subsystems:

- Simscape Driveline
- Simscape Electrical
- Simscape Fluids
- Simscape Multibody - Required for motorcycles

Dependencies

If you set Vehicle class to Motorcycle, the app sets Model template to Simscape. You cannot configure a motorcycle and select Simulink as model template.

Vehicle dynamics - Virtual vehicle longitudinal (3 DOF) or combined (6 DOF) dynamics Longitudinal vehicle dynamics (default)|Combined longitudinal and lateral vehicle dynamics

Vehicle Class Setting	Vehicle Dynamics Setting	Goal
Passenger car	Longitudinal vehicle dynamics	Fuel economy and energy management analysis.
	Combined longitudinal and lateral vehicle dynamics	Vehicle handling, stability, and ride comfort analysis.
Motorcycle	In-plane motorcycle	Fuel economy and energy management analysis.

Vehicle Class Setting	Vehicle Dynamics Setting	Goal
	motorcycleout-of-plane dynamics	Motorcycle handling, stability, and ride comfort analysis.
	ars	

The virtual vehicle uses the Z-up coordinate system as defined in SAE J670 and ISO 8855. For more information, see "Coordinate Systems in Vehicle Dynamics Blockset".

The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Longitudinal vehicle dynamics	\checkmark	\checkmark	Three degree-of-freedom (DOF) conventional vehicle model suitable for fuel economy and energy management analysis.
Combined longitudinal and lateral vehicle dynamics		\checkmark	Six DOF conventional vehicle suitable for vehicle handling, stability, and ride comfort analysis. Not available with Passenger car when Model template is set to Simscape.
In-plane motorcycle dynamics		\checkmark	Three DOF motorcycle model suitable for fuel economy and energy management analysis. The model implements a longitudinal inplane motorcycle body model to calculate longitudinal, vertical, and pitch motion. Available if you have Simscape and Simscape add-ons.
Out-of-plane motorcycle dynamics		\checkmark	Six DOF motorcycle suitable for vehicle handling, stability, and ride comfort analysis. Available if you have Simscape and Simscape add-ons.

Dependencies

If you set Vehicle class to Passenger car and then set Model template to Simscape, the app sets Vehicle dynamics to Combined longitudinal and lateral vehicle dynamics.

Data and Calibration

Use the app to quickly set your virtual vehicle parameters, such as chassis and suspension, tires, powertrain, and driver. Select one of the options for each parameter. The available options depend on your Setup selections.

Parameter	Description
Chassis	Select the chassis type. The available options depend on the Vehicle class and Vehicle dynamics settings.
Tire	Select the tire model and tire data. The available options depend on the Vehicle class and Vehicle dynamics settings.
Brake Type	Select the brake type. Use the Brake Control Unit parameter to specify the brake control.
Powertrain	Select the engine, electric motors, transmission, drivetrain, differential system, and electrical system parameters. The available options depend on the Powertrain architecture selected.
Driver/Rider	If you set Vehicle class to Passenger car, select the Driver. The parameter setting Longitudinal Driver implements a longitudinal speed-tracking controller. If you have Vehicle Dynamics Blockset, you can set Driver to Predictive Driver or Predictive Stanley Driver to track longitudinal velocity and a lateral displacement relative to a reference pose. If you set Vehicle class to Motorcycle, select the Rider. You can set Rider to Rigid or to 6DOF and External Forces and Moments.
Environment	Use the parameter setting Standard Ambient to specify the ambient environment.
Steering System	If you set Vehicle class to Passenger car, and you have Vehicle Dynamics Blockset and set Vehicle dynamics to Combined longitudinal and lateral vehicle dynamics, you can specify the steering system. If you set Vehicle class to Motorcycle and set Vehicle dynamics to Out - of - plane motorcycle dynamics, you can specify the steering system.
Suspension	If you set Vehicle class to Passenger car, and you have Vehicle Dynamics Blockset and set Vehicle dynamics to Combined longitudinal and lateral vehicle dynamics, you can specify the suspension. If you set Vehicle class to Motorcycle and set Vehicle dynamics to Out - of - plane motorcycle dynamics, you can specify the suspension.

Passenger Car Chassis

Chassis - Chassis type
Vehicle Body 1DOF Longitudinal|Vehicle Body 3DOF Longitudinal|Vehicle Body 6DOF Longitudinal and Lateral

The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Vehicle Body 1DOF Longitudinal	\checkmark	\checkmark	Chassis model for 1DOF longitudinal vehicle dynamics. Available when you set Vehicle dynamics to Longitudinal vehicle dynamics.
Vehicle Body 3DOF Longitudinal	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Chassis model for 3DOF longitudinal vehicle dynamics. Available when you set Vehicle dynamics to Longitudinal vehicle dynamics.
Vehicle Body 6DOF Longitudinal and Lateral		\checkmark	Chassis model for 6DOF longitudinal and lateral vehicle dynamics. Available when you set Vehicle dynamics to Combined longitudinal and lateral vehicle dynamics.

Dependencies

To enable this parameter, on the Setup pane, set Vehicle class to Passenger car.

Passenger Car Tire

Tire - Model and specifications of tires
MF Tires Longitudinal|Fiala Tires Longitudinal and Lateral |MF Tires Longitudinal and Lateral|Longitudinal Combined Slip Tire

The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.
\(\left.$$
\begin{array}{|l|c|c|l|}\hline \text { Setting } & \begin{array}{l}\text { Powertrain } \\
\text { Blockset }\end{array} & \begin{array}{l}\text { Vehicle } \\
\text { Dynamics } \\
\text { Blockset }\end{array} & \text { Description } \\
\hline \begin{array}{l}\text { MF Tires } \\
\text { Longitudinal }\end{array} & \checkmark & \boldsymbol{\checkmark} & \begin{array}{l}\text { Tire model suitable for longitudinal vehicle } \\
\text { dynamics studies, including fuel economy } \\
\text { and energy management analysis. }\end{array} \\
\hline \begin{array}{l}\text { Fiala Tires } \\
\text { Longitudinal and } \\
\text { Lateral }\end{array} & & \boldsymbol{\checkmark} & \begin{array}{l}\text { Tire model suitable for lateral vehicle } \\
\text { dynamics studies, including vehicle } \\
\text { handling, stability, and ride comfort analysis. }\end{array} \\
\begin{array}{l}\text { Implements a simplified tire with lateral and }\end{array}
$$

longitudinal slip capability. Uses a

translational friction model to calculate the

forces and moments during combined

longitudinal and lateral slip.\end{array}\right\}\)| Consider this setting if you do not have the |
| :--- |
| tire coefficients needed by the Magic |
| Formula and are conducting studies that do |
| not involve extensive nonlinear combined |
| lateral slip or lateral dynamics. |$|$

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
MF Tires Longitudinal and Lateral		\checkmark	Tire models suitable for lateral vehicle dynamics studies, including vehicle handling, stability, and ride comfort analysis.
Combined Slip Tires Longitudinal		\checkmark	Tire model implements the longitudinal and lateral behavior of a wheel characterized by the Magic Formula. You can use Tire Data parameter to specify fitted tire data sets provided by the Global Center for Automotive Performance Simulation (GCAPS) for tires, including: - Light passenger car 205/60R15 - Mid-size passenger car 235/45R18 - Performance car 225/40R19 - SUV 265/50R20 - Light truck 275/65R18 - Commercial truck 295/75R22.5

Dependencies

To enable this parameter, on the Setup pane, set Vehicle class to Passenger car.

Passenger Car Brake Type

Brake Type - Virtual vehicle brakes
Disc | Drum | Mapped
The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Disc	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Brake model converts the brake fluid pressure into a braking torque.
Drum	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Brake model converts the brake fluid pressure and brake geometry into a braking torque.
Mapped	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Brake torque is a mapped function of the wheel speed and the brake fluid pressure.

Dependencies

To enable this parameter, on the Setup pane, set Vehicle class to Passenger car.

Brake Control Unit - Brake control
Open Loop (default)|Bang Bang ABS|Five-State ABS and TCS
The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Open Loop	$\boldsymbol{\nu}$	$\boldsymbol{\checkmark}$	Open loop brake control. The controller commands brake pressure as a sole function of the brake command.
Bang Bang ABS	\checkmark	\checkmark	Anti-lock braking system (ABS) feedback controller that switches between two states to regulate wheel slip, to minimize the error between the actual slip and the desired slip. Here, the desired slip is the value where the friction coefficient of the tires reaches its maximum.
Five-State ABS and TCS	\checkmark	\checkmark	Five-state ABS and traction control system (TCS) that uses logic-switching based on wheel deceleration and vehicle acceleration to control the braking pressure at each wheel.
Consider using five-state ABS and TCS			
control to prevent wheel lock-up, decrease			
braking distance, or maintain yaw stability			
during maneuvers. The default ABS			
parameters are set to work on roads that			
have a constant friction coefficient scaling			
factor of 0.6.			

Dependencies

To enable this parameter, on the Setup pane, set Vehicle class to Passenger car.

Passenger Car Powertrain

Engine - Internal combustion engine
Simple Engine (SI) (default)|Simple Engine (CI)|CI Engine|CI Mapped Engine|SI Engine|SI Mapped Engine|SI Deep Learning Engine|FMU Engine

The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description			
Simple Engine (SI)	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Simplified SI engine model using a maximum torque versus engine speed table, two scalar fuel mass properties, and one scalar engine efficiency parameter to estimate engine torque and fuel flow.			
Simple Engine (CI)	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Selecting Simple Engine SI sets the Engine Control Unit parameter to Simple ECU.			
CI Engine		Simplified CI engine model using a maximum torque versus engine speed table, two scalar fuel mass properties, and one scalar engine efficiency parameter to estimate engine torque and fuel flow. Selecting Simple Engine CI sets the				
Engine Control Unit parameter to Simple						
ECU.				$	$	Compression-ignition (CI) engine modeled
:---						
from intake to the exhaust port.						
Selecting CI Engine sets the Engine						
Control Unit parameter to CI Engine						
Controller.						

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
SI Mapped Engine	\checkmark	\checkmark	Mapped SI engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. Selecting SI Mapped Engine sets the Engine Control Unit parameter to SI Engine Controller. If you have the Model-Based Calibration Toolbox, you can generate a static calibration. Select from options on Calibrate from Data. For more information, see "Calibrate Mapped SI Engine Using Data" (Powertrain Blockset).
SI Deep Learning Engine	\checkmark		Deep learning SI engine. Available if you have the Deep Learning Toolbox ${ }^{\mathrm{TM}}$ and Statistics and Machine Learning Toolbox ${ }^{\mathrm{TM}}$ licenses. Use this setting to generate a dynamic deep learning SI engine model to use for powertrain control, diagnostic, and estimator algorithm design. Selecting SI Deep Learning Engine sets the Engine Control Unit parameter to SI Engine Controller.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description	
FMU Engine	\checkmark	\checkmark	The functional mockup unit (FMU) engine implements an FMU block with these engine inputs and outputs.	
			Inputs	Outputs
			Torque command Engine RPM	Brake torque Fuel flow Air flow Exhaust gas temperature Exhaust gas temperature Air fuel ratio Brake-specific fuel consumption (BSFC) Crank angle
			To implement 1 Set Engin 2 Use Brow 3 Select Re and outputs - If veri FMU i signal subsys - If verif FMU match subsys import connec 4 Select Im the virtua subsystem	e FMU engine model: to FMU Engine. to select the FMU file. to verify the FMU inputs ation passes, the number of uts and outputs matches the in the FMU Import m. ation warns, the number of uts and outputs does not e signals in the FMU Import m. However, you can still he FMU file and manually the signals. ort to integrate the FMU in ehicle FMU Import

Dependencies

To enable this parameter, on the Setup pane, set Vehicle class to Passenger car.

Transmission - Virtual vehicle transmission
Ideal Fixed Gear Transmission|Automatic Transmission with Torque Converter| Automated Manual Transmission

The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Ideal Fixed Gear Transmission	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Idealized fixed-gear transmission without a clutch or synchronization. Use this setting to model the gear ratios and power loss when you do not need a detailed transmission model.
Automatic Transmission with Torque Converter			
Automated Manual Transmission	$\boldsymbol{\checkmark}$	Automatic transmission with planetary gears and a torque converter.	

Dependencies

To enable this parameter, on the Setup pane:

- Set Vehicle class to Passenger car.
- Set Powertrain architecture to any of these options:
- Conventional Vehicle
- Hybrid Electric Vehicle P0
- Hybrid Electric Vehicle P1
- Hybrid Electric Vehicle P2
- Hybrid Electric Vehicle P3
- Hybrid Electric Vehicle P4

Transmission Control Unit - Virtual vehicle transmission control
PRNDL Controller
The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
PRNDL Controller	$\boldsymbol{\checkmark}$	\boldsymbol{V}	Controller that executes forward, reverse, neutral, park, and N-speed gear shifts according to the selected shift schedule. You can supply multiple schedules and select them using a block input.

Dependencies

To enable this parameter, on the Setup pane:

- Set Vehicle class to Passenger car.
- Set Powertrain architecture to any of these options:
- Conventional Vehicle
- Hybrid Electric Vehicle P0
- Hybrid Electric Vehicle P1
- Hybrid Electric Vehicle P2
- Hybrid Electric Vehicle P3
- Hybrid Electric Vehicle P4

Drivetrain - Virtual vehicle drivetrain

Front Wheel Drive (default)|Rear Wheel Drive|All Wheel Drive
The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Front Wheel Drive	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Drives both wheels on the front axle.
Rear Wheel Drive	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Drives both wheels on the rear axle.
All Wheel Drive	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Drives all four wheels.

Dependencies

To enable this parameter, on the Setup pane, set Vehicle class to Passenger car.
Front Differential System - Final drive ratio and differential action Open Differential (default)|Active Differential|Limited Slip Differential

The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Open Differential	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Implements differential action with equal torque to both wheels.
Active Differential	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Couples active elements to an open differential to achieve the desired axle torque bias. Not available if you set Model template to Simscape.
Limited Slip Differential	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Couples passive friction elements to an open differential to achieve the desired axle torque bias.

Dependencies

To enable this parameter, set Vehicle class to Passenger car and Drivetrain to Front Wheel Drive or All Wheel Drive.

Rear Differential System - Final drive ratio and differential action Open Differential (default)|Active Differential|Limited Slip Differential

The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Open Differential	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Implements differential action with equal torque to both wheels.
Active Differential	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Couples active elements to an open differential to achieve the desired axle torque bias.
Not available if you set Model template to Simscape.			
Limited Slip Differential	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Couples passive friction elements to an open differential to achieve the desired axle torque bias.

Dependencies

To enable this parameter, set Vehicle class to Passenger car and Drivetrain to Rear Wheel Drive or All Wheel Drive.

Axle Interconnect - Coupling between front and rear axles
Transfer Case (default)
Coupling between front and rear axles, specified as a transfer case.

Dependencies

To enable this parameter, set Vehicle class to Passenger car and Drivetrain to All Wheel Drive.

DC-DC Converter - Power electronics device to change voltage of supplied current DC-DC Converter (default) | No DC-DC Converter

DC-to-DC converter that supports bidirectional boost and buck (lower) operations.

Dependencies

To enable this parameter, set Vehicle class to Passenger car and Powertrain architecture to one of these options:

- Electric Vehicle $x E M$, where x is 1,2 , or 4
- Electric Vehicle 3EM Dual Front
- Electric Vehicle 3EM Dual Rear
- Hybrid Electric Vehicle Px, where x is $0,1,2,3$ or 4
- Hybrid Electric Vehicle MM
- Hybrid Electric Vehicle IPS

Electric Machine \boldsymbol{x}-Virtual vehicle electric motor
Electric Vehicle 1EM|Electric Vehicle 2EM|Electric Vehicle 3EM Dual Front| Electric Vehicle 3EM Dual Rear|Electric Vehicle 4EM|Hybrid Electric Vehicle P0|Hybrid Electric Vehicle P1|Hybrid Electric Vehicle P2|Hybrid Electric Vehicle P3|Hybrid Electric Vehicle P4|Hybrid Electric Vehicle MM|Hybrid Electric Vehicle IPS

Virtual vehicle electric machine settings for motor in location x as seen on the Powertrain architecture diagram on the Setup pane.

Dependencies

To enable this parameter, set Vehicle class to Passenger car and Powertrain architecture to one of these options:

- Electric Vehicle x EM, where x is 1,2 , or 4
- Electric Vehicle 3EM Dual Front
- Electric Vehicle 3EM Dual Rear
- Hybrid Electric Vehicle Px, where x is $0,1,2,3$ or 4
- Hybrid Electric Vehicle MM
- Hybrid Electric Vehicle IPS

Energy Storage - Virtual vehicle energy storage type
Mapped Battery|Ideal Voltage Source
The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Mapped Battery	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Open-circuit voltage and internal resistance are mapped functions of the state-of charge (SOC) and battery temperature
Ideal Voltage Source	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Constant-voltage source with infinite storage capacity

Dependencies

To enable this parameter, set Vehicle class to Passenger car and Powertrain architecture to one of these options:

- Electric Vehicle $x E M$, where x is 1,2 , or 4
- Electric Vehicle 3EM Dual Front
- Electric Vehicle 3EM Dual Rear
- Hybrid Electric Vehicle Px, where x is $0,1,2,3$ or 4
- Hybrid Electric Vehicle MM
- Hybrid Electric Vehicle IPS

Vehicle Control Unit - Vehicle system to direct the energy flows in electric and hybrid-electric vehicles
EV 1EM with BMS|EV 2EM|EV 3EM Dual Front|EV 3EM Dual Rear|EV 4EM|HEVP0 Optimal|HEVP1 Optimal|HEVP2 Optimal|HEVP3 Optimal|HEVP4 Optimal|HEVMM RuleBased|HEVIPS RuleBased

The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Powertrain Architectu re	Description
EV 1EM with BMS	$\boldsymbol{\nu}$	$\boldsymbol{\nu}$	Electric Vehicle 1EM	Controls the motor with torque arbitration and power management. Implements regenerative braking.
EV 2EM	$\boldsymbol{\nu}$		Electric Vehicle 2EM	
EV 3EM Dual Front	$\boldsymbol{\checkmark}$		Electric Vehicle 3EM Dual Front	
EV 3EM Dual Rear	$\boldsymbol{\checkmark}$		Electric Vehicle 3EM Dual Rear	

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Powertrain Architectu re	Description
EV 4EM	\checkmark		Electric Vehicle 4EM	
HEVP0 Optimal	\checkmark		Hybrid Electric Vehicle P0	Implements an equivalent consumption minimization strategy (ECMS) to control the energy management of hybrid electric vehicles (HEVs). The strategy optimizes the torque split between the engine and motor to minimize energy consumption while maintaining the battery state of charge (SOC). Implements regenerative braking.
HEVP1 Optimal	\checkmark		Hybrid Electric Vehicle P1	
HEVP2 Optimal	\checkmark		Hybrid Electric Vehicle P2	
HEVP3 Optimal	\checkmark		Hybrid Electric Vehicle P3	
HEVP4 Optimal	\checkmark		Hybrid Electric Vehicle P4	
HEVMM RuleBased	\checkmark		Hybrid Electric Vehicle MM	Controls the motor, generator, and engine through a set of rules and decision logic implemented in Stateflow. Implements regenerative braking.
HEVIPS RuleBased	\checkmark		Hybrid Electric Vehicle IPS	

Dependencies

To enable this parameter, on the Setup pane, set Vehicle class to Passenger car.

Passenger Car Driver

Driver - Virtual vehicle driver

Longitudinal Driver|Predictive Driver|Predictive Stanley Driver

The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Longitudinal Driver	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	Implements a longitudinal speed-tracking controller.
Predictive Driver		$\boldsymbol{\checkmark}$	Tracks longitudinal velocity and a lateral displacement relative to a reference pose. Available when you set Vehicle dynamics to Combined longitudinal and lateral vehicle dynamics.
Predictive Stanley Driver		$\boldsymbol{\checkmark}$	Adjusts the steering angle command to match the current pose of a vehicle to a reference pose, given the vehicle's current velocity and direction.
Available when you set Vehicle dynamics to Combined longitudinal and lateral vehicle dynamics.			

Dependencies

To enable this parameter, on the Setup pane, set Vehicle class to Passenger car.

Passenger Car Steering System

Steering System - Virtual vehicle steering
Kinematic Steering|Mapped Steering|Dynamic Steering|Steering System|No Steering

The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Kinematic Steering		$\boldsymbol{\checkmark}$	Kinematic model for ideal rack-and-pinion steering. Gears convert the steering wheel rotation into linear rack motion.
Mapped Steering		$\boldsymbol{\checkmark}$	Mapped rack-and-pinion steering model.
Dynamic Steering		$\boldsymbol{\checkmark}$	Dynamic model for ideal rack-and-pinion steering. Gears convert the steering wheel rotation into linear rack motion.
Steering System		$\boldsymbol{\checkmark}$	Steering system for Ackerman and rack-and- pinion steering mechanisms.
No Steering		$\boldsymbol{\checkmark}$	No steering.

Dependencies

To enable this parameter, on the Setup pane:

- Set Vehicle class to Passenger car.
- Set Vehicle dynamics to Combined longitudinal and lateral vehicle dynamics.

Passenger Car Suspension

Suspension - Virtual vehicle suspension system
Kinematics and Compliance Independent Suspension|MacPherson Front Suspension Solid Axle Rear Suspension|Kinematics and Compliance Twist Beam Suspension| No Suspension

The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Kinematics and Compliance Independent Suspension		\boldsymbol{V}	Kinematics and compliance (K \& C) test suspension characteristics measured from simulated or actual laboratory suspension tests.
MacPherson Front Suspension Solid Axle Rear Suspension		\boldsymbol{V}	Independent MacPherson front suspension and solid rear axle.
Kinematics and Compliance Twist Beam Suspension		\boldsymbol{v}	Kinematics and compliance characteristics of: - Independent suspension on front axle.
No Suspension			

Dependencies

To enable this parameter, on the Setup pane:

- Set Vehicle class to Passenger car.
- Set Vehicle dynamics to Combined longitudinal and lateral vehicle dynamics.

Motorcycle Chassis

Front Tire - Linear front tire

Linear Front SSC Tire (default)

The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Linear Front SSC Tire		$\boldsymbol{\vee}$	Tire with linear force and moment model, using Simscape modeling.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
*Motorcycle configuration options require Simscape and Simscape add-ons.			

Dependencies

To enable this parameter, on the Setup pane, set Vehicle class to Motorcycle.

Rear Tire - Linear rear tire

Linear Rear SSC Tire (default)
The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Linear Rear SSC Tire		$\boldsymbol{\checkmark}$	Tire with linear force and moment model, using Simscape modeling.
Motorcycle configuration options require Simscape and Simscape add-ons.			

Dependencies

To enable this parameter, on the Setup pane, set Vehicle class to Motorcycle.
Front Brake Type - Brake type
Disc (default) | Drum | Mapped
The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description	
Disc		\checkmark	Brake model converts the brake fluid pressure into a braking torque.	
Drum	$\boldsymbol{\nu}$	Brake model converts the brake fluid pressure and brake geometry into a braking torque.		
Mapped	Brake torque is a mapped function of the wheel speed and the brake fluid pressure.			
Motorcycle configuration options require Simscape and Simscape add-ons.				

Dependencies

To enable this parameter, on the Setup pane, set Vehicle class to Motorcycle.
Rear Brake Type - Brake type
Disc (default) | Drum | Mapped

The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Disc		\checkmark	Brake model converts the brake fluid pressure into a braking torque.
Drum	$\boldsymbol{\checkmark}$	Brake model converts the brake fluid pressure and brake geometry into a braking torque.	
Mapped		\checkmark	Brake torque is a mapped function of the wheel speed and the brake fluid pressure.
*Motorcycle configuration options require Simscape and Simscape add-ons.			

Dependencies

To enable this parameter, on the Setup pane, set Vehicle class to Motorcycle.

Brake Control Unit - Brake control

Open Loop (default)|Bang Bang ABS|Five-State ABS and TCS
The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Open Loop	\boldsymbol{V}	Open loop brake control. The controller commands brake pressure as a sole function of the brake command.	
Bang Bang ABS		\boldsymbol{V}	Anti-lock braking system (ABS) feedback controller that switches between two states to regulate wheel slip, with the aim of minimizing the error between the actual slip and the desired slip. Here, the desired slip is the value where the tires' friction coefficient reaches its maximum.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description		
Five-State ABS and TCS		Five-state ABS and traction control system (TCS) that uses logic-switching based on wheel deceleration and vehicle acceleration to control the braking pressure at each wheel.			

Dependencies

To enable this parameter, on the Setup pane, set Vehicle class to Motorcycle.

Steering System - Steering
 Steering (default)|No Steering

The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Steering		$\boldsymbol{\checkmark}$	Handlebar-steered front fork on a frame- mounted revolute joint.
No Steering		$\boldsymbol{\checkmark}$	Steering angle fixed at zero.
*Motorcycle configuration options require Simscape and Simscape add-ons.			

Dependencies

To enable this parameter, on the Setup pane:

- Set Vehicle class to Motorcycle.
- Set Vehicle dynamics to Out-of-plane motorcycle dynamics.

Steering Damper - Damper

Simple Damper (default) | No Damper
The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
No Damper		$\boldsymbol{\checkmark}$	No damping.
Simple Damper		$\boldsymbol{\nu}$	Torsional damper about steering axis, with linear viscous damping.
*Motorcycle configuration options require Simscape and Simscape add-ons.			

Dependencies

To enable this parameter, on the Setup pane:

- Set Vehicle class to Motorcycle.
- Set Vehicle dynamics to Out-of-plane motorcycle dynamics.

Front Suspension - Motorcycle suspension
Simple Spring and Damper Suspension (default)
The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Simple Spring and Damper Suspension		\boldsymbol{V}	Telescoping fork with linear spring and damper.
*Motorcycle configuration options require Simscape and Simscape add-ons.			

Dependencies

To enable this parameter, on the Setup pane:

- Set Vehicle class to Motorcycle.
- Set Vehicle dynamics to Out-of-plane motorcycle dynamics.

Rear Suspension - Motorcycle suspension
Simple Spring and Damper Suspension (default)
The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Simple Spring and Damper Suspension		$\boldsymbol{\nu}$	Swing arm with linear spring and damper.
*Motorcycle configuration options require Simscape and Simscape add-ons.			

Dependencies

To enable this parameter, on the Setup pane:

- Set Vehicle class to Motorcycle.
- Set Vehicle dynamics to Out-of-plane motorcycle dynamics.

Motorcycle Powertrain

Propulsion System - Motorcycle propulsion system

Simple Engine|Mapped Engine |Moto Electrical System
The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Simple Engine		\checkmark	Simplified SI engine model using a maximum torque versus engine speed table, two scalar fuel mass properties, and one scalar engine efficiency parameter to estimate engine torque and fuel flow. Available when you set Powertrain architecture to Conventional Motorcycle with Chain Drive.
SI Mapped Engine		\checkmark	Mapped SI engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. Available when you set Powertrain architecture to Conventional Motorcycle with Chain Drive.
Moto Electrical System		\checkmark	Electric propulsion system. Available when you set Powertrain architecture to Electric Motorcycle with Chain Drive.
*Motorcycle configuration options require Simscape and Simscape add-ons.			

Dependencies

To enable this parameter, on the Setup pane, set Vehicle class to Motorcycle.

Chain - Motorcycle chain and sprocket drive system

Chain Drive (default)
The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Chain Drive		Inextensible chain which meshes with front and rear sprockets. Rear sprocket is mounted to wheel with a torsional damper.	
*Motorcycle configuration options require Simscape and Simscape add-ons.			

Dependencies

To enable this parameter, on the Setup pane, set Vehicle class to Motorcycle.

Motorcycle Rider

Rider - Rider type

Rigid (default)|6DOF and External Forces and Moments
The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Rigid		\checkmark	Rider implemented as a rigid body so that their relative motion to the motorcycle frame is zero. No crouching, and their lean angle is the same as the motorcycle frame.
6 DOF and External Forces and Moments		\checkmark	Rider body implemented with six degrees-of- freedom (DOF) relative to the motorcycle frame. Able to lean and crouch independently of frame.
*Motorcycle configuration options require Simscape and Simscape add-ons.			

Dependencies

To enable this parameter, on the Setup pane, set Vehicle class to Motorcycle.
Rider Control - Motorcycle control type
Open Loop (default)
The parameter options depend on the available products. This table summarizes the options available with Powertrain Blockset and Vehicle Dynamics Blockset.

Setting	Powertrain Blockset	Vehicle Dynamics Blockset	Description
Open Loop		Steering of front fork as prescribed by test scenario.	

Dependencies

To enable this parameter, on the Setup pane, set Vehicle class to Motorcycle.
Environment
Environment - Virtual vehicle environment
Standard Ambient
The parameter setting Standard Ambient implements an ambient environment model.

Scenario and Test

Assemble a test plan for your virtual vehicle.
If you set Scenario to Drive Cycle, you can use:

- Drive cycles from predefined sources. By default, the block includes the FTP-75 drive cycle. To install additional drive cycles from the support package, see "Support Package for Maneuver and Drive Cycle Data". The support package has drive cycles that include the gear shift schedules, for example, JC08 and CUEDC.
- Workspace variables that define your own drive cycles.
- .mat, .xls, .xlsx, or .txt files.
- Wide open throttle (WOT) parameters, including initial and nominal reference speeds, deceleration start time, and final reference speed.

For a Passenger car, if you have Vehicle Dynamics Blockset and set Vehicle dynamics to Combined longitudinal and lateral vehicle dynamics, you can select maneuvers for vehicle handling, stability, and ride analysis. Maneuvers include:

- Increasing Steer
- Swept Sine
- Sine with Dwell
- Fishhook

For a Motorcycle, if you set Vehicle dynamics to Out-of-plane motorcycle dynamics, you can select maneuvers for vehicle handling, stability, and ride analysis. Maneuvers include:

- Steady Turning
- Handle Hit

If you want to run your virtual vehicle in the Unreal Engine 3D simulation environment, set 3D Scene Selection to 3D Scene. For hardware requirements, see "Unreal Engine Simulation Environment Requirements and Limitations".

Logging

On the Logging tab, select the signals to log. The app has a default set of signals in the Selected Signals list. The default list depends on the vehicle configuration. You can add or remove signals. Options include energy-related quantities, and vehicle position, velocity, and acceleration.

Build

Click Virtual Vehicle to build your vehicle. When you build, the Virtual Vehicle Composer app creates a Simulink model that incorporates the vehicle architecture and parameters that you have specified and associates it with the test plan you configured.

The build takes time to complete. View progress in the MATLAB Command Window.

Operate

To operate the model, on the Composer tab in the Operate section, click Run Test Plan

The simulations take time to complete. View progress in the MATLAB Command Window.

Analyze

Click Simulation Data Inspector to view and analyze simulation signals you chose to log during operation.

If your test plan includes more than one test scenario, the Simulation Data Inspector displays the results from the last scenario. To see results from earlier scenarios, load the archived results.

Programmatic Use

Entering the command virtualVehicleComposer opens a new session of the app, enabling you to configure, build, and analyze your virtual vehicle.

Version History

Introduced in R2022a

R2023a: Configure motorcycles with Simscape subsystems

If you have Simscape and these Simscape add-ons, you can use the app to configure vehicles with Simscape subsystems:

- Simscape Driveline
- Simscape Electrical
- Simscape Fluids
- Simscape Multibody - Required for motorcycles

When you build your virtual vehicle, on the Setup tab, set Model template to Simscape.
The app provides the Simscape subsystem templates for longitudinal vehicle analysis.

R2022b: Configure vehicles with Simscape subsystems

If you have these Simscape products, you can use the Virtual Vehicle Composer app to configure the vehicle plant model with Simscape subsystems.

- Simscape Driveline
- Simscape Electrical

When you build your virtual vehicle, on the Setup tab, set Model template to Simscape.
The app provides the Simscape subsystem templates for longitudinal vehicle analysis.

See Also

Topics

"Get Started with the Virtual Vehicle Composer"
"Simulation Data Inspector"
"How 3D Simulation for Vehicle Dynamics Blockset Works"

[^0]: $T_{R} \quad$ Input torque

[^1]: 1 Reprinted with permission Copyright © 2008 SAE International. Further distribution of this material is not permitted without prior permission from SAE.

[^2]: 2 Reprinted with permission Copyright © 2008 SAE International. Further distribution of this material is not permitted without prior permission from SAE.

[^3]: 4 Reprinted with permission Copyright © 2008 SAE International. Further distribution of this material is not permitted

[^4]: Programmatic Use
 Block Parameter: g_bias
 Type: character vector

